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  Taille noyau = 10-15 m
Trou noir (longueur de Planck)

Interactions faibles/fortes
Energie de masse
MQ relativiste (Klein-Gordon,
Dirac, gravitation quantique)

Physique à ~1 corps (quantique)

10-35 10-15 10-9 10-3 103 109 1015 1026

Terre-soleil : 1011m      
Taille de l’Univers

Effets gravitationnelles
Relativité

Magnéto-hydrodynamique
Turbulence, Chaos

Physique à N-corps (classiques)

GéoSciences
(SVT)

Physique du
solide

ELECTRONS
(non relativiste)

= particule chargée 
➞ interactions 

électrostatiques
 (+ champ )

Physique à 
1023 corps !!!
QUANTIQUES

⃗B
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La physique du solide c’est 

comprendre le monde 
qui nous entoure

pourquoi les miroirs sont-ils réfléchissants, 
les aimants « collent-ils », certains matériaux 

conduisent-ils le courant et d’autres pas, 
pourquoi les solides sont-ils solides ?…

Propriétés 
OPTIQUES

Propriétés 
MAGNETIQUES

Propriétés 
ELECTRONIQUES

Propriétés 
THERMIQUES

L3
L’objectif de ce cours : M1-S7
sera d’introduire le formalisme 

permettant de mieux 
comprendre les solides. 

Ces concepts et (propriétés 
associées) seront approfondies 

en M1-S8  

De grandes questions 
fondamentales

états quantiques critiques (intrication)
supraconductivité non conventionnelle, 
fractionalisation spin/charge, particules 
« exotiques » (Dirac, Majorana)  etc…

et les questions ouvertes en M2. 



Interactions electron-ion

atome d’hydrogène (L3)
états localisés = couches :  En = − E0/n2

Energie cinétique

H = −
ℏ2 ∇2

i

2m
−

Ze2

|ri − R |

≡
N

∑
i=1

ℏ2 ∇2
i

2m*
m* =  masse effective

S1
solide 1

∑
R

Les électrons des couches internes restent 
localisées mais ceux des couches externes 

peuvent se déplacer dans le solide                  
= électrons itinérants  ⇒ états délocalisés

S2
solide 2

GAZ de FERMI

E(k)

Physique des
Semi-conducteurs

+∑
i≠j

∑
i

(

Interactions électrons-électrons

Insoluble !
corrélations : seconde quantification

(Physique à N-corps quantique)

à l’origine de tous les effets exotiques 

(et souvent incompris) de la matière

S3-MQ
solide 3 : Physique à N-corps

LIQUIDE de FERMI

états quantiques 
de la matière

)
e2

2 |ri − rj |



Physique du Solide 1 : de l’atome au solide 

1. Le gaz quantique d’électrons (4C/4TDs)


A. Liaison liante/anti-liante ⇾ notion de bandes. Masse effective.

B. Niveau de Fermi, densité d’états. 


C. Développement de Sommerfeld. Quelques propriétés Physique. 


2. Cohésion, vibrations (3.5C/2TDs) 

A. (Courts) rappels de cristallographie. 


B. Cohésion des solides. 

C. Phonons (définition et relation de dispersion).


3. Magnétisme (3.5C/2TDs) 

A. Rappels phénoménologiques.


B. Réponse linéaire, magnétisme localisé/itinérant. 

C. Interactions, ordres magnétiques.   


Pré-requis
(Electromagnétisme I, II et Introduction à la physique du solide)

Mécanique quantique (L3 et S7)
Physique statistique (S7 et voir S8) 

mais aussi : analyse fonctionnelle et algèbre linéaire,…



Les effets de corrélations (interactions e/e, liquide de Fermi)
 ne sont traités qu’en M2
= seconde quantification 

Solide IIa (électrons de Bloch) ⇒ 24hC/TD


1. Electrons dans un potentiel périodique

Réseau réciproque et théorème de Bloch. Relation de dispersion, notions de DFT (introduction à la topologie)


2. Propriétés électroniques et thermiques

Métaux/Isolants (incl. Anderson + Mott), conductivité électrique (phonons, spin) et  thermique (+ effet Seebeck)

Solide IIb  (Ordres et Instabilités) ⇒ 12hC/TD + 16hTPs


1. Ordres électroniques et magnétiques 

Interaction électron-phonon, notions de supraconductivité. Oscillations quantiques.


2. Etude expérimentale (en laboratoire) (2x8h=2 parmi 3)

A. Transition de Peirls et écrantage magnétique dans les supraconducteurs : NEEL 

B. Effet Shubnikov–de Haas (masse effective) et effet Hall quantique : PHELIQS 
C. Magnétisme (quantification du flux dans SQUID, transition para/ferromagnétique) : LNCMI
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Chap.1 

Le gaz électronique quantique



A. Liaisons liantes et antiliantes, notion de bandes

H = p2

2m
−

Ze2

4πϵ0 |r |

pour des électrons liés ⇒ orbitales atomiques

E = − E0 /n2

On sait que

niveaux atomiques discrets

H = p2

2m

et s’ils sont libres,

l’énergie (cinétique) est simplement :

p

Distribution parabolique continue
et les fonctions d’onde sont des ondes planes 

8
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Dans un solide, les électrons de coeur (couches profondes) restent fortement liés 

mais ceux des couches supérieures (peu liés) sont susceptibles de se « libérer » et de se 

déplacer au sein du solide, on parle d’électrons de conduction

mais ils ne sont pas totalement libres…
E = − E0 /n2

p

H = −
ℏ2 ∇2

2m
−

Ze2

4πϵ0 |r |
−

Ze2

4πϵ0 |r − R |

A B
pour deux atomes distants de R

9

→ ϕ = cAϕA
at + cBϕB

at

liante

antiliante

∫ ϕi*
at Vϕi

atd3r = β

∫ ϕi*
at Vϕ j

atd
3r = γ

∫ ϕi*
at ϕ

j
atd

3r = S

avec , on obtient :H = Hat + V

les valeurs propres       E± = Eat +
β ± γ
1 ± S

Orbitale atomique et en posant :
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On peut généraliser à  atomes

(modèle dit des liaisons fortes) :

 on forme alors une BANDE de  niveaux* 

N

N }le terme  « couple » les positions 
 et , il est appelé intégrale 

de saut : il traduit le déplacement 
de l’électron dans le solide et fixe la 

largeur de la bande.

γ
r r + R

Remarque : La largeur de la bande augmente 

lorsqu’on rapproche les atomes et les bandes 

issues des différents états atomiques peuvent se 

« chevaucher » pour former des bandes 

hydrides (par exemple hybridation sp3)

On supposera (par simplicité) dans la suite que l’on n’a qu’une seule bande (voir Solide 2).

* correspondant à  états (en tenant compte du spin). 
En partant des x niveaux d’un état p (x=3) ou d (x=5), on obtient x bandes.

2N
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Vous verrez (également en physique du solide 2) que, pour un potentiel périodique 
(= réseau d’atomes) la fonction d’onde peut s’écrire :  

 où  = théorème de Bloch.Φk = uk(x)eikx uk(x + R) = uk(x)
Le terme  traduit le déplacement « presque » libre de l’électron et  les 

modulations de la densité électronique dans le solide (due à la présence des ions*).
eikx uk(x)

*  pour des électrons totalement libres et pour les liaisons fortes .uk = 1 uk(x) = ∑
R

ϕat(x − R)e−ik(x−R)

La relation  sera discutée en Solide 2 et 
nous ne détaillerons pas ici ce calcul.  Vous 

verrez que proche des bords de bande :

  

E(k)

E ≈ E0 + γR2k2

La fonction d’onde est donc définie par son 
vecteur d’onde 

et on peut alors déplier la bande :
k**

k 
2π
L

le confinement des électrons au sein du solide de taille 
 impose que (Heisenberg) L Δk ∼ 2π /L

** vous verrez en solide 2 que  mais  reste néanmoins une grandeur essentielle.ℏk ≠ p . . . k



En comptant les énergies à partir de E0  ( ) 

et en définissant une masse effective (ou masse de bande)  

le potentiel crée par les  atomes (noyaux + électrons de coeur) donne donc lieu 

à l’existence de bandes d’énergie qui peuvent être (souvent) approximées par :

 .

E − E0 ↔ E
m* = ℏ2/2γR2

N

E ≈ ℏ2k2/2m*

C’est le cas auquel on s’intéressera dans la suite de ce cours.

Elle peut être très faible  
(voire même nulle, cône de Dirac)

ou au contraire très grande (jusqu’à ) 
(on parle alors de Fermions lourds)

et on peut même avoir   ⇒ TROUS 

(voir semi-conducteurs)

∼ 1000m

m* < 0 m* < 0 m* > 0

Un électron de conduction pourra alors occuper un de ces états accessibles 
(en fonction de son énergie) et pourra se déplacer dans le solide comme si il était libre 

mais avec une masse  renormalisée par les interactions e/ions.  
Cette valeur peut-être très différente de la masse de l’électron libre. 

m*

12
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Mais que se passe-t-il si on a  ? 

où la valence  est le nombre d’électron(s) libéré(s) par chacun des atomes.

Ne = ZN
Z

B. Niveau de Fermi, densité d’états

De plus, comme on l’a vu, les valeurs de  sont quantifiées ( ).

 et on rempli les états en E croissant (2 par  en tenant compte du spin).
k k = n2π/L

k

Le dernier état occupé est appelé :  énergie (niveau) de Fermi.

mais  peut être très délicat à déterminer…d3k

remarque :
car Δk << kmax

2×
∫∫∫

d3k

( 2π
L )3

= N = nL3 = Z(L/a)3 Σk →
∫∫∫

d3k

états occupés

Pour déterminer cette énergie on écrit : 

mais dans notre cas ( ) les surfaces d’énergie constante sont des 

sphères de rayon  et :  

E ∝ k2

2m*E/ℏ2 d3k = 4πk2dk

 Tout d’abord, ils doivent respecter le principe d’exclusion de Pauli (Fermions) : 
deux électrons ne peuvent pas être dans le même état quantique, ils ne peuvent donc 

PAS avoir la même énergie (au spin près).
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Remarque :  pour 

 les électrons sont NON relativistes.

vF =
ℏkF

m*
∼ qq106m/s ∼

c
100

Z = 2,a = 3Å, m* = me

d’où  ,  soit   2
4
3 πk3

F

( 2π
L )3

= Ne kF = (3π2n)1/3

où  est la densité électronique .n = Ne/V ∼ Z /a3

 

~ énergie d’un électron dans une boite de rayon a.  C’est une énergie TRES grande !

et  EF =
ℏ2(3π2n)2/3

2m*
= (3π2Z )2/3 ℏ2

2m*a2
∼ qqeV

dNe = g(E)dE = 2 × (
L
2π

)d × ddk

Mais la différence d’énergie entre deux niveaux : δE =
!2kδk

m
∼ !2

m

π

a

2π

L
∼ 1µeV << kT

EF    >>     kT    >>   δE 

Seuls les états près de  seront 

«UTILES», l’ensemble des états d’énergie 

 dans l’espace des  est appelée 

SURFACE DE FERMI  

EF

EF k

les niveaux peuvent être considérés 

comme CONTINUS, on peut définir une

 DENSITE D’ETATS 



bande complète

1515

Comme mentionné précédemment, la difficulté réside dans la détermination de  mais 
pour des électrons « libres » (relation quadratique) :  (3D) et 

ddk
d3k = 4πk2dk dE = ℏ2kdk /m

L3

2π2

(
2m
!2

)3/2√
Eg(E) = (m /ℏ2) × (L3k /π2) =

états occupés

états libres

EF

1D 2D
ddk 2dk 2πkdk
g(E) L

π
(

2m
ℏ2 )1/2 1

E

et pour les autres dimensions 
(voir TDs) mL2

π!2

Comme nous le verrons,  ici égal à  est alors LA grandeur 
fondamentale pour toutes les propriétés des solides.

g(EF)/L3 mkF /π2ℏ2

 = états utilesg(EF) × ΔE
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Remarque :  

i.e. à 3D  et l’énergie totale (à T=0K) est : 

Ne[3D] = ∫
EF

0
g(E)dE =

1
3π2

(
2m
ℏ2

)3/2E3/2
F =

2
3

g(EF)EF

g(EF) = 3Ne/2EF

E = ∫
EF

0
Eg(E)dE = N

3EF

5
[@3D]

Mais :  et   E3D
moy = 3EF /5 ∼ 2eV ∼ 20000K ≫ 3kBT/2 vF ≫ vclas

l’équipartition classique ne peut pas être appliquée ! Les électrons sont foncièrement 
quantiques. Mais pourquoi ?… 

leur densité est grande  e/cm3 (➞ Heisenberg) 

et leur masse très faible, .

ρ ∼ 1/a3 ∼ 1023

E ∼ ℏ2/ma2

Au début du XXe siècle, Paul Drude (1863-1906) propose de décrire 

ces électrons libres, comme un gaz classique, à l’équilibre thermique avec le bain 

ambiant.  Ils auraient alors toutes la même énergie moyenne donnée par le 

théorème d’équipartition  @300K et leur vitesse moyenne serait 

 m/s

3kBT/2 ∼ 40meV

vclas ∼ kT/m ∼ 3.104
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Drude suppose également qu’ils se déplacent indépendamment les uns des autres, mais 
subissent des chocs sur les ions du réseau (ce qui est également FAUX… voir Solide 2) et 
pour une distance entre choc  m (quelques distances inter-atomiques), on obtient 

s et - bien que les hypothèses soient FAUSSES -  l’ordre de grandeur est correct*.
Et en résumé : 

∼ 10−9

τ ∼ 10−13

* Le calcul exact est en fait très compliqué… et les erreurs de Drude se compensent…
** Les atomes conduisent (avec les interactions e/e) à l’existence d’une masse effective et peuvent « aider » 

(ou pas) les électrons à se déplacer.

En mécanique classique En mécanique quantique

distance entre chocs (atomes) ~ 10-9m distance entre chocs ~ 10-7m** (défauts !) 

tous les électrons sont équivalents seuls les électrons proche de EF comptent 

Ē/N = 3kBT/2 ∼ 30meV[@300K ]

v̄ = 3kBT/m* ∼ qq104m/s

τ ∼ 10−13s τ ∼ 10−13s

Ē/N = 3EF /5 ∼ 3eV

0 ≤ v ≤ vF ∼ qq106m/s; v̄ = 3vF /4[@3D]

Qu’en est-il à  ?
Certains états proches de EF se vident car les électrons peuvent être thermiquement activés pour 

occuper des états jusqu’à là vides au dessus de EF.  Comment trouver le nouveau remplissage ? 

T ≠ 0
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⇒ fonction statistique* «propre» dite de Fermi-Dirac (voir cours de physique statistique).

±kT

où  est le potentiel chimiqueμ

< nk > = f(E, T ) =
1

e(E(k)−μ)/kBT + 1

A  tous les états sont occupés jusqu’à  et 

la fonction de distribution est une marche : , 

mais à , f(E) s’élargit et les niveaux peuvent être occupés jusqu’à l’infini 

(avec une probabilité exponentiellement nulle) et     

T = 0 EF

EF = μ(0)
T ≠ 0

E(T ) = ∫
∞

0
Ef(E)g(E)dE

* on retrouve dans ce traitement statistique (le nombre d’électron est extrêmement grand /mm3) la notion de gaz.∼ 1023
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•  

•
• K ne diverge pas plus vite qu’une loi de puissance

A = ∂K /∂E
K(0) = 0

Pour calculer les propriétés d’un solide on doit calculer des intégrales du type :

X̄ = ∫
∞

0
X(E)g(E)f(E)dE = ∫

∞

0
A(E)f(E)dE

et si A(E) une fonction de E telle que

= 0

Ā =
� ∞

0
A(E)f(E)dE = [Kf ]∞0� �� �−

� ∞

0
K(E)

df

dE
dE

C. Développement de Sommerfeld 

or  n’est non nulle que pour E ~ μ
C’est un résultat essentiel en physique des solides :
 seuls les électrons dont l’énergie  contribuent 

aux propriétés physiques. 

df /dE

∼ μ

donnera une contribution nulle par parité

→ K(E) = K(µ) + (E − µ)K ′(µ)︸ ︷︷ ︸ +
(E − µ)2

2
K”(µ) + ...



Ā =
∫ ∞

0
K(µ)(− df

dE
)dE +

∫ ∞

0
K”(µ)

(E − µ)2

2
(− df

dE
)dE = K(µ) + K”(µ)(kT )2

∫ ∞

−µ/kT

x2

2
(− df

dx
)dx

et d’oùµ/kT →∞ Ā =
� µ

0
A(E)dE + A�(µ)(kT )2

π2

6
+ ...

Développement de Sommerfeld

en particulier pour  on trouve : 

soit 

A = g(E)

N = ∫
μ

0
g(E)dE + g′￼(μ)(kT )2π2/6 = N + (μ − EF)g(μ) + g′￼(μ)(kT )2π2/6

μ(T ) ∼ EF −
π2g′￼(EF)
6g(EF)

(kT )2

Le potentiel chimique « s’adapte » pour assurer la conservation de .N

20

∫
∞

0
X(E)g(E)f(E)dE = ∫

EF

0
X(E)g(E)dE + (kT )2 π2

6
X′￼(EF)g(EF) = X̄(0) + (kT )2 π2

6
X′￼(EF)g(EF) + . . .

Et en prenant  on a :   A = Eg(E) Ē(T ) ∼ Ē(0) + (kT )2 π2

6
g(EF)
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Et on peut calculer la chaleur spécifique .

Contrairement au calcul classique (équipartition) qui prévoyait une chaleur spécifique 

constante  (loi de Dulong-Petit), la chaleur spécifique tend

 linéairement vers zéro à basse température. 

Comment peut-on comprendre cette dépendance ? 

C = dE/dT =
π2

3
k2

Bg(EF)T = γT

CDP =
3
2

kBN

∼ 3
2
kB × [g(EF ).2kBT ]En fait on peut écrire :  C =

3kB

2
Nutile

ce qui est très proche du calcul exact ( ).3 ≈ π2/3

Remarque : . 

En fait toutes les propriétés physique seront proportionnelles à  

qui est la grandeur fondamentale en physique du solide, 

car elle définit la notion de .

γ ∝ g(EF)
g(EF)

Nutile = g(EF) × ΔE

énergie caractéristique



Pour les semi-conducteurs, la résistivité devient même INFINIE (diélectrique) lorsque 
T → 0 alors que pour certains composés la résistivité est au contraire parfaitement 

NULLE à basse température (supraconducteurs).

La conductivité électrique,  représente la capacité d’un matériau à transporter un 

courant électrique. La densité de courant est alors relié au champ électrique par    

et la résistance R est elle reliée à la résistivité  par la relation :  

σ

⃗J = σ ⃗E
ρ = 1/σ ρ = RS/l

Cette résistivité est généralement de l’ordre de  quelques  à 300K 
mais elle peut néanmoins varier d’un facteur 1(Ag) à 100 (Mn) et peut atteindre 

ρ ~ 1012 𝜇Ωcm (à 300K) pour les semi-conducteurs (Si)

μΩcm

22



* c’est comme on l’a vu FAUX,… seuls les électrons proches de  comptent !EF

Comme Durde le supposait (à raison) La vitesse est redistribuée aléatoirement après le 
choc  et il en résulte alors (bien) une force de « frottements »  

 

< vinst > = 0
⃗f frot = − m ⃗v/τ

Et en présence d’un champs E, le PFD (à l’équilibre) s’écrit :

 −e ⃗E − m ⃗v/τ = md ⃗v/dt = 0⃗

Il reste à relier  et . Pour cela Drude suppose que tous les électrons sont équivalents*⃗J ⃗E

j = −nev =
ne2τE

m
→ σ0 =

ne2τ

m
densité d’électrons de conduction 

et donc m∼
1029.10−38.10−13

10−30
∼ 10−8Ω

OK ! même si toutes les hypothèses sont fausses…

23

En « pratique » on ne peut ni mesurer l’infini ni zéro mais ~ 50 ordres de grandeurs 
séparent la résistivité de ces deux types de solides !

 aucune autre grandeur physique ne présente une telle dispersion… (taille univers/taille quark ~ 1042…)



mais cette coïncidence est accidentelle… les erreurs se compensent  !

et pour des électrons libres   

on retrouve DRUDE !!!
σ = (m /π2ℏ2)kF . e2 . (ℏkF /m)2τ/3 = ne2τ/m

En fait on doit écrire : 

= [g(EF )δE]eVx = g(EF )(eExvF τ)eVx

Jx = g(EF )e2v2
xτ.Ex = g(EF )e2 v2

F τ

3
.Ex

i.e. σ = g(EF )e2D

Jx = neVx → nutileeVx

champ électrique

 est ici la densité d’états par unité de volumeg(EF)

Remarque :   >> distance inter-atomique
les ions n’agissent PAS comme des centres diffuseurs ! (voir Solide 2)

vFτ = l ∼ 100Å

Le calcul exact consiste à écrire :                                           

où  est la fonction de distribution HORS EQUILIBRE car la surface de Fermi se déplace 

sous l’action du champ Ex  avec   

et   

jx = − e∫
∞

0
g(E)fHE(E)vx(E)dE

fHE

dpx /dt = ℏdkx /dt = − eEx

fHE = f + τ
∂f
∂E

.
∂E
∂kx

.
∂k
∂t

= f − τ
∂f
∂E

. ℏvx . eEx /ℏ

24



Remarque : un composé pourra être isolant (ou semi-conducteur) 
soit* si  (isolant dit de bande ou isolant de MOTT, voir aussi Solide 2),

soit si  : désordre important, la propagation n’est plus possible !
 En fait il suffit pour cela que  (et non pas 0) = isolant d’ANDERSON.

A l’opposé, dans un supraconducteur  et le composé devient parfaitement 
(idéalement !) conducteur : plus de dissipation d’énergie. 

Comme mentionné en introduction la conductivité peut varier entre 0** et  !

g(EF) = 0
D = 0

kFl ∼ 1
D = ∞

∞***

* il existe une « 3eme voie » : e=0 ! La « fractionalisation » spin/charge peut en effet conduire à des fermions 
sans charge (isolants Kondo).

** Pour  on peut retrouver un conductivité non nulle par activation thermique (voir semiconducteurs)
*** Pour 

T ≠ 0
T < Tc .

soit  et donc jx = 0 + e2τ∫ g(E)
∂f
∂E

v2
x dE . Ex σ =

e2τ
3 ∫ g(E)

∂f
∂E

v2dE

et comme  (pour ) on retrouve bien   ∂f /∂E ≈ δ(E − μ) T → 0 σ(0) = e2g(EF)
v2

Fτ
3

25
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∫
∞

0
X(E)g(E)f(E)dE = X̄(0) + (kT )2 π2

6
X′￼(EF)g(EF) + . . .

et en présence d’une force extérieure (hors équilibre) :  

et 

f = f0 +
∂f0
∂E

ΔE

X̄(0) ≈ X̄0(0) + X(EF)g(EF)ΔE

En résumé : 

Nutiles

 est donc la grandeur fondamentale. Nous avons vu ici que si , 

,

et ce calcul - ainsi que l’application à d’autres propriétés - sera étendu au delà de cette 

approximation parabolique en Solide 2.  

Le cours de semi-conducteurs permettra lui d’étudier plus en détail le cas particulier où  

(ou plus généralement paire) et pour lequel les bandes sont donc (presque) pleines ( ).

Comme nous l’avons vu une caractéristique essentielle des solides est l’existence d’une masse 

effective qui découle de la présence d’un potentiel périodique crée par les ions* (noyaux + 

électrons de coeur) : la seconde partie de ce cours sera consacrée elle à une introduction aux 

principales propriétés de ce réseau d’ions (cristal).

g(EF) E = ℏ2k2/2m*
g(EF) = (m*/ℏ2) × (L3kF /π2) = (m*/ℏ2) × (L3/π2) × (3π2n)1/3

Z ∼ 2
g(EF) → 0

* les interactions entre électrons jouent bien entendu également un rôle, qui ne sera discuté qu’en M2-MQ
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Chap.2 

Réseau cristallin : cohésion, vibrations, magnétisme
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A. Rappels de cristallographie
solide = différentes structures (arrangements atomiques) et compositions chimiques.

un « terrain de jeux » quasi-infini (naturel ou artificiel) qui détermine l’univers 

(environnement) dans lequel les électrons évoluent. C’est lui (le réseau) qui fixe 

les  dans  et donc (en partie) les propriétés.R H =
ℏ2 ∇2

2m*
+ ∑

R

Ze2

4πϵ0 |r − R |

Structures lamellaires
ou quasi 2D

(supraconductivité à haute Tc)

Structures « Kagome »
(frustration magnétique)

(liquide de spin quantique)

Structures en Cage
Nanotubes, « buckyballs »
(Isolant Kondo, fractionalisation)



L’ensemble des opérations de symétrie laissant invariant un 

réseau cristallin permet de définir 7 GROUPES PONCTUELS.

• CUBIQUE : a=b=c, α=β=γ=90° : axes de symétrie 3 (diagonales) et 4 (arêtes) (+ plans miroirs)

• TETRAGONALE : a=b≠c, α=β=γ=90° :  axe de symétrie 4 (+ plans miroirs)

• RHOMBOEDRIQUE : a=b=c, α=β=γ≠90° : axes de symétrie 3 (+ plans miroirs) 

• HEXAGONAL : a=b≠c, α=β=90°, γ=120° : axe de symétrie 6 (+ plans miroirs)

• ORTHORHOMBIQUE : a≠b≠c, α=β=γ=90° : plans miroirs (3) uniquement

• MONOCLINIQUE : a≠b≠c α=γ=90°, β≠90° : un seul plan miroir

•  TRICLINIQUE : a≠b≠c, α≠β≠γ :  ni miroir, ni axe de rotation (point d’inversion)

Pour prendre en compte l’interaction entre les électrons « libres » (de conduction)           

et les ions, on doit donc connaître la position (R) de ces ions. 
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La plus grande partie des éléments 

simples cristallise dans les structures 

hexagonale (Mg, Co, Zn,…), 

CFC (Ni, Cu, Ag,  Al,…) 

ou CC (Cr, Mn, Fe,…)

Les deux principales variétés allotropiques du carbone sont le graphite 

(hexagonal ➡︎ métal) ou diamant (cubique-face-centré ➡︎ « meilleur » isolant)



TOTAL : 14 Réseaux de Bravais

Pourquoi n’y a-t-il pas de 
tetragonal faces centrées ? 

Réseau centré
(vue selon l’axe c)

= Réseau faces centrées
(tournée de 45°)

Structure hexagonale 
compacte

= 2 réseaux hexagonaux 
décalés, c= 0.74

et 230 groupes d’espace

Structure 
diamant

= cfc + motif à 2 points en (0,0,0) et a/4(1,1,1), 
C=0.34, coordinence 4 (sp3)

en tenant compte des symétries du motif 



axe de symétrie 4 axe de symétrie 6 axe de symétrie 5 !

Modification de la définition officielle d’un cristal : 
désormais selon l'Union internationale de cristallographie, 

cristal = solide dont le spectre de diffraction est essentiellement discret.

Et pourtant les symétries d’ordre 5 (ou 10) sont INCOMPATIBLES
 avec une périodicité en translation. 
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réseau cristallin = répétition d'une maille élémentaire dans les trois 
directions de l'espace : un cristal est un objet périodique dont la 

structure peut être déterminée par diffraction des rayons X.

http://fr.wikipedia.org/wiki/Th%C3%A9orie_de_la_diffraction_sur_un_cristal
http://fr.wikipedia.org/wiki/R%C3%A9seau_cristallin
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Roger Penrose publie en 1974 un 
article sur les pavages non périodiques

2 motifs élémentaires et non pas un 
(dont le rapport des surfaces = nombre d’or…)

* Prix Nobel (Chimie) en 2011

Dan Shechtman montre en 1984* 
que ces « symétries interdites » 
peuvent exister (à 2D et même 3D).
 AlCuFe, AlPdMn,......

mais les propriétés de ces quasicristaux sont bien plus étonnantes :
“anti”-métaux, extrêmement résistants, très faible adhérence,….

soulignant le lien lien essentiel entre structure (symétries) et propriétés physiques.

Initialement : avionique : recherche de nouveaux alliages légers et résistants :  Al + Mn

Ces alliages interdits ont été baptisés quasicristaux.



34

Dans la suite on ne s’intéressera qu’aux réseaux PERIODIQUES 

 maille primitive = volume de l’espace qui, translaté par tous les vecteurs du 
réseau rempli totalement l’espace sans se recouvrir ni laisser de trous, 

elle contient 1 point du réseau.

Que vaut alors la distance entre les atomes ? 
et pourquoi les solides sont-ils solides…

systèmes d’affichage, tissus, peintures,... propriétés mécaniques intéressantes (Kevlar).

Molécules de formes allongées (cholestérol,...) pouvant adopter une 
orientation préférentielle mais distribuées (quasi-)aléatoirement.  

De même on peut noter les Cristaux liquides
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B. Cohésion

Si ces électrons étaient  parfaitement libres leur distribution 
électronique spatiale serait homogène (ondes planes) mais en 
réalité la densité électronique peut être (très) faible dans certaines 
régions interstitielles : directions privilégiées = «liaisons»  

(chimiste :   : diamant,  : graphite).  π, σ, . . . sp3 sp2

H = ∑
i

−
ℏ2 ∇2

i

2m
− Ze2 ∑

R

1
|ri − R |

+
1
2 ∑

j≠j

e2

|rj − ri |
= Ec + U ion + Uel + Uech

Comme on l’a vu, il existe deux types d’électrons dans les métaux : les électrons de coeur 

qui restent confinés sur leur orbitale atomique et forment - avec le noyau - un cristal 

d’ions positifs et les électrons de conduction « libres » de se déplacer dans tout le solide.

On a vu que l’énergie cinétique  =  [eV]

 où  est ~ la distance inter-atomique ( ) et  = rayon de Bohr

Pour minimiser l’énergie cinétique des électrons il faudrait  !!!

30.1(a0/rs)2

rs 4πr3
s /3 = V/N a0 = h2ϵ0/πme2

rs → ∞

- Systèmes covalents : 
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mais il reste un terme dit d’échange (M2), purement quantique, lié à 

l’indiscernabilité des électrons :  [eV] (voir M2).Uech = − 12.5(a0/rs)

Pas mal ! Néanmoins l’expérience donne 2 à 6 selon les métaux : 

les fonctions d’ondes ne sont pas des ondes planes,

 il faut tenir compte de écrantage ( ) et                  

 et du volume occupé par les électrons de coeur ( ).               

e/r → e−k0r × e/r U ion + Uel ≠ 0
Ec ≠ 30.1(a0/rs)2

A l’équilibre 

 qq 0.1eV/atome

les solides sont TRES stables…

et 

Ucoh ∼

rs = R = 4.8a0 ∼ 2.5Å

répulsif = énergie cinétique

attractif = échange

équilibre

E

rsrs = R

et on peut montrer que  (modèle du Jellium = distribution homogène) 

pas de cohésion associée à l’interaction Coulombienne directe. 
U ion + Uel ∼ 0

Le cristal ne devrait donc pas exister puisque « l’équilibre » correspondrait à ,rs → ∞



Pas de terme cinétique et interaction électrostatique (Voir TDs).

R = vecteur du réseau
d = distance A+/B- 
et |R| = α(R)d

Ω  = constante de Madelung, 

il faut néanmoins rajouter une répulsion à courte portée (répulsion de coeur dur) 

que l’on choisi (de façon phénoménologique) en , avec m : 6 à 10.A /rm

- Composés ioniques :   
la densité électronique reste localisée proche des ions (= isolant) mais un 
des composants a un (ou plusieurs) électron(s) sur sa couche périphérique qui 
peut être «capté» par l’autre constituant pour donner A+B-  : NaCl,… (sels).

U = −
N
2

e2

4πϵ0d
[ ∑

signe−oppose

1
α(R)

− ∑
meme−signe

1
α(R)

] = −
N
2

Ωe2

4πϵ0d

+q +q +q +q-q -q -q

r!

+q

+q

+q

+q

-q

-q

-q

r

!

chaine linéaire infinie : Ω = 2(1-1/2+1/3+...) = 2Ln2 = 1.386 

cluster de 8 atomes :  Ω = (3-3/21/2+1/31/2) = 1.456

réseau cubique cfc (NaCl) : Ω = 1.748

qq eV/atomeUcoh ∼

Qu’en est-il des systèmes NON covalents ? (≠ métaux) 



- Systèmes Moléculaires :   
Pour les atomes n’ayant que des couches électroniques pleines : pas de 

déformation sensible des orbitales atomiques : Ne, Ar,K,... (gaz rares).

Les atomes restent neutres (pas d’interaction électrostatique) mais
forces de van der Waals ( , fluctuations dipolaires) + 

(comme pour les cristaux ioniques)
potentiel répulsif à courte portée que l’on suppose ici  = Lennard-Jones.

−A /r6

B/r12

10meV/atome : très bon accord avec mesures dans les gaz rares.Ucoh ∼
 ⇒ distance inter-atomique R = 21/6dU = 4✏[(d/r)12 � (d/r)6]

- Liaison hydrogène :

(1) H ne peut créer de liaison qu’avec UN atome ≠ covalents et 

(2) énergie de ionisation 13.6eV plus forte que autres ions (Na+ ~ 4eV) ≠ionique.
«Ion H+» = proton : rayon 10-13 m (105 fois plus petit que tous les  autres ions) 
H vient se «coller» sur ion électronégatif (O) le long de la ligne O-H-O 
= liaison (dynamique) essentiellement dipolaire 
mais 10x plus forte que pour les cristaux moléculaires, stabilisée par 
la forte entropie de configuration dans la répartition des H.  
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Les interactions (électrostatiques ou dipolaires) conduisent donc à 

dont le minimum défini la distance inter-atomique = noeuds du réseau ( ) 

MAIS les atomes peuvent s’écarter de cette position d’équilibre et 

des oscillations sont possibles dans le fond du puits.

Remarque :  = décalage et si  (critère de Lindemann) 

le solide devient instable = FUSION                   

U(r)

R

u(T ) u(T ) ∼ 0.2R

C. Phonons

 

on cherche des modes d’oscillations collectives : 

PHONONS

M∂2u/∂t2 = −∂U/∂u

u(na) = u0e
i(kna�!t)

�r(�R) = �R + �u(�R)

Mω2 = 2K(1− eika + e−ika

2
) = 2K(1− cos(ka)) = 4Ksin2(ka/2)

et pour des interactions harmoniques (le fond du puits est approximé par une parabole) 

entre premiers voisins :



Pour les faibles valeurs de ω : ω = a

�
K

M
|k| = v|k| où  est la vitesse du son.v

ω = 2
�

K

M
|sin(ka/2)|

= relation de dispersion 
= modes de vibration possibles

2 branches transverses et 
1 branche longitudinale.

A 3D la relation de dispersion des phonons est alors 
tracée le long de directions particuliers   

( =centre). On obtient 3 branches :
ΓX, ΓL, XL, . . .

Γ

Remarque :  la relation de dispersion des phonons est 

périodique en . De façon générale (2D, 3D)  

où  est un noeud du réseau (dit) RECIPROQUE* 
défini par les vecteurs  vérifiant : .

2π/a ω( ⃗k) = ω( ⃗k + ⃗K )
⃗K

( ⃗Ki = n ⃗bi ) ⃗ai
⃗bj = 2πδij

* c’est aussi le cas de l’ énergie électronique vue au chapitre 1 : , voir Solide 2.E(k + K ) = E(k)
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Motif

u0 u1 u2 u3 u5

a
ab

K KG G

On note  le déplacement de l’atome  ( )
et le principe fondamental de la dynamique s’écrit 

ui i i = 0,1,2,...

Md2u1/dt2 = G(u2 − u1) + K(u0 − u1)

Md2u2/dt2 = G(u1 − u2) + K(u3 − u2)

Md2u3/dt2 = G(u4 − u3) + K(u2 − u3) . . .
……

et comme on cherche  et on  a ,  ,…u ∝ ei(kx−ωt) u1 = u3e−ika u2 = u4e−ika

le deux dernières équations (par exemple) s’écrivent alors :

(Mω2 − (K + G))u2 + (Ge−ika + K )u3 = 0
(Geika + K )u2 + (Mω2 − (K + G))u3 = 0

Pour un système diatomique : on suppose ici (pour simplifier l’écriture) que tous les atomes 
ont la même masse  et que l’on a un MOTIF de 2 atomes distants de b, couplés par un ressort  et 

que les motifs sont couplés entre eux par des ressorts .
M K

G

et le déterminant doit être nul, soit

M2ω4 − 2M(K + G)ω2 + (K + G)2 − (K + Ge−ika)(K + Geika) = 0

M2ω4 − 2M(K + G)ω2 + 2KG(1 − cos(ka)) = 0

soit ω2 =
K + G±

�
K2 + G2 + 2KGcos(ka)

M
=

K + G
M

[1 ± 1 −
4KG

(K + G)2
sin2(

ka
2

)]



et pour un motif plus complexe : 3 modes (branches) 
acoustiques +  branches optiques3(p − 1)

�
2(K + G)

M

�
2K

M

�
2G

M

ω =

�
KG

2M(K + G)
ka

u1

u2
= ± K + Geika

|K + Geika|
les atomes vibrent en opposition de phase  sur la branche optique : «molécules» 

(quasi) indépendantes (légèrement couplées car ) : la branche devient plate ( ),

et en phase  sur la branche acoustique : «molécule de masse » couplée par un 

ressort de faible raideur  et .

(u1 = − u2)
G ≠ 0 ω ≈ 2K /M

(u1 = u2) 2M
G ω ≈ 2 G/2M |sin(ka /2) |

et si K >> G (ou k ~ 0)
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branche optique. Les déplacements atomiques de A et B seront donnés par "  pour le 
mode acoustique et "  pour le mode optique. encore une fois le mode acoustique 
correspond à des mouvements des atomes A et B en phase, et le mode optique correspond à 
des mouvements en opposition de phase. 

En se rappelant que le produit "  donne le déphasage des vibrations entre mailles du cristal, et 
que "  donne le déphasage entre les atomes de chaque maille, on peut représenter les 
déplacements atomiques comme en figure 6.6. Schématiquement on peut dire que les modes 
optiques sont dominés par les vibrations de la « molécule » AB dans chaque maille, avec un 
faible couplage inter-maille et une faible dispersion, alors que dans les modes acoustiques la 
dynamique est donnée par l’interaction entre mailles. 

  
2.3.Modes de vibration dans un cristal à 3 dimensions : 

On ne va pas détailler ici le formalisme des vibrations de réseau en 3 dimensions. Le lecteur 
désireux d’en savoir plus pourra consulter les ouvrages sur lesquels est basé ce cours, 
notamment l’ouvrage de Ashcroft et Mermin. On se contentera de présenter les propriétés 
générales d’une « structure de bandes » de phonons dans un composé 3D : 
- pour une direction de propagation donnée, il existe 3 directions orthogonales sur lesquelles 

on peut projeter les déplacements atomiques : une direction longitudinale (que nous venons 
de traiter) et deux directions transverses. On utilisera les lettres L et T pour ces 2 types de 
polarisations. 

- En tenant compte de la polarisation, si le motif  de la maille cristalline comporte p atomes, il 
existe 3p branches distinctes dont 

- 3 modes acoustiques (1 mode LA et 2 modes TA) 
- 3p-3 modes optiques (avec 2/3 modes TO et 1/3 modes LO) 

εA = εB
εA = − εB

k a
εA /εB

�75

k<<π/a

k=π/a

a

A B

Mode acoustique

Mode acoustique

Mode optique

Mode optique

Figure 6.6 : Représentation schématique des déplacements atomiques pour différents 
modes de vibration de la chaîne diatomique.

Remarque : 



43

UGA M1 PFN 2018-2019	 	 Cours de Physique du Solide et Magnétisme

Contrairement au cas de électrons, pour les phonons le spectre en énergie est borné, donc la 
densité de modes n’est définie que pour " . La densité d’états pour un mode est 
représentée en figure 6.9. 

 

Dans l’approximation de Debye l’énergie interne est alors 

" , 

où la somme porte sur le trois polarisations possibles. Avec le changement de variable 
" , cette équation devient 

"  

Si le système n’est pas trop anisotrope, on peut s’attendre à ce que les vitesse ne soient pas trop 
différentes et on peut simplifier l’expression de l’énergie comme 

 "  

et la chaleur spécifique 

"  

Dans la limite " , " , "  

et "  

On retrouve la loi de Dulong et Petit. 

ω ≤ ωD

U = U0 + ∑
i

∫
ωDi

0
ℏω

Vω2

2π2v3
i

1
exp (βℏω) − 1

dω

x = βℏω

U = U0 + ∑
i

V (kBT )4

2π2(ℏvi)3 ∫
θDi /T

0

x3

exp (x) − 1 d x

U = U0 + 3 V (kBT )4

2π2(ℏvi)3 ∫
θD /T

0

x3

exp (x) − 1 d x

cv = ∂U
∂T

= 3V k4
B

2π2(ℏv)3
∂

∂T [T 4 ∫
θD /T

0

x3

exp (x) − 1 d x]

T ≫ θD x ≪ 1 ∫
θD /T

0

x3

exp (x) − 1 d x ≈ ∫
θD /T

0

x3

1 + x − 1 d x = 1
3 ( θD

T )
3

cv ≈ 3V k4
B

2π2(ℏv)3
θ3

D
3 = 3N kB
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Debye

Einstein Figure 6.9 : Densités de modes dans le modèle de 
Debye et dans le modèle d’Einstein.

Finalement en supposant 
•  (approximation de Debye) pour les modes acoustiques

•   pour les modes optiques (  pour Einstein)
ω = vk
ω = ωE E

Tout comme pour les électrons, on peut définir une densité d’états  de modes : g(ω)

g(k)d3k = g(ω)dω =
V

8π3
4πk2dk

car les phonons sont également soumis au principe d’incertitude  (en fait ) 

et comme le solide est de taille fini , 

ΔkΔx ∼ 1 2π

Δx = L k = n
2π
L

Et on trouve :

•  pour les modes acoustiques

•  pour les modes optiques

g(ω) =
Vω2

2π2v3

g(ω) ∝ δ(ω − ωE)



Quelles sont les propriétés physiques de ces phonons ?

Tout d’abord, comme on l’a vu, ils « propagent » le son dans les solides. 

De plus ils contribuent au transport de la chaleur (ils ont une conductivité thermique, voir Solide 2). 

Ne portant pas de charge ils ne transportent aucun courant électrique mais ils « participent »

 néanmoins (négativement) au transport électrique en diffusant les électrons*.

* le calcul (M2-MQ…) du temps  tient compte de l’interaction e-phonons (et des défauts structuraux) car un réseau parfaitement 
périodique ne diffuse PAS les électrons (voir Solide 2) contrairement à l’idée de Drude.

τ

Enfin ils ont également une chaleur spécifique.

La théorie classique (équipartition) donnerait C = 3NkB 

en désaccord (comme pour les électrons) avec l’expérience !
En effet, les phonons sont également des « particules » QUANTIQUES

(sans spin, mais comme les photons, ils ont un « pseudo-spin » 1 = 3 polarisations) 
Comme le potentiel est HARMONIQUE, on connaît le spectre en énergie :

E =
�

k,s

(nk,s + 1/2)�ωs(k) (  = polarisation)s

le calcul de  n’est pas trivial mais vous verrez en physique statistique (S9) que nk

= fonction de distribution de BOSE-EINSTEINnk,s =
1

eβ�ωs(k) − 1

et  c =
C

V
=

1
V

�

k,s

∂

∂T
(

1
eβ�ωs(k) − 1

)�ωs(k)



Il s’git pour finir de transformer la somme discrète en intégrale.

et  ∑
k

= ∫ ∫ ∫
d3k

(2π/L)3
= ∫

2πk2dk
(2π/L)3

= ∫ g(ω)d(ω)

→ copt = ρnkB
(�ωE/kBT )2e�ωE/kBT

(e�ωE/kBT − 1)2
 où ρ est le nombre de modes optiques

Remarque :  on retrouve  = Dulong-Petit lorsque  copt → ρnkB T > > ΘE = ℏωE /kB

Et pour les phonons optiques on trouve donc

et pour les phonons acoustiques, le calcul (Voir TDs) donne     

Cac = [(2π2/5)(kBT/ℏv)3]kB = [(12π4/5)(T/ΘD)3]nkB = βT3

En fait, on est alors exactement dans le cadre du calcul du rayonnement du corps noir ! 

On connaissait donc déjà ce résultat :  (loi de Stephan) et donc 

C’est en fait, un résultat très général : 

toute excitation bosonique (ou fermionique si ) dont la relation de dispersion est 

proportionnelle à  a un chaleur spécifique  à  dimension.

E ∝ T4 C ∝ T3

μ = 0

ω ∝ kp C ∝ Td/p d
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Mais pour les phonons  et ΘD ~ qq 100K 

(~ 100K : K,Bi,Pb jusqu’à 1860K : diamant, Al : 394K). 

L’approximation  (à 3D) n’est donc valable qu’à « basses » températures 

(contrairement au corps noir…) et généralement les données expérimentales doivent 

être décrites par  

Enfin dans ce cas on retrouve (comme pour les modes optiques)
  à haute température. 

C/T ∝ Td−1

C/T ∝ T2

Cphonons = βT3 + δT5 + . . .

Cphonons → 3nkB

Finalement, pour , la chaleur spécifique du solide s’écrit donc

 

T → 0

C/T = γ + βT2 + . . .

La dépendance linéaire  de la contribution électronique est indépendante de la dimension 

du système (  ne dépend que de ) et ce comportement est robuste car 

 (généralement).

γ g(EF)

T ≪ TF ∼ 105K
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Chap.3 

Magnétisme



A. Rappels phénoménologiques

Le lien entre magnétisme et électricité est mis en évidence par le physicien danois Hans Christian 

Œrsted en 1820, puis formalisé (la même année) par Jean-Baptiste Biot et Félix Savart qui 

montrent que le champ  (également appelé induction magnétique) est donné par 

 résulte donc de la circulation de courants (… et du SPIN comme on le verra).

⃗B

⃗B =
μ0I
4π ∫

⃗dl ∧ ⃗PM

| | ⃗PM | |3

⃗B

⃗B = μ0( ⃗M + ⃗H)

* les effets de bords liées à la taille finie des solides font que  où  est appelé coefficient 

de désaimantation (pour des échantillons de forme elliptique).

⃗H = ⃗Hext − Nd
⃗M Nd

Ces courants peuvent être externes (crées dans un solénoïde par exemple) et on note 

alors  le champ magnétique correspondant ou due à des boucles de courant internes 

et on note  le champ correspondant, appelé aimantation et le champ total :

⃗H*
⃗M
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Ce moment magnétique est le pendant du moment dipolaire associé à deux charges et (même 

s’ils différent à courte distance) les champs  et ont alors la même forme à longue distance,⃗B ⃗E

mais il n’existe PAS de monopole magnétique…
…dans le vide, mais ils peuvent « artificiellement » exister dans la glace de spins

On peut introduire le moment cinétique  et en écrivant 

 on a :   soit

   où  est le rapport gyromagnétique

le magnétisme est lié au moment cinétique.

⃗L = ⃗R ∧ ⃗p

I = dQ /dt = − e/T = − ev/2πR IπR2 =
−e
2m

× mvR

⃗μ = γ ⃗L γ = − e/2m

Cette aimantation est reliée à une distribution volumique de moments magnétiques 

(microscopiques) : ,  eux reliées à la taille de la boucle .⃗M =
d ⃗μ
dV

= n ⃗μ μ = πR2I



Pour aller plus loin, on a besoin* de l’expression de l’Hamiltonien quantique d’un particule 

en présence d’un champ magnétique et on peut montrer que   

Comme pour  qui découle d’un potentiel (scalaire) , 

l’induction  découle d’un potentiel vecteur  et pour satisfaire les 

équations de Maxwell ces deux potentiels sont reliés par : 

     et 

     

H = ( ⃗p + e ⃗A )2/2m + V .
⃗E V

⃗B ⃗A

div( ⃗B ) = 0 → ⃗B = ⃗rot ( ⃗A )

⃗rot ( ⃗E ) = −
∂ ⃗B
∂t

→ ⃗E = − ⃗∇ (V ) −
∂ ⃗A
∂t

* pour retrouver ⃗F = q ⃗E + q ⃗v ∧ ⃗B

on retrouve là la loi de l’induction déjà vu en électromagnétisme

~A = (�By

2
,
Bx

2
, 0)En prenant (pour ) B | |Oz on peut développer l’Hamiltonien en :

H =
p2

2m
+ V(r) − γLzB +

e2r2B2

8m
Pour être complet, il faut tenir compte du fait qu’il existe un moment cinétique de 

SPIN qui donne donc également lieu à un terme  dans l’Hamiltonien

(avec  et  = coefficient gyromagnétique). Donc finalement :

−γ′￼SzB
γ′￼= gγ g ≈ 2

H =
p2

2m
+ V(r) − γ(Lz + gSz)B +

e2r2B2

8m
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B. Réponse linéaire, magnétisme localisé/itinérant. 

Résoudre cet Hamiltonien (i.e. trouver les énergies - et les états - propres) n’est pas chose 

simple car il fait intervenir à la fois, une partie spatiale ( ),  une partie orbitale ( ) 

et une de spin ( ).

| ⃗r > |L, mL >
|S, mS >

Et il faut - à priori - trouver la fonction d’onde (complète) de l’état fondamental ( ) 

pour calculer . 

|Ψ0 >
E = < Ψ0 |H |Ψ0 >

* on retrouve ce terme « classiquement » à partir du principe fondamental de la dynamique (voir L3)

Néanmoins en utilisant le fait que  on peut déjà remarquer qu’il y a :

•  un terme  qui correspond à moment diamagnétique = phénomène d’induction 

(loi de Lenz) : le matériaux crée une aimantation pour s’opposer au champ*. 

• un terme  qui traduit l’existence du moment magnétique local 

paramagnétique (même en l’absence de champ extérieur).

μ = − ∂E/∂B
e2 < r2 > B

4m

−γ( < Lz + gSz > )

Commençons par traiter le cas des électrons de coeur (magnétisme dit localisé).
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mais à bas champ (effet Zeeman) il convient de faire une

 composition des moments cinétiques (voir mécanique quantique).

 |L − S | ≤ J ≤ (L + S) et⃗J = ⃗L + ⃗S

donc  

et le moment magnétique est :  et 

gJ =
3J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)

μz = gJmJ μB E = E0 + gJmJ μBB

et avec

 et avec 

et pour  on cherche à écrire : 

|Ψ0 > ≈ |J, mJ >
J2 |J, mJ > = ℏ2J(J + 1) |J, mJ > Jz |J, mJ > = mJℏ |J, mJ > −J ≤ mJ ≤ J

H < ⃗L + 2 ⃗S > = gJ < ⃗J >

gJJ2 = ( ⃗L + 2 ⃗S) . ⃗J = J2 + ⃗S . ⃗J = J2 + S2 + ⃗L . ⃗S =
3J2 + S2 − L2

2
avec

A haut champ, on peut montrer (effet Paschen-Back, voir mécanique quantique) que 

et les termes magnétiques s’ajoutent,  ,

  et  

avec  = magnéton de Bohr = 

|Ψ0 > ≈ |L, mL > ⊗ |S, ms > < mz > = mz = mL + gmS

μz = mzμB E = E0 + mzμBB

μB =
ℏe
2m

0,93.10−23J/T
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l+2s = 2

l+2s = 1

l+2s = 0

l+2s = 0

l+2s = -1

l+2s = -2

aj=gJmJ

2

-2/3

2/3

-2αJ 

1/3
-1/3

mJ
3/2
1/2
-1/2
-3/2

MJ

1/2
-1/2

Par exemple si 
S = 1/2,L = 1
J = 1/2ou3/2

remarque :

pour  la dégénérescence 

entre  et  est 

levée par l’interaction spin-orbite 

(voir mécanique quantique)

B = 0
J = 1/2 J = 3/2

53

Remarque : si , il peut quand même exister une contribution 
(para-)magnétique, au second ordre en perturbation (voir mécanique quantique) calculée 

sur les états propres de l’atome d’hydrogène. 

< Ψ0 |J |Ψ0 > = 0

|n >

H(2)
vv = [γ0gJB]2 ∑

n≠0

| < 0 |J |n > |2

E0
0 − E0

n
appelée paramagnétisme de Van Vleck. 



V (3d3) et Fe (3d6) sont 

paramagnétique (J>0)  mais 

Ar est diamagnétique ( )

idem pur Cuivre = 3d104s1 pour 

lequel la couche 3d est pleine et 

l’électron 4s1 est délocalisé (métal)

J = 0

Le remplissage des différentes couches pour un atome à  électrons suit 

les règles de Hund (voir également mécanique quantique). 

Le terme de plus faible énergie est celui maximisant le spin total (1ere règle) 

et pour un spin total donné, l’état fondamental maximise   (2eme règle). 

Enfin, il correspond à  pour les remplissages <1/2 et à pour ceux >1/2 (3eme règle).

N

∑ mL

J = |L − S | J = L + S

Remarque :  pour les couches d le champ cristallin peut conduire à un 

« quenching » du moment cinétique et on se retrouve dans ce cas avec .J = S

Enfin, pour calculer le moment moyen il faut tenir compte de toutes les 

orientations possibles de ce moment.
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⟨μz⟩ =
∫ π

0
μ cos θe−U(θ)/kBT sin θdθ

∫ π
0

e−U(θ)/kBT sin θdθ
= kT

∂Ln( ∫ π
0

e−U(θ)/kBT sin θdθ)

∂B avec U(θ) = − ⃗μ . ⃗B = − μBcosθ

En mécanique classique (voir L3) on écrirait :

mais ici il faut tenir compte du fait que 

 est quantifié ( )

et on doit remplacer l’intégrale par une somme 

discrete*   

et  où 

Jz Jz |J, mJ > = mJℏ |J, mJ >

⟨μz⟩ = kT
∂Ln(

mJ=J
∑

mJ=−J
e−μBmJgJB/kBT)

∂B

⟨μz⟩ = μBgJJ × BJ(μBgJJB/kBT )

fonction de Brillouin

*  est appelée fonction de partition, voir cours de physique statistique.∑ e−μBmJgJ B/kBT
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Remarque : pour les (très) grandes valeurs de  on retrouve la fonction classique 
(projection continue)  = fonction de Langevin (voir L3) et à l’opposé 

pour  on a plus simplement .

J
B(x) → coth(x) − 1/x
J = S = 1/2 B(x) → tanh(x)



et pour la composante

 diamagnétique (de Larmor) on peut ré-écrire
< μdia > ≈ − μB ×

a2
0

a2
B

∼ −
μB

1000000
× B[T]

où  rayon de Bohr  (taille de l’orbite) et  = rayon « magnétique »  ( m à 1T)a0 ∼ 1Å aB h /qB ∼ 10−7

pour x<<1 : 

Paramagnétisme de Curie < μPara > ≈
μB

10
×

B[T]
T[K]

On peut alors définir un moment effectif  et .μeff = μBgJ J(J + 1) < μz > =
μ2

effB
3kBT

Comme on le voit, les deux contributions sont proportionnelles à  = réponse linéaire
et est très inférieure à .  Donc  et on peut écrire : 

B
M = n < μz > H B ≈ μ0H

M =
Nμ0

V
{

μ2
eff

3kBT
−

e2R2

6me
}H = {χpara + χdia}H

où  est la susceptibilité magnétiqueχmag = χdia + χpara

et (généralement*) on a donc   χpara > > |χdia |
* La contribution paramagnétique peut être nulle (au terme de van Vleck près) si  et  peut parfois dépasser largement  comme 

dans certains composés aromatiques (cycles benzéniques), le graphene ou les supraconducteurs  et .
J = 0 r a0

r → L χdia → − 1
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Il nous reste à calculer la contribution des électrons de conduction

 (magnétisme dit itinérant).

Bohr (1911) et van Leeuwen (1912) avait ainsi montré que les solides ne possèdent pas de 

propriété magnétique à l’équilibre thermodynamique. 

Mais ceci est manifestement FAUX… 

Et ce paradoxe a été levé par la mécanique quantique

 (l’équipartition ne marche pas !) 

et bien sur on ne peut pas « oublier » le SPIN.

 

Lz = mlℏ ≠ 2mR2kT

L2
z = (p2

x y2 + p2
y x2) = 2mR2

p2
x + p2

y

2m
= 2mR2kTEt si on applique le théorème d’équipartition

 et 

les deux contributions seraient donc égales (au signe près) 

et on trouverait  !

χpara =
(e2/4m2)2mR2kBT

3kBT
B =

e2R2

6m
B χdia = −

e2 < r2 >
4m

B = −
e2R2

6m
B

χmag = 0

Un approche classique du problème donnerait .μeff = γLz
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Commençons par calculer la contribution liée au spin (S=1/2). 
Chaque « micro-moment » :   conduit à un décalage 

des densités d’états up et down de l’énergie correspondante : .

μpara = ± gμB /2 = ± μB

Δ = ± μBB

μpara = μB(n↑ − n↓) = (μB /2)[∫
∞

−Δ
g(E + Δ)f(E)dE − ∫

∞

Δ
g(E − Δ)f(E)dE]

μpara ∼ μB × [μBBg(EF)(1 +
π2g′￼′￼(EF)
6g(EF)

(kT )2]

et en utilisant le développement de Sommerfeld avec    

on trouve que la contribution paramagnétique liée au spin vaut : 

A = g′￼(E)

Soit (VOIR également TD) :  

μpara ≈ μBΔ∫
∞

0
g′￼(E)f(E)dE

Paramagnétisme de Pauli

Remarque : on a écrit mPauli = μBΔn = μBnutiles = μB × g(EF)/2 × ΔE = μB × g(EF)/2 × 2μBB
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g(E) =
eB
h

1
π

(
2m*
ℏ2

)1/2 ∑
n

∫ δ(E′￼− (n + 1/2)ℏωc)
H(E − E′￼)

E − E′￼

dE′￼

la conservation du nombre de particules implique que  la 

dégénérescence des pics   .ν =
m*

2πℏ2
×

ℏeB
m*

=
eB
h

densité « libre » dans le 
plan perpendiculaire à .B

et la densité d’états* devient :

On peut montrer que  et on obtient :   n′￼= − n, − n + 2,....n − 2,n EF = (nF + 1/2)ℏωc +
ℏk2

Fz

2m*

Le calcul de la contribution orbitale est plus complexe.

Il faut pour cela revenir à l’Hamiltonien (sans spin dont on a déjà calculé la contribution).

 H =
( ⃗p + e ⃗A )2

2m*
+ V = [

p2

2m*
+

e2r2B2

8m*
] + V + [γ0LzB]

Oscillateur harmonique dans le plan 
perpendiculaire à  et libre le long de B B

En = [(nx +
1
2

) + (ny +
1
2

)]ℏω = (n + 1)
ℏωc

2

X X

En négligeant cette fois la partie 
potentiel pour les électrons 
délocalisés (presque libres) Epara = (

e
2m*

)(n′￼ℏ)(B) = n′￼ℏ
ωc

2

avec  : fréquence cyclotron.ωc =
eB
m*



et on trouve :   soit    Ē = NEF −
4
3

A[
2E5/2

F

5ℏωc
−

ℏωcE1/2
F

16
] Ē = 3NEF /5 + g(EF)(μBB)2/6 + . . .

contribution magnétique orbitaleénergie totale en champ nul

μdia = − d(Ē)/dB = − μB × [g(EF)μBB/3] ∼ − μpara /3

et on peut donc en déduire la contribution orbitale (ici due au terme d’induction et à )

= diamagnétique des électrons de conduction :

Lz

diamagnétisme de Landau

* ces niveaux Landau se « retrouvent » dans différentes propriétés (voir Oscillations Quantiques en Solide 2)

avec A =
ℏωc

4π2
(
2m
ℏ2

)3/2 =
3Nℏωc

4E3/2
F

g(E) = A∑
n

1
E − (n + 1/2)ℏωc

niveaux de Landau* : voir solide II 
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Paramagnétisme Diamagnétisme

Approche Classique
LANGEVIN

indépendant de T

LARMOR  

identique au paramagnétisme !

Electrons 
 localisées 

(couches atomiques)

CURIE

diverge en ~1/T 

LARMOR  

indépendant de T

Electrons  
délocalisées 

(métaux)

PAULI

indépendant de T 

LANDAU 

(sauf supraconducteurs)

mdia ∼ −
μB

1000000
. B[T ]

mpara ∼
μB

10000
B[T ]

mpara ∼
μB

10
B[T ]
T [K ]

mdia ∼ − mpara /3

mdia = − mparampara ∼ −
μB

1000000
. B[T ]



C. Interactions (ordres magnétiques)
Pour l’instant nous avons considéré que les moments  étaient indépendants les uns des 

autres. L’énergie d’interaction dipolaire directe  étant (généralement) faible ( K 

pour une distance de l’ordre de  entre les moments), cela pouvait sembler légitime.  Néanmoins 

l’échange (encore lui !) conduit elle aussi à une interaction entre ces moments. Dans la suite 

(et pour respecter la convention usuelle) on appellera « spin » le moment total (bien qu’il puisse 

contenir un terme orbital) et on le notera . 

 Ce terme d’échange est alors de la forme :

  appelé Hamiltonien d’Heisenberg. 

⃗J = ⃗L + ⃗S

∼ μ0μ2
B /4πr3 ∼ 1

Å

⃗S ≡ ⃗J

Hech = − ∑
ij

Jij
⃗Si . ⃗Sj

Il peut conduire à l’existence d’un ordre magnétique… mais cela dépend du signe de J.  

 Si , les moments peuvent s’aligner dans la phase ordonnée pour minimiser 
l’interaction d’échange. On parle de FERROmagnétisme. Néanmoins la direction n’est pas 
défini et il apparaît alors généralement des domaines magnétiques homogènes (domaines 

de Weiss) séparées par des parois, et dont la taille augmente avec le champ appliqué.  

J > 0
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Cette valeur peut être obtenue graphiquement en trouvant 

le point de croisement des courbes 

 et   (avec ). Cette solution 

n’existe que si

 soit  

y = x y = Bs(zJS2x /kBT ) x = M/Msat

dBS

dx
=

S(S + 1)zJ
3kBT

≥ 1 T ≤ Tc =
S(S + 1)zJ

3kB

Pour aller plus loin dans l’analyse quantitative, il peut résoudre le problème dans une 

approximation champ moyen, en écrivant l’Hamiltonien :  

et on retrouve le « simple » Hamiltonien (Zeeman) avec un champ effectif  
(historiquement appelé champ moléculaire) : 

 pour une interaction J dominée par les z premiers voisins.

Hmag = − ∑
i

gsμB
⃗Si . ( ⃗B + ∑

j

Jij
< ⃗Sj >
gSμB

)

⃗Bm = ⃗B + ∑
j

Jij
< ⃗Sj >
gSμB

∼ ⃗B +
zJ < ⃗S >

gsμB

Et il existe donc une valeur non nulle de  même en 

l’absence de champ B donnée par l’équation auto-cohérente : 

M =
NgsμB < S >

V
≤ Msat =

NgsμBS
V

M
Msat

= BS(
μBgSS
kBT

.
zJ < S >

gsμB
) = BS(

zJS2

kBT
M

Msat
)
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On peut alors écrire  soit 

⇨  et      (pour ). 

BS(zJS2x /kBT ) = ax − bx3 + . . . = x x2 = (a − 1)/b

a =
Tc

T
M

Msat
∝ 1 −

T
Tc

M → 0,T ≤ Tc

Pour , les moments s’alignent donc pour former un ordre magnétique ( ). 
Cet ordre est progressivement détruit par la température ( )

T = 0 M = Msat

0 ≤ M ≤ Msat

Et pour , l’aimantation en champ nul (spontanée) s’annule et on retrouve un état 

paramagnétique caractérisé par une réponse linéaire (pour ) mais avec :

     (en développant  au 1er ordre).

T > Tc

B ≠ 0

χmag =
C

T − Tc
Bs(x)

loi de Curie-Weiss

Pour un champ non nul  les moments 

s’alignent - en partie - sur le champ ( ) 

et il n’y a donc plus de transition de phases. 

M ≠ 0
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Remarque I : Les courbes  décrivent alors des cycles d’aimantation (voir aussi TDs) 
qui traduisent le retournement progressif des moments avec .


M(H)
H

*L’interaction d’échange peut elle même contenir un terme d’anisotropie que l’on ne développera pas ici (il est 
(liée à un développement perturbatif au second ordre de l’interaction spin-orbite). Ce terme est appelé interaction 

de Dzyaloshinsky-Moriya et s’écrit : .HDM
ij = Dij

⃗Si ∧ ⃗Si

Remarque II :  il peut également exister des directions cristallographiques dites de « facile 
aimantation » le long desquels les moments vont préférentiellement s’orienter : cela revient 
à rajouter un terme  dans l’Hamiltonien* (appelé anisotropie magnéto-cristalline). −Δ cos2 θ



Le cas , est plus délicat (et intéressant). Les moments vont 
chercher à « s’anti-aligner ». Ce qui est possible pour certaines 

géométries (carrée par exemple) et on obtient alors l’état prédit par 
Louis Neel (1904-2000) à Grenoble en 1951 (prix Nobel en 1970).


on parle d’ordre ANTI-ferromagnétique

J < 0

Une transition de phase peut apparaître pour  (avec ) avec  


et dans ce cax  pour .

Tc = f TN 0 ≤ f ≤ 1 M = 0

χpara =
A

T + TN
T > Tc

mais pas dans toutes…

on parle alors de frustration magnétique*

qui peut conduire à :

• des ordres complexes

• aucun ordre comme la glace de spin (avec formation possible de monopoles !) ou un 
état fondamental constitué de la superposition quantique d’un nombre extrêmement 
élevé de configurations équivalentes (on parle de liquide de spin).

• la fractionalisation du spin (en spinons) et des excitations plus « exotiques » comme  les 
Fermions de Majorana (égaux à leur anti-particule !) dans certaines géométries (Kitaev).

• la valeur de  dépend du « degré » de frustration.f
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Pour finir, notons qu’il peut également exister un ordre ferro-magnétique dans le cas des 

électrons de conduction. En effet, si on tient compte de la répulsion Coulombienne U 

entre les deux populations de spin, on doit écrire  

et 

 (et donc la susceptibilité) diverge pour  

et une aimantation spontanée apparaît même en l’absence de champ extérieur  

= FERROmagnétisme de Stoner (voir aussi Solide 2)

Remarque : il peut enfin exister une interaction entre les électrons de conduction d’un 

métal et des impuretés magnétiques (moments localisés) appelée effet Kondo (1964). 

Ces impuretés auront tendance à localiser les électrons de conduction autour d’elles, 

conduisant à une augmentation de la résistance électrique pour . 

Si le taux d’impuretés devient important, les électrons de conduction peuvent devenir la 

source d’un couplage ( ) entre elles (pouvant être positif ou négatif selon la distance qui 

les séparent) : effet Ruderman-Kittel-Kasuya-Yoshida (RKKY).

Δn = g(EF)/2 × (2μBB + UΔn)

μPauli =
g(EF)μ2

BB
1 − Ug(EF)/2

μPauli Ug(EF)/2 → 1

T → 0
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