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Taille noyau = 10-15> m
Trou noir (longueur de Planck)

Interactions faibles/fortes
Energie de masse

MQ relativiste (Klein-Gordon,
Dirac, gravitation quantique)

Physique a ~| corps (quantique)

Physique du
solide

ELECTRONS
(non relativiste)
= particule chargée
— interactions
électrostatiques

(+ champ F)

Physique a
1023 corps !!!
QUANTIQUES

108 100 1075 1026
<4+ —)

GéoSciences Terre-soleil : 10!'m
(SVT) Taille de I'Univers

Effets gravitationnelles
Relativité
Magnéto-hydrodynamique
Turbulence, Chaos

Physique a N-corps (classiques)



La physique du solide c’est

T\

comprendre le monde
qui nous entoure

pourquoi les miroirs sont-ils réfléchissants,

De grandes questions
fondamentales
états quantiques critiques (intrication)
supraconductivité non conventionnelle,
fractionalisation spin/charge, particules
« exotiques » (Dirac, Majorana) etc...

les aimants « collent-ils », certains matériaux
conduisent-ils le courant et d’autres pas,
pourquoi les solides sont-ils solides ?...

Proprietés Proprietés Proprietés Proprietés
OPTIQUES MAGNETIQUES | [ELECTRONIQUES THERMIQUES

Lobjectif de ce cours : M1-S7

Ces concepts et (propriétés
L3 sera d’introduire le formalisme

associéees) seront approfondies
permettant de mieux en M1-S8

comprendre les solides. et les questions ouvertes en M2.




h*V? Ze*
H= ), (- 2 5 —R| 3 2|r—r| )

i R : I#]
Energie cinétique Interactions electron-ion
\ /
atome d’hydrogéne (L3) Interactions électrons-électrons
états localisés = couches : E, = — Eo/n2 Insoluble !

Les électrons des couches internes restent corrélations : seconde quantification

localisées mais ceux des couches externes (Physique a N-corps quantique)

peuvent se déplacer dans le solide a 'origine de tous les effets exotiques
= électrons itinérants = états délocalisés (et souvent incompris) de la matiere
h* V7
= Z - E(h)
2m*
m+* = masse effective GAZ de FERMI LIQUIDE de FERMI
SI S2 S3-MQ
solide | solide 2 solide 3 : Physique a N-corps

états quantiques
de la matiere

Physique des
Semi-conducteurs




Pré-requis
(Electromagnetisme |, Il et Introduction a la physique du solide)
Mécanique quantique (L3 et S7)
Physique statistique (S7 et voir S8)
mais aussi : analyse fonctionnelle et algebre linéaire,...

Physique du Solide 1 : de Patome au solide

1. Le gaz quantique d’électrons (4C/4TDs)
A. Liaison liante/anti-liante - notion de bandes. Masse effective.
B. Niveau de Fermi, densité d’états.
C. Développement de Sommerfeld. Quelques propriétés Physique.

2. Cohésion, vibrations (3.5C/2TDs)

A. (Courts) rappels de cristallographie.
B. Cohésion des solides.
C. Phonons (définition et relation de dispersion).

3. Magnétisme (3.5C/2TDs)

A. Rappels phénoménologiques.
B. Réponse linéaire, magnétisme localisé/itinérant.
C. Interactions, ordres magnétiques.



Solide lla (électrons de Bloch) = 24hC/TD

1. Electrons dans un potentiel périodique
Réseau réciproque et théoreme de Bloch. Relation de dispersion, notions de DFT (introduction a la topologie)

2. Propriétés électroniques et thermiques
Métaux/Isolants (incl. Anderson + Mott), conductivité électrique (phonons, spin) et thermique (+ effet Seebeck)

Solide llb (Ordres et Instabilités) = 12hC/TD + 16hTPs

1. Ordres électroniques et magnétiques
Interaction électron-phonon, notions de supraconductivité. Oscillations quantiques.
2. Etude expérimentale (en laboratoire) (2x8h=2 parmi 3)

A. Transition de Peirls et écrantage magnétique dans les supraconducteurs : NEEL
B. Effet Shubnikov—de Haas (masse effective) et effet Hall quantique : PHELIQS
C. Magnétisme (quantification du flux dans SQUID, transition para/ferromagnétique) : LNCMI

Les effets de corrélations (interactions e/e, liquide de Fermi)
ne sont traités qu’en M2
= seconde quantification



Chap.1

Le gaz électronigue quantique



A. Liaisons liantes et antiliantes, notion de bandes

On sait que
pour des électrons liés = orbitales atomiques

H = p2 B Ze?
2m  4rey|r]

A E=—-Ey/n?

—— niveaux atomiques discrets

et s’ils sont libres,

—— I’énergie (cinétique) est simplement :

p2

2m

Distribution parabolique continue

et les fonctions d’onde sont des ondes planes

v




Dans un solide, les électrons de coeur (couches profondes) restent fortement liés

mais ceux des couches supérieures (peu liés) sont susceptibles de se « libérer » et de se

déplacer au sein du solide, on parle d’électrons de conduction

mais ils ne sont pas totalement libres...

A E=—E0/n2

_—) T

l

A

A

2m

®
A

Ze? Ze?
drey|r|  4mey|r — R « \

v

B

pour deux atomes distants de R

A B
— ¢ — CA¢at + CB¢at

Orbitale atomique et en posant :

les valeurs propres

al: V¢étd3” =p

éfV¢£td3r =y avec H = H, + V,on obtient :

gbf d’r =
By antiliante
E+ — E + —_ """"""
o at 1+S )
- liante




On peut généraliser a /N atomes

(modele dit des liaisons fortes) :

on forme alors une BANDE de N niveaux®

le terme y « couple » les positions

r et r + R, il est appelé intégrale
de saut : il traduit le déplacement

de I'électron dans le solide et fixe la

largeur de la bande.

Remarque : La largeur de la bande augmente
lorsqu’on rapproche les atomes et les bandes

issues des différents états atomiques peuvent se

« chevaucher » pour former des bandes

hydrides (par exemple hybridation sp3) g z/'e;wlm y
On supposera (par simplicité) dans la suite que I'on n’a qu'une seule bande (voir Solide 2).

* correspondant a 2N états (en tenant compte du spin).
En partant des x niveaux d’un état p (x=3) ou d (x=5), on obtient x bandes.
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Vous verrez (également en physique du solide 2) que, pour un potentiel périodique
(= réseau d’atomes) la fonction d’onde peut s’écrire :

@, = u(x)e™ ot u(x + R) = w(x) = théoréme de Bloch.

Le terme e'** traduit le déplacement « presque » libre de I'électron et u(x) les

modulations de la densité électronique dans le solide (due a la présence des ions™).

La fonction d’onde est donc définie par son
vecteur d’onde k**
et on peut alors déplier la bande :

La relation E(k) sera discutée en Solide 2 et k

>

Lpasuanne® .,
trrrnaag, T

nous ne détaillerons pas ici ce calcul. Vous ' % 22

verrez que proche des bords de bande: L

Ex E,+ yR2k2 le confinement des électrons au sein du solide de taille
L impose que (Heisenberg) Ak ~ 2x/L

* 1, = 1 pour des électrons totalement libres et pour les liaisons fortes u,(x) = Z ¢, (x — R)e k=R,
R

** vous verrez en solide 2 que /ik # p ... mais k reste néanmoins une grandeur essentielle.



En comptant les énergies a partir de Eo (E — E, < E)
et en définissant une masse effective (ou masse de bande) m* = #?/2yR*

le potentiel crée par les N atomes (noyaux + électrons de coeur) donne donc lieu

a 'existence de bandes d’énergie qui peuvent étre (souvent) approximées par :

E ~ h*k?[2m*.

C’est le cas auquel on s’intéressera dans la suite de ce cours.

Un électron de conduction pourra alors occuper un de ces états accessibles
(en fonction de son énergie) et pourra se déplacer dans le solide comme si il était libre
mais avec une masse m™* renormalisée par les interactions e/ions.

Cette valeur peut-étre tres différente de la masse de I'électron libre.

Elle peut étre tres faible
(voire méme nulle, cone de Dirac)

ou au contraire tres grande (jusqu’a ~ 1000m) /\ \ /
\/

(on parle alors de Fermions lourds)
et on peut méme avoir m* < 0 = TROUS m* <0 m* >0

(voir semi-conducteurs)



B. Niveau de Fermi, densité d’états

Mais que se passe-t-il siona N, = ZN?
ou la valence Z est le nombre d’électron(s) libéré(s) par chacun des atomes.

Tout d’abord, ils doivent respecter le principe d’exclusion de Pauli (Fermions) :

deux électrons ne peuvent pas é€tre dans le méme état quantique, ils ne peuvent donc
PAS avoir la méme énergie (au spin pres).

De plus, comme on I'a vu, les valeurs de k sont quantifiées (k = n2z/L).
et on rempli les états en E croissant (2 par k£ en tenant compte du spin).

Le dernier état occupé est appelé : énergie (hiveau) de Fermi.

Pour déterminer cette énergie on écrit :
d>k 3 3  remarque : 3
2><///(2_7T)3:N:7’I,L :Z(L/CL) CaI’Ak<q<kmax Zk%fffdk‘
L

états occupés

mais d’k peut étre trés délicat a déterminer-...

mais dans notre cas (E  k?) les surfaces d’énergie constante sont des

sphéres de rayon \/2m*E/n? et : d°k = 4nk’dk



4 43
d’ou 2327:1%
(=)’

ot n = N,/V est la densité électronique ~ Z/a’.

=N,, soit k. = 3z°n)'”

hkp p c .
Remarque : v, = Py ~ qql0®m/s ~ 100 pour Z = 2,a = 3A,m* = m,

les électrons sont NON relativistes.

hZ 3 2-N\2/3 hZ
et E, = Gr'n)™ _ Bz
2m* 2m*a?

~ qqeV

~ énergie d’un électron dans une boite de rayon a. C’est une énergie TRES grande !

h2kok h2 72
= ~ I LpeV
m ma L

Mais la difféerence d’énergie entre deux niveaux: JF

Er >> kT >> BE
v }

Seuls les états pres de £ seront les niveaux peuvent étre considérés

«UTILES», 'ensemble des états d’énergie comme CONTINUS, on peut définir une
Er dans I'espace des k est appelée DENSITE D’ETATS
SURFACE DE FERMI L
2

dN, = g(E)dE = 2 x (—)* x dk
T



Comme mentionné précédemment, la difficulté réside dans la détermination de dk mais
pour des électrons « libres » (relation quadratique) : d*k = 4xk*dk (3D) et dE = h*kdk/m

g(E) = (m/h*) X (L’k/z*) =

(2

L3
272

)3/2 \/E

états occupeés

états libres

‘_\\

g(Ey) X AE = états utiles \

: > g
EF
< >
bande complete
0 . I D 2D
et pour les a.utres dimensions ddk 2dk rikdk
(voir TDs) L2 mL?
g(E) = E T

Comme nous le verrons, g(E;)/L? ici égal a mky/w*h* est alors LA grandeur

fondamentale pour toutes les propriéetés des solides.
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Ep

Remarque : N,[3D] = [ g(E)dE = L(

0 32 h

i.e.a 3D g(Ep) = 3N,/2E et 'énergie totale (a T=0K) est :

2m 2
—SVRER = Z(Ep)Ey

Er 3E;
0

Au début du XXe siecle, Paul Drude (1863-1906) propose de décrire
ces électrons libres, comme un gaz classique, a I'équilibre thermique avec le bain
ambiant. lls auraient alors toutes la méme énergie moyenne donnée par le

théoréme d’équipartition 3kz7/2 ~ 40meV @300K et leur vitesse moyenne serait

Veras ~ VKT/m ~ 3.10% m/s

Mais : ES° = 3E./5 ~ 2eV ~ 20000K >> 3k,T/2 et vy > v

moy clas

I’équipartition classique ne peut pas étre appliquée ! Les électrons sont fonciérement
quantiques. Mais pourquoi ...
leur densité est grande p ~ 1/a> ~ 10%> e/lcm3 (— Heisenberg)

et leur masse trés faible, E ~ A%/ma?.



Drude suppose également qu'’ils se déplacent indéependamment les uns des autres, mais
subissent des chocs sur les ions du réseau (ce qui est également FAUX... voir Solide 2) et
pour une distance entre choc ~ 10~ m (quelques distances inter-atomiques), on obtient

7 ~ 107 s et - bien que les hypothéses soient FAUSSES - I'ordre de grandeur est correct*.
Et en résumé:

En meécanique classique En mécanique quantique
E/N = 3kgT/2 ~ 30meV[@300K ] E/IN = 3E./5 ~ 3eV
v =/3kTIm* ~ qq10*m/s 0<v<ve~qql0®m/s;p = 3v./4[@3D]
distance entre chocs (atomes) ~ 10-°m distance entre chocs ~ 10-7m** (défauts !)
T~ 10715 7~ 1071
tous les électrons sont équivalents seuls les électrons proche de Er comptent

Qu’enest-ila7T#0?
Certains états proches de Er se vident car les électrons peuvent étre thermiquement activés pour

occuper des états jusqu’a la vides au dessus de Er. Comment trouver le nouveau remplissage ?

* Le calcul exact est en fait trés compliqué... et les erreurs de Drude se compensent...

* Les atomes conduisent (avec les interactions e/e) a I'existence d’'une masse effective et peuvent « aider »
(ou pas) les électrons a se déplacer.

|7



= fonction statistique™® «propre» dite de Fermi-Dirac (voir cours de physique statistique).

1 1 A ~ -
<n>=fFET)= f(E)
(> =JET) e (E®—p)ksT 4 1
0 T — oo
ou i est le potentiel chimique
0 >
+—>
+kT

A T = 0 tous les états sont occupés jusqu’a E. et

la fonction de distribution est une marche : £ = 1(0),

mais a T # 0, f(E) s’élargit et les niveaux peuvent étre occupés jusqu’a l'infini

(0]

(avec une probabilité exponentiellement nulle) et E(T) = [ Ef(E)g(E)dE

0

* on retrouve dans ce traitement statistique (le nombre d’électron est extrémement grand ~ 10%}/mm3) la notion de gaz.

18



C. Développement de Sommerfeld

Pour calculer les propriétés d’un solide on doit calculer des intégrales du type :

(o0]

X= [ X(E)S(E)AE)E = J A(E)(E)dE
0 0

et si A(E) une fonction de E telle que ® A =0K/9E
e K(0)=0
® K ne diverge pas plus vite qu’une loi de puissance

| Ams@ae = Kiy - [ KE) Gz
=0

1
- N
or df/dE n’est non nulle que pour E ~ . O \
14 ° . . ()L
C’est un résultat essentiel en physique des solides : |
J4 4 . . Y/
seuls les électrons dont I'eénergie ~ pu contribuent N
aux propriétés physiques. . I
1 E
(B —p)?

K
( ) 5 (m) +

donnera une contribution nulle par parité

19



©  x?2 df

[k [T g ZK(M)+K”(M)(7<JT)2/ Dy

m
et u/kT — 0o dou A:/ A(E)dE+A’(,LL)(kT) o + ..
0

Développement de Sommerfeld

en particulier pour A = g(E) on trouve :

U
N = [ g(E)E + g'()(kT )’ w16 = N + (u — Ep)g(u) + g'()(kT)*7*16
0

Zg/(EF)
6g(EF)
Le potentiel chimique « s’adapte » pour assurer la conservation de V.

soit u(1') ~ Ep — (kT)?

00 Ey 2 2
[ X(E)S(E)(E)AE = [ X(E)g(E)IE + (KT X'(Ep)g(EF) = X(0) + (kT)z—X’(EF)g(EF) +.
0 0

2
Et en prenant A = Eg(E) ona:| E(T) ~ E(0) + (kT)z%g(EF)

20



2
T
Et on peut calculer la chaleur spécifique C = dE/dT = ?kég(EF)T = yT.

Contrairement au calcul classique (équipartition) qui prévoyait une chaleur spécifique

constante Cpp = EkBN (loi de Dulong-Petit), la chaleur spécifique tend

linéairement vers zéro a basse température.

Comment peut-on comprendre cette dépendance ?

3k 3
En fait on peut écrire : C = il ~ §kB X |9(EFr).2kpT]

utile

ce qui est trés proche du calcul exact (3 ~ 7%/3).

Remarque :y « g(Ep).

En fait toutes les propriétés physique seront proportionnelles a g(Ey)
qui est la grandeur fondamentale en physique du solide,

car elle définit la notion de N;,. = g(Er) X AE.

énergie caractéristique
21



La conductivité électrique, o représente la capacité d’'un matériau a transporter un

-

—
courant électrique. La densité de courant est alors relié au champ électrique par J = o £

et la résistance R est elle reliée a la résistivité p = 1/ par la relation : p = RS/l

H He
i . B c N o F Ne
955 376
Na Mg Al Si P s cl Ar
493 451 2,733
K Ca Sc Ti A Cr Fe Co Ni Cu Zn Ga
747 345 562 80 202 127 . 998 56 72 1725 608 136 oo s Se B K
Rb sr Y zr No Mo Ru Rh  Pd Ag Cd In sn s | o
133 135 506 433 152 552 74 43 108 1629 68 8 11,5 39
Cs Ba . H Ta w Re  Os Ir Pt Au Hg Tl Pb Bi Po -
21 343 34 135 544 172 81 47 108 2271 91 15 213 {07 40
Fr Ra - Rf Db Sg Bh Hs Mt Ds Rg Cn  Uut FL Up Lv U Uuo

La Ce Pr Nd Pm Sm Eu Tb Dy Ho Er Tm Yb Lu

47 70 643 75 94 90 115 o926 814 8 67,6 25 | 582

Ac Oh i U Np Pu  Am Cm Bk of Es Fm Md No Lr

147 177 28

Cette résistivité est généralement de I'ordre de quelques ;cm a 300K
mais elle peut néanmoins varier d’un facteur | (Ag) a 100 (Mn) et peut atteindre
p~ 1012 1Ocm (a 300K) pour les semi-conducteurs (Si)

Pour les semi-conducteurs, la résistivité devient méme INFINIE (diélectrique) lorsque
T — 0 alors que pour certains composeés la reésistivité est au contraire parfaitement

NULLE a basse température (supraconducteurs).

22



En « pratique » on ne peut ni mesurer l'infini ni zéro mais ~ 50 ordres de grandeurs
séparent la résistivité de ces deux types de solides !
aucune autre grandeur physique ne présente une telle dispersion... (taille univers/taille quark ~ 1042...)

Comme Durde le supposait (2 raison) La vitesse est redistribuée aléatoirement apres le

choc < v.

st > = 0 et il en résulte alors (bien) une force de « frottements »

ffrot = —mvlt

Et en présence d’'un champs E, le PFD (a I'équilibre) s’écrit :
—eE —mv/t = mdv/dt =0

- —
Il reste a relier J et E.Pour cela Drude suppose que tous les électrons sont équivalents#®

. ne’rF ne’r | 1021073810 s
etdonc ) = —nev = oo = ~ 030 ~107°QMm
n m m

densité d’électrons de conduction

OK ! méme si toutes les hypothéses sont fausses...

* c’est comme on I'a vu FAUX,... seuls les électrons proches de E comptent !

23



En fait on doit écrire : l champ électrique

J, = neVy — nyueeVe =[9(Er)iEeV, = g(Er)(eE vpT)eV,
2
J» = g(Ep)e*vir.E, = g(EF)eZ%.Ex
l.e.|l o = g(EF)(gQD g(Ey) estici la densité d’états par unité de volume

et pour des électrons libres ¢ = (m/7z2h2)kF. e?. (hkF/m)zr/fS = ne’z/m
on retrouve DRUDE !!!

mais cette coincidence est accidentelle... les erreurs se compensent !

Remarque v,z =/ ~ 100A >> distance inter-atomique

les ions n’agissent PAS comme des centres diffuseurs ! (voir Solide 2)

(00]

Le calcul exact consiste a écrire :j, = — e[ g Efyp(E)Ww(E)E
0

ou fiyp est la fonction de distribution HORS EQUILIBRE car la surface de Fermi se déplace

sous 'action du champ Ex avec dp /dt = hdk /dt = — eE

t fup =+ o OF ok f Tty eE.In
e = T . . =]/ —T—.Nnv_..e€
HE OE "ok, ot oOE Y

24



it7] 0 + 2 { (E)—f Vsz E etd — _62 " (E) f ZdE
SOl = e7T . e onc o = —Y
Jx & oF o Y 3 & oF

2
VET
et comme df/0E ~ 6(E — u) (pour T — 0) on retrouve bien ¢(0) = ezg(EF)%

Remarque : un composé pourra étre isolant (ou semi-conducteur)
soit™ si g(Er) = 0 (isolant dit de bande ou isolant de MOTT, voir aussi Solide 2),
soit si D = 0 : désordre important, la propagation n’est plus possible !
En fait il suffit pour cela que kz/ ~ 1 (et non pas 0) = isolant ’ANDERSON.
A Popposé, dans un supraconducteur D = oo et le composé devient parfaitement
(idéalement !) conducteur : plus de dissipation d’énergie.

Comme mentionné en introduction la conductivité peut varier entre 0** et co™** |

* il existe une « 3eme voie » : =0 ! La « fractionalisation » spin/charge peut en effet conduire a des fermions
sans charge (isolants Kondo).
** Pour T # 0 on peut retrouver un conductivité non nulle par activation thermique (voir semiconducteurs)
ok Pour T< T,.

25



En résume:

00 2
J X(E)g(E)(E)E = X(0) + (kT)Z%XKEF)g(EF) +..
0

I

et en présence d’une force extérieure (hors équilibre) : f = f, + a—EAE
et X(0) ~ X,(0) + X(Er)g(Er)AE

N,

utiles

g(Er) est donc la grandeur fondamentale. Nous avons vu ici que si E = hA%k*/2m*,
g(Ep) = (m*/h*) X (L*kp/n*) = (m*/h*) X (L*/x*) x B3x*n)'?,
et ce calcul - ainsi que I'application a d’autres propriétés - sera étendu au dela de cette

approximation parabolique en Solide 2.

Le cours de semi-conducteurs permettra lui d’étudier plus en détail le cas particulier ou Z ~ 2

(ou plus généralement paire) et pour lequel les bandes sont donc (presque) pleines (g(Er) — 0).

Comme nous I'avons vu une caractéristique essentielle des solides est I'existence d’'une masse
effective qui découle de la présence d’'un potentiel périodique crée par les ions™ (noyaux +
électrons de coeur) :la seconde partie de ce cours sera consacrée elle a une introduction aux

principales propriétés de ce réseau d’ions (cristal).

* les interactions entre électrons jouent bien entendu également un réle, qui ne sera discuté qu’en M2-MQ
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Chap.2

Réseau cristallin : cohésion, vibrations, magnétisme

27



A. Rappels de cristallographie

solide = différentes structures (arrangements atomiques) et compositions chimiques.

19670:6:6

® P P l‘:.;

AN AN
PO eI Teigtesg i)
1 \ 3 -l.’ - '4,-. 1l
? | b g
. lo™ 1o AV .-
= -"'-'f;"?o;“!,‘ 2 oY ¢

Structures lamellaires
ou quasi 2D

(supraconductivité a haute T.)

YbB,,
Structures « Kagome » Structures en Cage
(frustration magnétique) Nanotubes, « buckyballs »
(liquide de spin quantique) (Isolant Kondo, fractionalisation)

un « terrain de jeux » quasi-infini (naturel ou artificiel) qui détermine l'univers

(environnement) dans lequel les électrons évoluent. C’est lui (le réseau) qui fixe

2v2

les R dans H =

2m*

Ze? . s 7
et donc (en partie) les propriétés.

= drey|r — R|
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Pour prendre en compte l'interaction entre les e€lectrons « libres » (de conduction)

et les ions, on doit donc connaitre la position (R) de ces ions.

'ensemble des opérations de symétrie laissant invariant un
reseau cristallin permet de definir 7 GROUPES PONCTUELS.

® CUBIQUE : a=b=c, a=F=y=90° : axes de symétrie 3 (diagonales) et 4 (arétes) (+ plans miroirs)

® TETRAGONALE : a=b=c, a=B=y=90° : axe de symétrie 4 (+ plans miroirs) a,B,y # 90°
® RHOMBOEDRIQUE : a=b=c, a=B=y=#90°: axes de symétrie 3 (+ plans miroirs) ‘
® HEXAGONAL : a=b=c, a=3=90°, y=120° : axe de symétrie 6 (+ plans miroirs)

® ORTHORHOMBIQUE : a=b=c, a=p=y=90° : plans miroirs (3) uniquement

® MONOCLINIQUE : a=b=c a=y=90°, 3+90° : un seul plan miroir

® TRICLINIQUE : a#b=#c, o=y : ni miroir, ni axe de rotation (point d’inversion)



La plus grande partie des €léments

simples cristallise dans les structures

simple cubic

simple triclinic
simple trigonal

hexagonale (Mg, Co, Zn,...),
CFC (Ni, Cu,Ag, Al,...)
ou CC (Cr, Mn, Fe,...)

base orthorhombic
centered tetragonal
face-centered cubic
simple hexagonal
simple monoclinic
simple orthorhombic
tetrahedral packing

%
8
£
i
'Z?

face-centered orthorhombic

Les deux principales variéteés allotropiques du carbone sont le graphite

(hexagonal = métal) ou diamant (cubique-face-centré = « meilleur » isolant)
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Structure = cfc + motif a 2 points en (0,0,0) et a/4(l,1,1),

diamant C=0.34, coordinence 4 (sp3)
Pourquoi n’y a-t-il pas de @
tetragonal faces centrées ?
Simple Face-centered Body-centered
o o o cubic cubic cubic

@ A Plane

B Plane

I— — [0001] &
Simple Body-centered Hexagonal @ ATllane
tetragonal tetragonal

Structure hexagonale
compacte
= Réseau faces centrées = 2 réseaux hexagonaux

tournée de 45° décalés, c= 0.74
( ) Simple Body-centered Base-centered Face-centered ’

orthorhombic orthorhombic orthorhombic orthorhombic

Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic

TOTAL : 14 Réseaux de Bravais et 230 groupes d’espace

en tenant compte des symeétries du motif



réseau cristallin = répétition d'une maille élémentaire dans les trois
directions de I'espace : un cristal est un objet périodique dont la
structure peut étre déterminée par diffraction des rayons X.

axe de symétrie 4 axe de symétrie 6 axe de symeétrie 5 !

Et pourtant les symétries d’'ordre 5 (ou 10) sont INCOMPATIBLES
avec une périodicité en translation.

Modification de la définition officielle d’un cristal :
désormais selon I'Union internationale de cristallographie,

cristal = solide dont le spectre de diffraction est essentiellement discret.
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http://fr.wikipedia.org/wiki/Th%C3%A9orie_de_la_diffraction_sur_un_cristal
http://fr.wikipedia.org/wiki/R%C3%A9seau_cristallin

Roger Penrose publie en 1974 un Dan Shechtman montre en |984*

article sur les pavages hon périodiques que ces « symétries interdites »
2 motifs élémentaires et non pas un peuvent exister (a3 2D et méme 3D).
(dont le rapport des surfaces = nombre d’or...) AlCuFe, AIPdMn,......

Ces alliages interdits ont éte baptisés quasicristaux.
Initialement : avionique : recherche de nouveaux alliages légers et résistants : Al + Mn

mais les propriétés de ces quasicristaux sont bien plus étonnantes :
“anti”’-meétaux, extrémement résistants, tres faible adhérence,....
soulignant le lien lien essentiel entre structure (symétries) et propriétés physiques.

* Prix Nobel (Chimie) en 201 |
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De méme on peut noter les Cristaux liquides

Molecules de formes allongees (cholestérol,...) pouvant adopter une
orientation préférentielle mais distribuées (quasi-)aléatoirement.

systemes d’affichage, tissus, peintures,... propriétés mécaniques intéressantes (Kevlar).

Dans la suite on ne s’intéressera qu’aux réseaux PERIODIQUES

maille primitive = volume de I'espace qui, translaté par tous les vecteurs du
réseau rempli totalement I'espace sans se recouvrir ni laisser de trous,
elle contient | point du réseau.

Que vaut alors la distance entre les atomes ?
et pourquoi les solides sont-ils solides...
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B. Cohésion

- Systémes covalents :

Comme on I'a vu, il existe deux types d’électrons dans les métaux : les électrons de coeur
qui restent confinés sur leur orbitale atomique et forment - avec le noyau - un cristal

d’ions positifs et les electrons de conduction « libres » de se déplacer dans tout le solide.

Si ces électrons étaient parfaitement libres leur distribution ¢ o o o
électronique spatiale serait homogene (ondes planes) mais en ® © o o
réalité la densité électronique peut étre (tres) faible dans certaines

régions interstitielles : directions privilégiées = «liaisons» ® © o o

(chimiste : 77, 0, . .. sp3 :diamant, sp2 : graphite).

h*V; ) 1 1 e’ . | X
H=) - ~Z Y —— 4=y ———— =E + U+ U+ U™
2m R |r,—R| 2 |r; — 1]

i J7J

On a vu que I'énergie cinétique = 30.1(ay/7,)* [eV]

2 =

ou 7, est ~ la distance inter-atomique (4772/3 = V/IN) et a, = h*cy/mme? = rayon de Bohr

Pour minimiser I'énergie cinétique des électrons il faudrait r, — oo !!!
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et on peut montrer que U'°" 4+ U ~ 0 (modéle du Jellium = distribution homogene)

pas de cohésion associée a 'interaction Coulombienne directe.

Le cristal ne devrait donc pas exister puisque « I'équilibre » correspondrait a r;, — oo,

mais il reste un terme dit d’échange (M2), purement quantique, li¢ a
lindiscernabilité des électrons : UM = — 12.5(a,/r,) [eV] (voir M2).

A
E répulsif = énergie cinétique

/ A I'équilibre

attractif = échange UCOh ~ qq 0.1eV/atome
ry,=R \ F's
4

équilibre

}

Pas mal ! Néanmoins I'expérience donne 2 a 6 selon les meétaux :

les solides sont TRES stables...

etr,=R=4.8a,~2.5A

les fonctions d’ondes ne sont pas des ondes planes,
il faut tenir compte de écrantage (e/r — e % X e/r) et U™ + U #£

et du volume occupé par les électrons de coeur (E, # 30.1(ay/r,)?).
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Qu’en est-il des systemes NON covalents ? (# metaux)

- Composés ioniques :
la densité électronique reste localisée proche des ions (= isolant) mais un ® o o
des composants a un (ou plusieurs) électron(s) sur sa couche périphérique qui

peut €tre «capté» par l'autre constituant pour donner A*B- : NaCl,... (sels).

Pas de terme cinétique et interaction électrostatique (Voir TDs).

N 2 1 1 N Qe2 R = vecteur du réseau
U —_ —_— — —_ —_— ] - — e 1 + -
) 4ﬂ€0d[ | Z 2B Z a(R)] 2 dnend d = distance A*/B
signe—oppose meme—signe et ‘R’ — a(R)d

Q) = constante de Madelung,

il faut néanmoins rajouter une répulsion a courte portée (répulsion de coeur dur)

que I'on choisi (de fagcon phénoménologique) en A/r",avec m : 6 a 10.

chaine linéaire infinie : Q = 2(1-1/2+1/3+...) = 2Ln2 = 1.386

cluster de 8 atomes : Q) = (3-3/2!2+1/3112) = |.456

réseau cubique cfc (NaCl) : QQ = 1.748

UM ~ qq eV/atome



- Systemes Moléculaires : ® 6 o o

Pour les atomes n’ayant que des couches électroniques pleines : pas de

déformation sensible des orbitales atomiques : Ne,Ar,K,... (gaz rares). ¢ & o o

Les atomes restent neutres (pas d’interaction électrostatique) mais
forces de van der Waals (—A/r9, fluctuations dipolaires) +

(comme pour les cristaux ioniques)

12 —

potentiel répulsif a courte portée que I'on suppose ici B/r Lennard-Jones.

U= 46[(d/T)12 — (d/?”)6] = distance inter-atomique R = 2!/0d

UM ~ 10meV/atome :trés bon accord avec mesures dans les gaz rares.

- Liaison hydrogéne :

(1) H ne peut créer de liaison qu’avec UN atome # covalents et

(2) énergie de ionisation 13.6eV plus forte que autres ions (Na* ~ 4eV) #ionique.

«lon H*» = proton :rayon 10-13 m (10> fois plus petit que tous les autres ions) &:O ______ ?@
H vient se «collery sur ion électroneégatif (O) le long de la ligne O-H-O ' :

= ligison (dynamique) essentiellement dipolaire \ : %@@%
mais |10x plus forte que pour les cristaux moléculaires, stabilisée par > ;o %

la forte entropie de configuration dans la répartition des H. %ﬁ Cﬁ'@
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C. Phonons

Les interactions (électrostatiques ou dipolaires) conduisent donc a U(r)
dont le minimum défini la distance inter-atomique = noeuds du réseau (R)
MAIS les atomes peuvent s’écarter de cette position d’équilibre et

des oscillations sont possibles dans le fond du puits.

Remarque : u(7) = décalage et si u(7') ~ 0.2R (critere de Lindemann)
le solide devient instable = FUSION

© A Mo?*u/ot? = —0U/0u 7(R) = R + @(R)

i(F') " on cherche des modes d’oscillations collectives :

PHONONS

u(na) _ uoei(kna—wt)

et pour des interactions harmoniques (le fond du puits est approximé par une parabole)

entre premiers voisins :

—Mo?*u(na,t)=—-K [2u(na,t) —u(na,t)e *ka — u(na,t)eika]

eika _|_ e—ik:a

Mw? = 2K(1 — :

) = 2K (1 — cos(ka)) = 4K sin*(ka/2)




w(k)

2wq

= relation de dispersion

K
w =2 M\sm(ka/Q)\

modes de vibration possibles

K
Pour les faibles valeurs de w : w = a4/ i k| = v|k| ou v estlavitesse du son.

Remarque : la relation de dispersion des phonons est
périodique en 2z/a. De fagon générale (2D, 3D) a)(lz) = a)(lz + f)
ou K est un noeud du réseau (dlt) RECIPROQUE*

défini par les vecteurs (K = nb ) vérifiant : a; b = 270;;.

Al

A 3D la relation de dispersion des phonons est alors T L
tracée le long de directions particuliers I'X,I'L, XL, ...
(I'=centre). On obtient 3 branches :

{ N

V(THz)

2 branches transverses et .1
| branche longitudinale. '

* c’est aussi le cas de I’ énergie électronique vue au chapitre | : E(k + K) = E(k), voir Solide 2.



Pour un systéme diatomique : on suppose ici (pour simplifier I'écriture) que tous les atomes
ont la méme masse M et que I'on a un MOTIF de 2 atomes distants de b, couplés par un ressort K et

que les motifs sont couplés entre eux par des ressorts G.

On note y; le déplacement de 'atome i (i = 0,1,2,...)

M}itif‘ s k  a et le principe fondamental de la dynamique s’écrit
W WWVW 7 Ve WWwye Md?u,/dt* = G(uy — uy) + K(uy — uy)
o “; a? Us Md*u,/dt?> = G(u; — u,) + K(us — uy)
N a - Md*us/dt* = G(uy — us) + K(uy — u3) . ...
et comme on cherche u o e ™Y et on a u; = use™*, u, = uye™,...

le deux dernieres équations (par exemple) s’écrivent alors :

(Mw?* — (K + G))uy + (Ge ™™ + K)yu; = 0
(Ge™ ™ + Kyu, + (Mw?* — (K+ G))uy; =0

et le déterminant doit étre nul, soit
Mw* = 2M(K + G)w? + (K + G)* — (K + Ge™*¢)(K + Ge'**) = 0
M?0* = 2M(K + G)w? + 2KG(1 — cos(ka)) = 0

soit W

2:K+G:I:\/K2+G2+2KGcos(ka) _K+G[1i\/1_4K—G,2(k_a)]

= sin
M M (K+G)? 2
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[2(K + G)
I M et pour un motif plus complexe : 3 modes (branches)

o7 /\ acoustiques + 3(p — 1) branches optiques
YA optical
M w(k) P BE R Y K P E_.Z a
2G acoustic N it it e g N
w=/ KC 10 < §4»\’§§%\ %Q j
2M (K + Q) é:, | l'*.' /—Nl \/- ‘
> \|// P2 /m| \|
—Tt/a 0 k — n/a b5 000500 0500 05 000500
Remarq | K G K >> G (ouk~0
emarque: — — . et si ou ~
Us | K + Getka| ( )
les atomes vibrent en opposition de phase (4, = — u,) sur la branche optique : «<molécules»

(quasi) indépendantes (légerement couplées car G # 0) :la branche devient plate (v =~ \/2K/M),

et en phase (1; = u,) sur la branche acoustique : «kmolécule de masse 2M» couplée par un

ressort de faible raideur G et w =~ 24/ G/2M | sin(ka/2)|.

A B ‘ i i
Mode acoustique > o> ) <9 (> o> <) <@

k=n/a | : |
Mode optique (o> <o - o> (> <o -—) o>

A
\/

a



Tout comme pour les électrons, on peut définir une densité d’états g(w) de modes :
Vv
g(h)d’k = g(w)dw = —4rk*dk
873

car les phonons sont également soumis au principe d’incertitude AkAx ~ 1 (en fait 27)
2r

et comme le solide est de taille fini Ax = L,k = nT
Finalement en supposant
* @ = vk (approximation de Debye) pour les modes acoustiques

* @ = wy pour les modes optiques (£ pour Einstein)

Et on trouve :

Va?
23

. g(w)= pour les modes acoustiques

* g(w) x 8(w — wg) pour les modes optiques

80
60

Einstein

= 40

Density of States

Debye

204

T T T T T T
wp wg w [i] 2 4 [ 8 10 12 14 16 18 20
Frequency (THz)
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Quelles sont les propriétés physiques de ces phonons ?

Tout d’abord, comme on I'a vu, ils « propagent » le son dans les solides.
De plus ils contribuent au transport de la chaleur (ils ont une conductivité thermique, voir Solide 2).
Ne portant pas de charge ils ne transportent aucun courant électrique mais ils « participent »

néanmoins (négativement) au transport électrique en diffusant les électrons®.

Enfin ils ont également une chaleur spécifique.

La théorie classique (équipartition) donnerait C = 3Nkg
en désaccord (comme pour les électrons) avec I'expérience !
En effet, les phonons sont également des « particules » QUANTIQUES
(sans spin, mais comme les photons, ils ont un « pseudo-spin » | = 3 polarisations)
Comme le potentiel est HARMONIQUE, on connait le spectre en énergie :

E = Z(n’“ +1/2)hws(k) (s = polarisation)

le calcul de n;, n’est pas trivial mais vous verrez en physique statistique (S9) que

1

N s = = fonction de distribution de BOSE-EINSTEIN
) oBhws (k) _ 1

C 1
L T Z o7 et my — 1))

*le caleul (M2-MQ...) du temps 7 tient compte de l'interaction e-phonons (et des défauts structuraux) car un réseau parfaitement
périodique ne diffuse PAS les électrons (voir Solide 2) contrairement a I'idée de Drude.



Il s’git pour finir de transformer la somme discrete en intégrale.

d’k 2rk*dk
) Zk: ) I J [ Qa/Ly ~ J Qa/Ly [ s

Et pour les phonons optiques on trouve donc

(hwE/kBT)thwE/kBT
(ehwE/kBT _ 1)2

— P = pnkp ou p est le nombre de modes optiques

Remarque : on retrouve ¢°® — pnky = Dulong-Petit lorsque T > > O = hwy/ky

et pour les phonons acoustiques, le calcul (Voir TDs) donne
C = [(22%/5)(kgT/ hv)3 Tk = [(127*/5)(T/O ) Ink, = BT

En fait, on est alors exactement dans le cadre du calcul du rayonnement du corps noir !
On connaissait donc déja ce résultat : E « T* (loi de Stephan) et donc C o T3

C’est en fait, un résultat tres général :
toute excitation bosonigue (ou fermionique si 4 = 0) dont la relation de dispersion est

proportionnelle 3 @  k” a un chaleur spécifique C TP 3 d dimension.
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Finalement, pour T'— 0, la chaleur spécifique du solide s’écrit donc

CIT=y+pT*+...

La dépendance linéaire de la contribution électronique est indépendante de la dimension
du systeme (y ne dépend que de g(E})) et ce comportement est robuste car
T < T ~ 10°K (généralement).

Mais pour les phonons C/T « T9"! et Op ~ qq 100K
(~ 100K : K,Bi,Pb jusqu’a 1860K : diamant, Al : 394K).
Lapproximation C/T o T? (a 3D) n’est donc valable qu'a « basses » températures

(contrairement au corps noir...) et généralement les données expérimentales doivent

étre décrites par Cyponons = BT° + 6T + ...

Enfin dans ce cas on retrouve (comme pour les modes optiques)

C

phonons —> Sk 2 haute température.
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Chap.3

Magnétisme
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A. Rappels phénomeénologiques

Le lien entre magnétisme et électricité est mis en évidence par le physicien danois Hans Christian

Ersted en 1820, puis formalisé (la méme année) par Jean-Baptiste Biot et Félix Savart qui
montrent que le champ B (également appelé induction magnétique) est donné par
5 _ MO]J di A PM

) IPM |

B reésulte donc de la circulation de courants (... et du SPIN comme on le verra).

Ces courants peuvent étre externes (crées dans un solénoide par exemple) et on note
_)
alors H* le champ magnétique correspondant ou due a des boucles de courant internes

—_—
et on note M le champ correspondant, appelé aimantation et le champ total :

B = py(M + H)

*les effets de bords liées a la taille finie des solides font que H = H_,, — N;M ou N, est appelé coefficient

de désaimantation (pour des échantillons de forme elliptique).
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Cette aimantation est reliée a une distribution volumique de moments magnétiques

— dw
(microscopiques) : M = d_//\[/ = ni, eux reliées a la taille de la boucle y = 7R?I.

Ce moment magnétique est le pendant du moment dipolaire associé a deux charges et (méme
— —
s’ils different a courte distance) les champs B et Eont alors la méme forme a longue distance,

§ @

mais il n’existe PAS de monopole magnétique...
...dans le vide, mais ils peuvent « artificiellement » exister dans la glace de spins

On peut introduire le moment cinétique L = ﬁ/\ﬁ et en ecrivant
—e
[=d0/dt = —elT = — evi2zR on a: InR? = Ey. X mvR soit
m
= }/f ou y = — e/2m est le rapport gyromagnétique

le magnétisme est lie au moment cinétique.
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Pour aller plus loin, on a besoin™ de I'expression de I’Hamiltonien quantique d’un particule
en présence d’un champ magnétique et on peut montrer que H = (p +eA)*/2m+ V.
Comme pour E qui découle d’un potentiel (scalaire) V,

I'induction B découle d’'un potentiel vecteur A et pour satisfaire les

équations de Maxwell ces deux potentiels sont reliés par :

div(B) =0 —|B = tot(A)| et

— = 0B — — 0A
mt(E)y=———>E=—-V((V)—-—
ot ot
on retrouve la la loi de I'induction déja vu en électromagnétisme
- By Bx , , ) .
En prenant (pour B||Oz) A = (—7, 7,0) on peut développer I'Hamiltonien en :
p2 62?’2B2

H=-—+V(r)—yL.B +
2m

Pour étre complet, il faut tenir compte du fait qu’il existe un moment cinétique de

SPIN qui donne donc également lieu a un terme —y’S_B dans I’Hamiltonien

(avec ' = gy et g & 2 = coefficient gyromagnétique). Donc finalement :

p2 621’232
H =2+ V() = y(L,+ gS)B +
m

m
* pour retrouver F = gE +qVA B
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B. Réponse linéaire, magnétisme localisé/itinérant.

Résoudre cet Hamiltonien (i.e. trouver les énergies - et les états - propres) n’est pas chose
simple car il fait intervenir a la fois, une partie spatiale (|7 > ), une partie orbitale (| L, m; >)

et une de spin (| S, mg > ).

Et il faut - a priori - trouver la fonction d’onde (compléete) de I'état fondamental (| ¥, > )

pour calculer E = <YW, |H|Y¥Y, > .

Néanmoins en utilisant le fait que 1 = — dE/0B on peut déja remarquer qu’il y a:
2 2
e un terme e<4r—>B qui correspond a moment diamagnétique = phénoméne d’induction
m

(loi de Lenz) : le matériaux crée une aimantation pour s’opposer au champ*.

* un terme —y( < L + gS, > ) qui traduit 'existence du moment magnétique local

paramagnétique (méme en I'absence de champ extérieur).

Commencons par traiter le cas des électrons de coeur (magnétisme dit localisé).

* on retrouve ce terme « classiquement » a partir du principe fondamental de la dynamique (voir L3)
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A haut champ, on peut montrer (effet Paschen-Back, voir mécanique quantique) que
| ¥y >~ |L,m; > @ |S,m, > et les termes magnétiques s’ajoutent, < m, > = m, = m; + gm,

p. = mpg et E = Ey + m_pB

h
avec y = 2—6 = magnéton de Bohr = 0,93.1072%J/T
m

mais a bas champ (effet Zeeman) il convient de faire une
composition des moments cinétiques (voir mécanique quantique).

J=L +Set||L=S|<J<(L+S)

et |W¥y> = |J,m; > avec

et pour H on cherche a écrire: <L +2S>=g,<J >

avec g J =(L+285).J=02+8S.J=J2+S*+L.5=

3JJU+1D+SS+1)-L(L+1)
2J(J+ 1)

et le moment magnétique est : y, = g;m;uz et £ = Ey+ g;m;ugB

donc g, =
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mJ M: Ms

Par exemple si 1,172 |1+2s = 2

S=1/2L=1
J = 1/20u3/2 sl o
remarque : g

-1,172 | 1+2s =0
pour B = 0O la dégénérescence

entreJ = 1/2 et J = 3/2 est

1,-12 (1425 =0

levée par l'interaction spin-orbite 0,-1/2 |14+2s = -1

1/2 1/3
(voir mécanique quantique) -1/2 -1/3

~1,—-1/2|1+2s = -2

He B

Remarque :si < ¥,|J|¥Y, > = 0,il peut quand méme exister une contribution
(para-)magnétique, au second ordre en perturbation (voir mécanique quantique) calculée

sur les états propres |n > de I'atome d’hydrogene.

<0|J|n>|?
(2) = % JB]ZZ | E(l _l 0 | appelée paramagnétisme de Van Vleck.
n#0 n
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Le remplissage des differentes couches pour un atome a N électrons suit

les régles de Hund (voir également mécanique quantique).

Le terme de plus faible énergie est celui maximisant le spin total (< regle)

et pour un spin total donné, I'état fondamental maximise ) m, (2eme regle).

Enfin, il correspond a J = |L — S| pour les remplissages <1/2 et a J = L + Spour ceux >1/2 (3eme regle).

V (3d3) et Fe (3d®) sont

paramagnétique (J>0) mais

Vanadium V, Z = 23
3d*

—_— > ~
Il
)
R —
—_
—
|
-
|
N
—_———
n o~
Il Il
ojw W

Fer Fe, Z = 26

{Lz Ar est diamagnétique (J = 0)

e ~
- | I
—
e
—_—
—_

3d°

J=24 =4 idem pur Cuivre = 3d!%4s! pour

! 0o lequel la couche 3d est pleine et

e [ k

I'électron 4s! est délocalisé (métal)

Remarque : pour les couches d le champ cristallin peut conduire a un

« quenching » du moment cinétique et on se retrouve dans ce cas avec J = 3.

Enfin, pour calculer le moment moyen il faut tenir compte de toutes les

orientations possibles de ce moment.
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En mécanique classique (voir L3) on écrirait :

J(;T u cos e~V OksT sin 9do

Ln( [ e~V sin 6d0)

avec U(O) = — 1. B =- uBcoso

(1) J e=UOMT sin 00

mais ici il faut tenir compte du fait que
J, est quantifié (J,|J,m; > =m;h|J,m; >)

et on doit remplacer I'intégrale par une somme

m;=J
oLn( Z e—ﬂBmJgJB/kBT)

oB

discrete* <,uz> = kT

2J + 1 2J+ 1 1 1
B,(x) = coth x)——coth| —x
! 2J

2J 2J 2J

fonction de Brillouin

oB

- pB
¢ T | ou
0 1 2 3 4 5 6 7 T

Remarque : pour les (tres) grandes valeurs de J on retrouve la fonction classique

(projection continue) B(x) — coth(x) — 1/x = fonction de Langevin (voir L3) et a 'opposé

pour J =8 = 1/2 on a plus simplement B(x) — tanh(x).

* Z e~ & BksT o5t appelée fonction de partition, voir cours de physique statistique.
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B J+1 X3 <J+1>3+J+1
. X) ~ X — e
pour x<<l: & 37 90 [\ U J

2
B
On peut alors définir un moment effectif p¢ = ppg;\/J(J+ 1) et <p, > = ';l;’:fT
B
Paramagnétisme de Curie < >~ 2B st
+4 Hpara ~ 10 T[K]
et pour la composante a(% U
. L. P P <ﬂdia>“—ﬂ3><—2~——10003000XB[T]
diamagnetique (de Larmor) on peut ré-ecrire g

ou g rayon de Bohr ~ 1A (taille de I'orbite) et az = rayon « magnétique » \/h/gB (~ 107'm a IT)

Comme on le voit, les deux contributions sont proportionnelles a B = réponse linéaire

et M =n < u, > esttres inférieure a H. Donc B = yyH et on peut écrire :

Ny, Hay R’
M=t ™ om = U + 2l
B e

ou Xmag = Xdia T Xpara €St la susceptibilité magnétique

et (généralement*) on a donc Xpara > > |)(dia|

* La contribution paramagnétique peut é&tre nulle (au terme de van Vleck prés) si J = 0 et r peut parfois dépasser largement a, comme
dans certains composés aromatiques (cycles benzéniques), le graphene ou les supraconducteurs r — Let y;, — — 1.
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Un approche classique du probleme donnerait y .4 = yL.,.

Et si on applique le théoreme d'équipartition L2 = (p?y? "‘Py x?) = sz2p > py = 2mR*kT
m
(62/4m2)2mR2kBT e’R? er<r> e’R?

Apars = 3kgT 6m 4m 6m

les deux contributions seraient donc égales (au signe pres)

et on trouverait y;,, = 0!

Bohr (1911) et van Leeuwen (1912) avait ainsi montré que les solides ne possedent pas de
propriété magnétique a I’équilibre thermodynamique.
Mais ceci est manifestement FAUX...

Et ce paradoxe a été levé par la mécanique quantique
L. =mh # 2mR?kT (I'équipartition ne marche pas !)

et bien sur on ne peut pas « oublier » le SPIN.

Il nous reste a calculer la contribution des électrons de conduction
(magnétisme dit itinérant).
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Commencons par calculer la contribution liée au spin (S=1/2).

Chaque « micro-moment » + gup/2 = * pp conduit a un décalage

: /’lpara —

des densités d’états up et down de I'énergie correspondante : A = * ugB.

Hpara = Mp(ny — 1)) = (up/ 2)[[01g(E + A(E)E — Eo g(E — MF(E)E]
B#0
Soit (VOIR également TD) :
Hpara ~ MBA[ g(E)(E)IE
" o RTCE e

et en utilisant le développement de Sommerfeld avec A = g'(F)

on trouve que la contribution paramagnétique liée au spin vaut :
2.1
T8 (EF) 2
~ pp X [ugBg(Ex)(1 + kT)~]
Hpara ~ Hp X LHp g(ER)( 63(Ey) (kT)

Paramagnétisme de Pauli

Remarque : on a écrit mp,,;; = UgAn = pghies = Hp X 8(ER)/2 X AE = ug X g(Ep)/2 X 2ugB
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Le calcul de la contribution orbitale est plus complexe.

Il faut pour cela revenir a I’'Hamiltonien (sans spin dont on a déja calculé la contribution).

(B +eA)> p>  e’r’B?
H= +X=[ + 1 + X+ [y,L.B]
2m* 2m* m* 705
En négligeant cette fois la partie l
potentiel pour les électrons e ,
délocalisés (presque libres) Epara = (Zm* )n'n)(B) = n h?
Oscillateur harmonique dans le plan E =[(n+ l) +(n, + l)]ha) 4+ 1) ho,
perpendiculaire a B et libre le long de B 2 B 2 2
avec w, = — :fréquence cyclotron.
m*
hk%Z
On peut montrer que n’ = —n, —n+2,...n — 2,n et on obtient : £, = (np + 1/2)hw, + Zy
m
o, . eB1 2m* |, / HE-E) |
et la densité d’états* devient : g(E) = ——(—-) Z O(E' — (n+ 1/2)hw,) dE
h n h? . \JE—E
l densité « libre » dans le
la conservation du nombre de particules implique que la plan perpendiculaire a B.

m* heB _ eB

X .
2nh? m* h

dégénérescence des pics v =
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I
(E) = A -
’ Z VE =+ 172,

bitraires)

tés ¢

Energie (en unités de fw, )

a2 S 2m sy,  3NRo,
avec A = —_— :
42 2 4E}?

niveaux de Landau¥ : voir solide 1l

4 2B hwEY
et on trouve : £ = NE — EA[ 16F 1soit E = 3NE./5+ g(Ep)(ugB)*/6 + .

ha)c
énergie totale en champ nul  contribution magnétique orbitale

et on peut donc en déduire la contribution orbitale (ici due au terme d’induction eta L)

= diamagnétique des électrons de conduction :

fyy = — d(E)/dB = — pug X [g(Ep)ugB/3] ~ — ,upara/3

diamagnétisme de Landau

* ces niveaux Landau se « retrouvent » dans différentes propriétés (voir Oscillations Quantiques en Solide 2)
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Approche Classique

Electrons
localisées
(couches atomiques)

Paramagnétisme

LANGEVIN
e~ HKp
para 1000000 °

indépendant de T

B[T]

CURIE

pp B[T]

Moyara ~ T~
Paa 0 TIK]

diverge en ~1/T

Diamagnétisme

LARMOR

Mgia = — Mpara

identique au paramagnetisme !

LARMOR
e o MB
dia 1000000 °

indéependant de T

B[T]

Electrons
délocalisées
(métaux)

PAULI

Hp
~ B[T
Mpara ™ T0000 DL |

indépendant de T

LANDAU

mdia R — /3

Mpara

(sauf supraconducteurs)
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C. Interactions (ordres magnétiques)
Pour l'instant nous avons considéré que les moments J = L + S étaient indépendants les uns des

autres. L'énergie d'interaction dipolaire directe ~ uyuz/4xr’ étant (généralement) faible ( ~ 1K

pour une distance de 'ordre de A entre les moments), cela pouvait sembler légitime. Néanmoins
I’échange (encore lui !) conduit elle aussi a une interaction entre ces moments. Dans la suite

(et pour respecter la convention usuelle) on appellera « spin » le moment total (bien qu’il puisse

-

contenir un terme orbital) et on le notera S = J.

Ce terme d’échange est alors de la forme :

H.4 =— Z Jl-jgi’.gj) appelé Hamiltonien d’Heisenberg.
ij
Il peut conduire a I'existence d’'un ordre magnétique... mais cela dépend du signe de |.

SiJ > 0, les moments peuvent s’aligner dans la phase ordonnée pour minimiser
I'interaction d’échange. On parle de FERROmagnétisme. Néanmoins la direction n’est pas
défini et il apparait alors généralement des domaines magnétiques homogenes (domaines

de Weiss) séparées par des parois, et dont la taille augmente avec le champ appliqué.




Pour aller plus loin dans I'analyse quantitative, il peut résoudre le probleme dans une

L o , S <5 >
approximation champ moyen, en écrivant I'Hamiltonien : 1, nguBS (B + Z
; 8sHB
et on retrouve le « simple » Hamiltonien (Zeeman) avec un champ effectif
(historiquement appelé champ moléculaire) :
— <85> L zJ<S> . . . . .
B, =B+ ZJiJ— ~ B + ——— pour une interaction | dominée par les z premiers voisins.
F 8sHp 8sHp
N, <S> Ng.ugS .
Et il existe donc une valeur non nulle de M = ~2% <M, = 8B héme en
’absence de champ B donnée par I'équation auto-cohérente :
M Hp8sS zJ <S> 2JS* M
= By( . ) = By( )
Msat kBT 8sHB kBT Msat
- ”T 1o T <T¢ T < Ty, <To
Cette valeur peut étre obtenue graphiquement en trouvant (o=0s)
Tc T3> Tc

0.8 -

le point de croisement des courbes

y =x ety = B(zJS*x/kzT) (avec x = M/M,,,). Cette solution

n’existe que si 04+

dB SIS+ 1)zJ SIS+ DzJ 0z-
iGN U O o Lo

dx 3kBT 3kB o

Miar
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Pour T = 0, les moments s’alignent donc pour former un ordre magnétique (M = M_,,).

Cet ordre est progressivement détruit par la température (0 <M < M)

On peut alors écrire BS(zJSZx/kBT) =ax—bx’+...=xsoitx>=(a—1)/b
T, M
D a=—et (pour M - 0,T < T)).
T sat

Et pour 7' > T, 'aimantation en champ nul (spontanée) s’annule et on retrouve un état

paramagnétique caractérisé par une réponse linéaire (pour B # () mais avec :

C
e =T,
C

(en développant B(x) au ler ordre).

loi de Curie-Weiss

Pour un champ non nul les moments

M,

Ly

s’alignent - en partie - sur le champ (M # 0)

et il n’y a donc plus de transition de phases.
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Remarque | : Les courbes M(H ') décrivent alors des cycles d’aimantation (voir aussi TDs)

qui traduisent le retournement progressif des moments avec H.

Remarque Il : il peut également exister des directions cristallographiques dites de « facile
aimantation » le long desquels les moments vont préférentiellement s’orienter : cela revient

a rajouter un terme — A cos? 6 dans I’Hamiltonien* (appelé anisotropie magnéto-cristalline).

*L'interaction d’échange peut elle méme contenir un terme d’anisotropie que I’'on ne développera pas ici (il est
(liée a un développement perturbatif au second ordre de I'interaction spin-orbite). Ce terme est appelé interaction

de Dzyaloshinsky-Moriya et s’écrit : Hl.li)M =D;§; A S;.

65



Le cas J < 0, est plus délicat (et intéressant). Les moments vont

chercher a « s’anti-aligner ». Ce qui est possible pour certaines

Louis Neel (1904-2000) a Grenoble en 1951 (prix Nobel en 1970).

géomeétries (carrée par exemple) et on obtient alors I'état prédit par 1 *
on parle d’ordre ANTI-ferromagnétique ¢ T

Une transition de phase peut apparaitre pour T, = f Ty, (avec 0 < f < I)avec M =0

A
et dans ce cax Y., = TTN pour T" > T..
. yF 4 - y =
mais pas dans toutes... S TR N
» { « -b‘- b X T
on parle alors de frustration magnétique* S 1 1L
] E -
* W , p 4 »4—
qui peut conduire a: N YRR S Al B S
: h ¥Ry Yoy e
- des ordres complexes AT N N

« aucun ordre comme la glace de spin (avec formation possible de monopoles !) ou un
état fondamental constitué de la superposition quantique d’un nombre extrémement
élevé de configurations équivalentes (on parle de liquide de spin).

« la fractionalisation du spin (en spinons) et des excitations plus « exotiques » comme les
Fermions de Majorana (égaux a leur anti-particule !) dans certaines géométries (Kitaev).

- la valeur de f dépend du « degré » de frustration.



Pour finir, notons qu’il peut également exister un ordre ferro-magnétique dans le cas des
électrons de conduction. En effet, si on tient compte de la répulsion Coulombienne U
entre les deux populations de spin, on doit écrire An = g(E;)/2 X 2ugB + UAn)

g(Ep)uzB
1 — Ug(Ep)/2

et Upyui =

Hpay; (€t donc la susceptibilité) diverge pour Ug(ER)/2 — 1
et une aimantation spontanée apparait méme en I'absence de champ extérieur

= FERROmagnétisme de Stoner (voir aussi Solide 2)

Remarque :il peut enfin exister une interaction entre les électrons de conduction d’un
métal et des impuretés magnétiques (moments localisés) appelée effet Kondo (1964).
Ces impuretés auront tendance a localiser les électrons de conduction autour d’elles,
conduisant a une augmentation de la résistance électrique pour T — 0.

Si le taux d’'impuretés devient important, les électrons de conduction peuvent devenir la
source d’'un couplage (J.¢) entre elles (pouvant étre positif ou négatif selon la distance qui

les séparent) : effet Ruderman-Kittel-Kasuya-Yoshida (RKKY).
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