Cours de supraconductivité
M2-Physique

Introduction

Leiden, Hollande, Groupe de H.Onnes : liquéfaction de 'Hélium

1 : e g .
o 1908 — comportement de la résistivité des métaux pour 7' — 0

son étudiant (G.Holst) est chargé de mesurer le mercure (qui peut étre obtenu dans un

o 1911 : état tres pur) et remarque que la résistance disparait juste au-dessus de 4K (RIO).
Cette découverte est onfirmatée en 1912 dans I’étain (3.7K) puis le plomb (7.2K) :
Prix Nobel en 1913.

Berlin , Meissner et Ochsenfeld mettent en vidence I'expulsion totale du champ

o 1933: magnétique (BIO) : phénomene de lévitation.

1934 - théorie électromagnétique : LONDON, basée sur les équations de Maxwell +
0 * B=0/R=0, prédit l'existence d’une longueur de pénétration.

1950 théorie des transition de phases : GINZBURG-LANDAU, prédit I'existence dune
o :

seconde échelle de longueur : longueur de cohérence — état mixte (Abrikosov).

o 1955 : théorie microscopique BCS : réle des phonons.

Quelques applications :
- R=0: lignes de transport, aimants supraconducteurs, limiteurs de courant ( fusibles )

- B=0: blindages magnétiques, train a lévitation
- Cohérences : SQUID (mesure de M), détecteurs micro-ondes

Matériaux

* Corps purs (sauf Cu,...) : supraconducteurs de type I (sauf Nb, V, Tc), T, < 10K

* Alliages : A15 (S-tungsten) : A3B
- B sommet et centre du cube
- A par groupe de 2 sur les faces.
V3Al: 9.6K — Nb3Ge : 23.2K




* Phases de Laves (C15 : AB5) : ZrVs : 9.6K.

* Phases de Chevrel M, MogXg X=S,Se,Te (chalcogenure), M=Sn,Pb,La : PbMogSg : 15K.

* Organiques (fortement bidimentionnels) A BB LS OFR L& G6& G
% BV v'¢ P v ¢ 5P
BEDT-TTF-Cu(CNS), ~ 10K. badd b ods L AAS L A
CY VY FYyC Y &y Y
* Fullerenes, boules de carbone Cgg aux sommets d’une bod d OSSP hogd d bo
. . . . N -4 y & A 5 ¢
structure cubique, dopage en alcalin (interstitiels) : i % 2 :‘ ‘\ j " X ‘k ‘* '

A3Cg0 (Cs2Rb)Cgp : 33K (1991) (voir aussi diamant | ‘ FEYS ¥ ’€y 5,_.}.’3&; Sy
dopé ci-dessous). v 0 # LE Gy

* Oxydes : (Ba,La)2CuOy4 : Bednorz/Muller 1986 (30K).
Lal,85Sr0,15CuO4 : 40K,
YBaQCu307_5 : 92K,
BigSI‘QC&QCUgOlO : 110K, g E
et méme Hgo.ngo_QBagcagcugog_g : 138K °
Des traces de supraconductivité ont été reporté  dans oid? ‘ Zone de
009

Zone réservoir
de charges

(Snl‘on0.5In0,5)Ba4Tm5Cu7020 A.... 185K le 6 Mars 20087 ce qlll comtucten

place cette T, 1K au dessus de la température la plus basse relevée en >0 —
antartique (le 21 juillet 1983) : il s’agirait donc du premier supracon- p (8=
ducteur a température ambiante.... ) b (@t

Tous ces systemes ont une structure fortement lamellaire : plans CuOq
supraconducteurs + mécanisme non BCS (non encore déterminé).
A noter aussi (K,Ba)BiO3 : 32K cubique, sommet Bitoctahedre O, centre du cube K,Ba

* Fermions lourds : Ce ou Uranides (U,...), bande d tres étroite fortement hybridée aux électrons de
conductions (Pt, Be) : m x /m ~ 200, UPt3 : 1.5K.

* MgB, : plans hexagonaux B (de type graphite) : orbitales p, () et ps, : liaisons covalentes sp? (o).
dopage des liaisons o par Mg?* (interplans) : ces liaisons deviennent alors supraconductrices avec un
excellent couplage e-phonons : T, = 39K
les liaisons 7 sont elles aussi supraconductrices (mais avec T, = 10K) : coexistence de 2 supraconduc-
teurs (faiblement couplés).

Des calculs ab-initio dans d’autres systmes suggerent que la T, pourrait dpasser plusieurs 10 aines de
K par dopage des laisons o sp? : BCsz : > 40K, Li,BC : > 150K....

* Diamant dopé au B : la encore des orbitales ¢ mais en configu-
ration sp® (qq K mais aussi Si:B : T, ~ 0.7K). La T, pourrait la
encore étre tres fortement augmentée pour dépasser 50K dans BC
(Wurtzite). La diffuculté réside ici dans le dopage de ces liaisons
covalentes et de tres fortes valeurs de T, ont été prédite dans des
systeémes de type ”cage” : clathrates de Carbone (F:Cs4, 7K déja
observée dans les clathrates de Si).




* La découverte trés récente (printemps 2008) de 7. > 50K dans
les oxypnictide de Fer : X(O,F)FeAs ou X est un Lanthanide :
La,Sm,Nd,.... fait 'objet de trés nombreux travaux.

Plans supraconducteurs : FeAs, contenant un élément magnétique
et réservoir de charge : XO dopé par substitution de F sur le site
de 'oxygene.

Modele de London

Ce modele est basé sur les équations de Maxwell

rotE = —0B /ot
divE = p/e
divB =0

rotB = ,uof

et J = —ng¥ (pour une charge -q) ol n est la densité de porteurs (et div(pt) 4+ dp/dt = 0, conservation
de la masse). Dans un métal normal — existence d’une force de frottement (diffusion par les impuretés
et les phonons) : fr = —(m/7)%. Pour t >> 7 (régime continu) ¥ = (—q7/m)E, J = (ng*>t/m)E et

o =ng*t/m.

A priori un conducteur parfait (¢ — 00) est caractérisé par E = 0 et ce conducteur parfait ”s’oppose”
alors a toute variation de flux — génération d’un courant d’écrantage :

conducteur parfait, B = ¢*; 9B /0t = 0

T>T.H#0 T <T,H#0 T<T.H=0



Néanmoins, il faut écrire : —gFE = m x d# /dt et :

dJ/dt = (ng*/m)E

soit rot(dB/0t) = podJ /0t = po(ng?/m)E
rot(rot(dB/dt)) = grad(div(dBot)) — A(OB)ot) = 0— A(OB/dt) = po(ng?/m)rotE = —1/\2rot(OB/ot)

2 m

avec )\L — W

Mais un supraconducteur n’est pas simplement un conducteur parfait, il possede également la propriété
de pouvoir EXPULSER le champ et donc B = 0 (et non pas (0B/0t)). On peut (voir ci-dessous) donc
r’emplacer” 0B/0t par B dans I’équation ci-dessus et

AB = B/)\?2 -7 _ =
— N f/)\%L — worotJ = B/\2 Eq. de LONDON
Remarque : systemes dissipatifs : J=cE, AJ = o,uo@f /Ot — épaisseur de peau ¢ = quUw
_ ch(z/AL)
; B—mwi
1 ol = 11, BN~ ol = Bl 203
o d<<A,x= dM dH = —(d/2)\,)? e
N d>> M\, x = —1(1 — (/1))

0*B,/0r* +1/r.0B./or —1/A\iB, =0
B Io (T/AL)
0-To(R/AL)
ou Iy est la fonction de Bessel d’ordre zero ~ e* /x pour © — oo
remarque : méme équation pour J donc un courant de transport ne circule

que sur une épaisseur \r,

—)BZ

N

Lorsque le supraconducteur est refroidit sous champ en dessous de sa température critique, il y a
expulsion du flux : effet Meissner — LEVITATION



T>T.,H#0 T<T.H#0 T<T.H=0

e Aspect énergétique

On suppose que B = Bye /L

. s (oo} oo .
Normale | Supraconductrce Energie magnétique : E,,qq = ﬁ Jo Bdr = ﬁ Jo” B%dz x S soit
2
Enag ~ LS x B2/4u

_ 190B _ By ,—a/L
et J oL ©

By

o Oz

— Energie cinétique : FE,, = %fooo vPndr = ﬁfooo J2dx x S; soit
Ecin ~ SBQm/4nq2Lu0
x (Emag + Eein)/OL)|L=2, =0 — )‘% - Morgqi

La longueur de London permet donc au systéme de minimiser I’énergie totale (magnétique + cinétique).

retour sur I’équation du mouvement; le calcul en page 4 est évidemment faux ! Il faut en fait écrire :

Z—f = %? + %gr_(’szQ — ¥ X rot¥ et rBtgr_ddUQ =0, rotE = —%—?, m‘;—? = —q(E—i— U X é)
dott 28T _ Gt(F x rotT) = L(rot(E) + rot(7 x B)) = ~4(=28 1 r64(7 x B)) soit :
fo ] == —
55 = rot(v X w
?t - (_ B ) Eq Helmholtz
& = rotv + =L

remarque Eq. Helmoltz traduit ’évolution d’un fluide non visqueux en mécanique des fluides = lig-
uide de Fermi sans viscosité. C’est bien sur le cas des supraconducteurs mais plus généralement de tout
conducteur parfait (si un tel systéme existait) et cette équation se substitue alors & AJ = o pdJ /Ot pour
un conducteur "normal”. Le supraconducteur correspond a la solution particuliere : wyyrr = 0 et donc
Ow/0t = 0 et w reste nul [c’est bien la solution qui correspond & B=0 au centre de I’échantillon].



Soit | rotT — qé/m =0|Eq. de London.

remarque sur les jauge : Cette équation de London s’écrit rat(f + ﬁ /Y) =0 (en introduisant B =
L

TBMT) soit J = %’f‘(gr_(’zdx — %Y) ou x est une fonction scalaire quelconque. A et V sont définis & une

”constante pres” : les lois physique ne sont pas changés si on remplace V' — V + 9x/0t et A— A+ ﬁx.
On introduit la jauge de London : A.77 = 0 et divA = 0 et on peut montrer que dans ce cas, pour un

- - 2 -
systeme simplement connexe (sans trous) : gradyx = 0 soit | J = =" A| En mécanique quantique on

défini 'impulsion généralisée : P = miv— q/f et on remarque donc la jauge de London est celle pour
laquelle I'impulsion dans un supraconducteur.

® Champ critique, rappels thermodynamiques

Champ magnétique crée par un solénoide : H = nyi (ol ns; est le nombre de spires par metre)
— & =n,LB,S — apparition d'une f.e.m. e = —d®/dt — Woienoide = —€idt = HOB,V = noHHV .

du =Tds + HdB : matiere + solénoide (énergie par unité de volume, on suppose pour simplifier qu’il
n’y a pas d’effets démagnétisants (H = H,) mais le résultat est général).

Si on condidére uniquement la matiere, il faut retrancher dWsoienoide, SOit : du = Tds + HdB —
woHdH = Tds + poHdm (ot m est 'aimantation : B = po(M + H)). On a donc :

Matiere seule Matiere + solénoide
énergie : u du = Tds + poHdM dU =Tds+ HdB
.o N g=u—Ts— uHM g=u—Ts—HB
enthalpie libre (Gibbs): ¢ dg = —sdT — o MdH dg = —sdT — BdH

L’état normal est supposé non magnétique : M = 0 (B = ugH) et pour le supraconducteur : B = 0
(M=—-H)etona:

Matiere seule Matiere + solénoide

gN gs gnN gs

95 =gn(T,H =0) 95 (T) + spoH? 90 (T) — 3u0H? 95 =g9s(T,H =0)

L’écrantage a donc un coiit énergétique (ugH?/2) (mise en mouvement des supercourants). La phase

supraconductrice est stable pour | H < H, = %(gév —g5)|ie. gy > gs




e Energie libre de surface

K]

_H 2
6g = g° — gV = L (H? — H?) mais la condition m = A 1/2“0(H He)
—H n’est pas réalisée a la surface de I’échantillon. En
supposant que B = Boe~%/* ona M = H(e */*r —1) — 1/2H0Hc2
la surface STABILISE la phase supraconductrice.

\Y

premiere approche des vortex : est-il energetiquement favorable de créer une ”zone” normale au sein
du supraconducteur ?

Un tube de phase normale (de rayon r) .
sera stable si le gain en enthalpie libre de surface est
supérieur au cout en énergie de condensation: - | coutenenergie

de condensation

m((r+An)?* = r*)uoH?/4 > mr?po(HZ — H?)/2

. . " V2
ie.si|H>H" ~ r+>\LHC

gain en enthalpie
libre de surface

De tels filaments de phases normales existe dans certain supraconducteur - dits de type II - mais pas tous
(les autres sont dits de type I) — on les appele VORTEX car le coeur normal est entouré d’un ”tourbil-
lon” de courant, on verra que chaque vortex porte un quantum de flux ®g = h/2e = 2.10715Tm? (voir
ci-dessous)

Théorie de Ginzburg-Landau

La question se pose alors est de savoir pourquoi il existe des supraconducteurs de type I 7 Il faut une
enthalpie libre positive pour contrebalancer l'effet négatif du ”défaut d’aimantation” sur 1’épaisseur de
London.

— le passage entre I’état normal et 1’état supraconducteur n’est pas abrupte : la densité de porteurs dans
létat supraconducteur (ng) ne s’établit que sur une longueur £ appelé longueur de cohérence.




Normale Supraconductrice

0g = 12 (H? — H) = bgm + dgc 0

HZ ((n(x)y2
5gc ~ —m’LLOTC( . ) ng
: énergie de condensation A
3

OGm ~ ,uOHTz(l — e~®/MrL) ¢ énergie magnétique

—_
X
2 cas sont alors possibles :
AL > ¢
0 T
| el o 7\.L Enthalpie magnétique
“— kL Enthalpie magnétique :
0
<
2
o0 04 1
I ‘ i i [ ) P
5 <& de f{‘;:ggﬁ';inn sl \E Enthalpie de condensation
0 ‘ /
i 6 8 10) B 12 . . . .
0 2 8 1
u/ )"L 11 / KL ¢
06 | = I
I H=07 HC L H=07H
r K=05 L c
L L K=2
-0.8 L L L 1 L L L 1 L L L 1 L L L 1 L L L
0 2 4 6 8 10 L ‘ ‘ ‘
u/n 0 2 4 6 8 10
u/ A

— il n’existe pas d’enthalpie libre négative as-
sociée a la surface : type | — il existe une enthalpie libre négative as-
sociée a la surface : type II

Le calcul exact (non démontré ici) place la limite & k = )\TL = %

Transition de phase entre I’état normal et 1’état supraconducteur.

GL traite la transition supraconductrice comme toute transition de phase. Une transition de phases
est une modification des propriétés du systeme induite par la variation d’'un parametre extérieur. Elle
intervient lorsque le potentiel thermodynamique n’est pas analytique. Ehrenfest proposa une classi-
fication des transitions de phases en fonction du degré de mon analycité : une transition est du n¢”¢
ordre lorsqu’une dérivée n"*¢ du potentiel est discontinue. Néanmoins cette définition ne prend pas en
compte la possibilité de divergence d’une dérivée (mais uniquement les discontinuités). Cette divergence
est néanmoins présente dans la nature : transition superfluide de P'Hélium 4 au point A (2.17K, appelé
ainsi du fait de la forme de la courbe C,(T")).

On distingue aujourd’hui 2 type de transition (1¢" ou second ordre) en fonction de I’existence ou non
d’une chaleur latente (T'AS, attention néanmoins & la relation de Clapeyron : AS = —(0P/OT)AV =
V(OH/OT)AM s’annule si OP/OT ou OH/IT ou toute autre dérivée s’annule). Les transition du 2¢7¢



ordre sont plus facile a décrire du fait de ’absence de discontinuité des propriétés. Il est alors possible
d’introduire des exposants critiques permettant de décrire I’évolution des propriétés au voisinnage de la
température de transition (T;) : X o« (T'—T.)“. L’ensemble de ces exposants définie la classe d’universalité
de la transition.

Généralement une transition de phase s’accompagne d’une rupture de symétrie. Landau introduit alors
une variable supplémentaire permettant de tenir compte de cette rupture : le parameétre d’ordre.

A titre d’exemple on peut citer
(i) transition liquide/solide ¥ = densité
(i) transition ferro/para ¥ = M, (aimantation spontanée)
(iii) alliage équiatomique AB cristalisant en structure cubique centrée
on note C' la concentration de A aux sommets des cubes (position «) (resp. C'%)
on note sz la concentration de A au centre des cubes (position ) (resp. Cg)

on peut noter C§ = 5% (= Cg) et respectivement C} = B (=Cp): ¥ = Cﬁ - Cq
U représente alors 'ordre chimique i.e. si ¥ = 0 les éléments A et B sont aléatoire en site « et 5 (sommets

et centres) et si U = 1 Palliage est parfaitement ordonné avec A en position « et B en position [.

Il s’agit donc de définir un parametre d’ordre ¥ pour la transition normal/supra. On le supposera nul
dans I'état normal et # 0 dans la phase supraconductrice.

remarque Cette transition est du second ordre (en champ nul) et le parameétre d’ordre s’annule alors
de facon continue. Dans ce type de transition il n’y a pas de ”séparation de phase” type surfusion mais
les fluctuations spatiales et temporelles peuvent étre grandes au voisinage de T,

Dans le cas de la transition supraconductrice Landau défini un parametre d’ordre complexe :

U = |Ule? avec | V| = \/ns

Laudau — développement de 1’énergie libre en :

f(0) = fo+ a. V% + 13.9% avec a = a(T — T,)

Remarque : les termes impaires ne sont prsents que pour une

—> transition du 1°" ordre
| v Pour tenir compte des fluctuations spatiales du parametre
Weq0 d’ordre on introduit un terme supplémentaire : ~.[V¥]?

en M.Q. V¥ = %p.\II, p = opérateur impulsion. Ce terme

correspond en fait 1’énergie cinétique des ”paires” supracon-
— n?

ductrices (la notion de paire sera définie plus tard) : v = 5.

Enfin en présence d’un champ magnétique il faut :

(i) tenir compte de I’énergie magnétique % (matiere 4 solénoide)

(ii) remplacer %6 par %6 — qff (charge -q), d’ou :



— fo=fn+a|P*+ ﬂ|\11|4 + —|fv\1/ — AT + 2% maticre + solénoide

[

Enfin comme les variables du systéme sont T et H (et non pas S et B), on passe & 'enthalpie libre

g=I-BH et g, :fn+["']+oet Gn = [n— M

remarque : pour la matiere seule on doit retrancher 1’énergie du solénoide "DH et g = f— puoHm, on

trouve donc g5 = fn, + [...] + “OTHQ et g, = fn soit le méme Ag.

En minimisant [ [ [ 5g(¥(r))d3r on trouve [apres un long calcul...] :

olume

U+ BUW)? + LBV — gAY =0

J= ’2%1[\1/6\11* — VY] — %’LT|\I!|2 Eq. Ginzburg-Landau
champ nul on considere une interface plane : ¥(z) et en ’absence de courant (J = 0) [¥VI*—T*VU] =
0 donc ¥ est réel. On pose y = Ta] 5. La premiere équation de GL s’écrit alors : ¥ + 5\11 - Qf:a ‘éi‘g =0

: 2 g2 1
ie. %‘ald—;g +y(1 —y?) =0. Soit y = th(f) avec | £2 = ZTZ\al .

eTD 1

Exercice (extrait partiel 2006)

1) On suppose que la densité de paires est uniforme et on note W=|¥ |eie“). Que deviennent les
équations (GL1) et (GL2) dans ce cas. On rappelle que dans la jauge de London : FV—qA]:w A

2) On suppose que le supraconducteur est parcouru par un courant J, soit v, la vitesse correspondante
. - . .
des paires supraconductrices. Montrer que : Bl +Jmv? =0

3) On note |W..|=-a/f et y=|W|/|¥.. |, montrer que : ,_ 7% Ay
g’

4) Quelle est la signification physique de A (profondeur de pénétration) et § (longueur de cohérence).

5) Tracer J(y) et en déduire la valeur J, maximale pouvant circuler dans le matériau.

densité uniforme de paires : |¥| = cte; U = |¥[e??(") — V¥ = iVOP. Les équations de GL deviennent

1/2’mv§
—
1 -
a\If+ﬂ\I/\\I/|2+%[hV6—qA] -0 GL1
J =L |0 [hV6 — qA] GL2

mug

— -,

Cette deuxiéme équation est & comparé a : J = %(VX — A) (modele de London). GL donne donc que

10



X = %9, un changement de Jauge est donc équivalent & un changement de phase de la fonction d’onde.
Au coeur du matériau, vs = 0 a + 3|V |? = 0 soit |V |? = —§ = ns = ooz soit | § = %(E;‘LLEQ)Q
L
2 H?
ot (gs — 9n)(0) = Al Voo |? + 5| Woo[* = —§5 = —107%=
I _ R _ P _h
d’ou H.= Tom0dios = Invamiin avec g = .

état mixte : Nous avons vu que dans les supraconducteurs dits de type 11, il est énergétiquement
favorable de créer un vortex pour H > H* (voir si dessous pour la définition précise de Hx* appelé H.1).
En effet, en présence d’un champ extérieur le supraconducteur ”crée” un courant (~ H/Ap) permettant
d’écranter le champ extérieur mais .JJ ne peut pas excéder J. et au dela de H.q le supraconducteur ”autorise”
la pénétration partielle de B sous la forme de tubes de flux entourés de courants (assurant I’écrantage de
B en dehors du tube) appelés VORTEX. Il y a donc coexistence des phases supraconductrice et normale,
cet état est appelé état mixte. Comme @ s’annule au centre du vortex, la taille de son coeur normal ~ 2
(pour minimiser le coiit en énergie de condensation) le coeur doit minimiser sa taille (phase normal) alors
que sa ”taille magnétique” est ~ 2Ap.

D00GOH®

H croissant
H < H., le courant d’écrantage H > H., J = J. Le nombre de vortex augmente jusqu’'a
(o< H) assure lexpulsion de B nucléation de vortex occuper tout 'espace (H.2)

La prédiction théorique des vortex a été faite par A.A.Abrikosov en 1957 - 1°"¢ preuve expérimentale :
U.Essmann (1967).

décoration Bitter

(pulvérisation de poudre magnétique 3 S

sur la surface) - Pb : 1.1K - 195G. — NbSe, - 4K - 36G
Aujourd’hui plusieurs autres techniques permettent de ”visualiser” les vortex :

11



Mesures magnétiques
Microscopie a :
- force magnétique

Technique - sonde de Hall Spectroscopie tunnel | Diffraction de neutrons
- microSQUID
- Lorentz
- magnéto-optique
sensible a AL & structure
gamme de champ qqG —~ 100G qql00G — qql000G qql00G — qqT

distance intervortex qql00A

qql0A - 1004

remarque des inclusions de phase normale au sein de la matrice supraconductrice peuvent apparaitre

méme dans les supraconducteurs de type I (état intermédiaire) mais elles sont liées

aux effets ”dé” magnétisants

(effet géométriques). H = H, + Hy et Hy= —NM, M = —H — H = 2+ > H,

1-N

pour les échantillons de forme elliptique la condition H = H,
est remplie simultanement en tout point de la surface mais ceci
n’est pas vrai pour un échantillon de forme quelconque (pour

HdI

lequel M n’est plus uniforme) — cette condition est alors rem-
plie localement induisant en cet endroit la formation de phase

\

normale mais de taille > taille des vortex des supraconducteurs
de type II (de Tordre de qq 10 — 1004).

Quantification du flux

h

C qu’une seul avec n=2

La quantification du flux implique que le nombre de vortex augmente avec H

12

Y

sur un contour fermé A0 = 2nm = §, - Jdl + §., “Aq

h

loin du coeur J =0, 2n7 = ¢, A g = [ [sBdS =1d
d = ndjy avec Py = %, en fait on peut montrer que n =1
il est énergétiquement plus favorable de créer deux vortex avec n=1

on mesure ®g = 2.107T'm? soit ¢ = 2e : paire...

: B.S = n® soit n/S =




B/® = a/a3 ol ag est la distance inter-vortex et « est coefficient numérique dépendant de la symétrie
du réseau de vortex. Généralement les réseau de vortex est hexagonal (le réseau carré a une énergie tres
légerement supérieure et peut exister dans certains composés) et o = 2/v/3. La supraconductivité est
totalement détruite lorsque les vortex finissent par occuper tout I’échantillon (ag ~ 2£) et on peut estimer

P
BCQ ~J ﬁ

On peut calculer la valeur exacte & partir du modele de GL. Pres de Hyo |¥|? ~ 0, on peut donc
négliger le terme en SVU|U|% et — a¥ + ﬁ[%v — gA]?V = 0. GL est donc équivalent & I'équation de
Schroedinger d’une particule dans un champ magnétique — solution = NIVEAUX DE LANDAU (—«a = E)

0 0 212,.2 2

2 iohBa q"B°x h

B=po| 0 |, A=po| He |, —|-fA0 - WlBrdb o = T
H 0 — ,

%kxz E

On cherche les solution sous la forme ¥ = €@ p(x) (en négligeant les variations le long de B), on
trouve apres avoir effectué le changement de variable X = = + ;—g S ¢"(X) + 1kX?p(X) = Ep avec

2m

k=2L1(ZEY = /E et B, =(n+1/2)hw = (n+1/2) 2R°B 22;2. Le champ maximal admettant

m Dy m®g

une solution non nulle est donc | By = % =V2kH.|(n=0).

remarque: Ce calcul est un calcul de nucléation d’une
phase supraconductrice au sein d’une matrice nor-
male sous champ fort, il reste valable dans le cas des
supraconducteurs de type I (pour H décroissant) mais
comme dans ce cas k < 1/\/5, H. < H. — appari-
tion d’un hysteresis.

mais quelle est la valeur de H.; ?

en l'absence de vortex gs = fn + U + 18|¥s|* (B=10,J =0)

en présence de vortex  ¢¥ = f, + V| + 18|V[* — HB + % + o= |2VT — gAT?
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énergie du vortex = condensation du 4

énergie de

coeur

+

énergie pour amener

le vortex a I'infini

énergie pour amener

le vortex a l'infini

1 1
0G/L=[ [ +al¥sl® + 55|Wscl* — a¥[* = S 50|

énergie de condensation du coeur

dgc

[ [dgcds ~ “OTH?W£2 : négligeable

Il y a apparition du premier vortex lorsque § [ [ dgsds = 0 soit

—HB

+|||+
énergie énergie
g + cinétique
magnetique des paires
B? 1 A
— +—[=V¥ -~
2  2m i

qAV|?)ds

formation du vortex a oo

champ au coeur

+courant d’écrantage

- (B? + M (rotB)?)

2p0

—®oH [ [[..)ds ~

4o,

Hcl =

w2 (A e+ cME) ]
——

= 1.69
~0.5+ 556 58

la présence de £ dans €; peut paraitre étonnant mais traduit la ”coupure” de la divergence de B dans

le coeur du vortex :

saturation
symétrie cylindrique

— B(r) =C(1— (r/£)?)

$q
2ﬂAi

— B(r) =

Ko(r/N)

r<é
r>¢&

Quel est alors le champ magnétique (Bynq.) au centre du vortex ?

Bmax A

Bmax A
B

cl

champ faible
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Combien de vortex pénetrent & H.; 7

si un vortex est stable, pourquoi n’en crée-t-on pas 2,3,.... 7
— il faut tenir compte de l'interaction vortex-vortex
— on remplace B par % Z K0(|7" —rjl/AL) 55 A n
et (5G/L [nel — ’I’LH(I)O + 471'/»00)\2 2]730 Ko( ( )//\L)]
avec €1 = PoH.q

Le nombre de vortex est celui qui minimise 6G/L
avec interaction

65G/8n|n npq =0 sans interaction\\
— H = Ha + " Trpoxy 2og0(Bo(di(n)/AL) + (ds/Ar) Ki(d;/AL)/2) Pt
(car d < 1/4/n)

e Pour H ~ H,; seules les interactions entre premiers voisins sont importantes (|r —r;| >> Ar)

1°"voisins
= wd . -
—|H—Hg = 2;;7&% X z X (E)e_d/)w oud= 7an)
—
Ko(d/AL)
1
d(H) _ Poz
et | 3 = Wlgsz iyl [t 5inlgin(-)l
—

negligeable

avec B = "30 = 5;‘;2 et z = 6 pour le réseau hexagonal (le plus stable).

OnaM=DB/u—H="2%2_H

Spo

e limite de London £ << d << A, — variation lente de B (on néglige toujours la contribution de coeur).
Y Ko— 5 [ [ Ko(r/AL)d*r

— 895 = ("5")(Ha —H)+("§°)2 LKy (1) avee 1 =1/ /TR soit pio(H — Her) = Bluky (1) + 14 Ko(w)]
et finalement on trouve M ~ —SMO)\% In(0.36/h).

e A haut champ (typiquement pour H > H.2/3), les coeurs finissent par se superposer et B ~ puoH —
p— 4 7’ . .
MO% (soit M = (QKQ =V ,6’) ou = <<\§’2>>2 ~ 1.1 (régime d’Abrikosov).

remarque : la détermination de H.; est tres délicate du fait des effets ”démagnétisants”. Pour une

. — . H. H?
ellipse H = Hy — N.M;puoM = Egtgfle A — QU — 1/N|g—per mais [,' MdH, = —5=

indépendament de N.

15



cl

Cylindre L>>R

Meissner London Abrikosov ?

Film t<<R Sphere

Cascade de vortex dM/dH— pente 1/(1-N) pente 1/N

La transition & H.o est du second ordre (au sens d’Ehrenfest : les dérivées seconde de g5 sont discon-
tinues) : changement de pente de la courbe d’aimantation (M « —dg/0H) et saut de la chaleur spécifique
(Cp =TOS/OT = —Td*g/dT?). Par contre, tout comme la transition & H,. dans les type I, la transition
a H.y est du premier ordre mais ”faiblement” : il y a un saut d’aimantation mais correspondant a.... 1

vortex : AM = 5?;0’ un pic est visible (théoriquement car difficile & observer) dans C.
Pic de C : H 4

Supraconducteur de type I :

H 4 ct Sautde C:Hg, Le long de la ligne de transition

H dgn = dgs

@ / soit : —SydT + 0 = —SgdT + poH.dH,
— (sn — Ssg|H:Hc = —poHcdH./dT

Het ef 6\0 - T(aiT)HZ%CH 2 9%H

N d’ou 6C = _MOT[(aéTi) + He(%7°)]
. . . (SC'|T=Tc = _,UOTC( aTC)2|T=Tc
T, T i T
e TD 2

Exercice (extrait partiel 2006)

On s’intéresse au champ critique du plaque mince d’épaisseur d << &, A. On applique a ’aide
d’une bobine un champ magnétique H, (// Ox) parallélement a la surface de la plaque.
1) Justifier que la densité d’enthalpie libre du systeme « supraconducteur + bobine » s’écrit :

2 1 a1 : B
= — —I|qA —-HB
g =gy +aly] + S Bl + -y =
2) Que peut-on dire de la variation spatiale de B a I’intérieur de la plaque. En déduire une forme
approchée de B et I’expression correspondante du potentiel vecteur A.

di2

3) En déduire une expression de 1’enthalpie libre par unité de surface du systtme : G, = f 2.(2)dz
B

2 L
donner la valeur de ‘1/}‘ permettant de minimiser G; (on note |¥.. |=-a/p).

4) En déduire I’existence d’un champ critique H.*, comparer cette valeur au champ critique (H.) d’une
plaque épaisse.

16



Effet JOSEPHSON

Systemes couplés en mécanique quantique : Er K . Gy =ih2 Gy
K FE, Co

avec F; =< q)i|H|(I)i > K=< ‘I)Z"H|¢j >et @ =C1D; + CyPs.
par analogie, pour deux supraconducteurs couplés, potentiel j:% :

@ K Ui\ _0 (W
K =97 )\ Ty ) 0 0y

avec U; = /mei et nq + 1y =0 (conservation du nombre de particules).

<

{ LU+ KUy = ih 2 v;
S, ‘\ Sz K.Y, — %\DQ = ihagéz - \113 -

en égalant les parties imaginaires : n; = % ninasin(f; — 62)

en égalant les partie réelles : 6, = % %008(92 —61) — %.

\
|

Pour deux supras identiques, le transfert de charge est faible (nq ~ ns): AG ~ % et I1_,o x 11

soit | [ = Iosin(qTVt + Abp) | : courant fréquence : 3.10°Hz/uV.

En fait, une jonction Josephson réelle n’est pas qu’'une source de x
courant mais une représentation réaliste d’une jonction supraconduc-

trice est donnée par la figure ci-contre.

I = IysinA0+V/R+CV ie. (Ch/q)A = [I —IysinAb)— (h/qR)Af
(h/qR)Af sont donc des ”pertes par frottement” et [I—IysinAf] cor- | |C
respond & une force dérivant du potentiel : U = —[IAf — IpcosAf] '

|

Pour I < Iy, la ”particule” se piege dans un des puit et seul un courant supraconducteur (V = 0) peut
circuler (I = IpsinAf). Pour I > I : la "particule” se dépiege et 6 croit; il y a conduction d’électrons
normaux (— V = RI) + composante HF (e supraconducteurs) qui se moyenne & zéro (& bnoter le retour
hystérétique, la particule se piege dans un puit différent).

AU

17



en présence d’une irradiation RF de fréquence w, effet de ”syn-
chronisation” du courant supraconducteur a la fréquence w :
apparition d’une tension V,, = n%" amortie par C : marches de
Shapiro.

remarque définition métrologique du volt : tension au borne
d’une jonction Josephson en présence d’une irradiation ra-

diofréquence de 483597.9 GHz

Soit une boucle d’un matériau supraconducteur comprenant une jonction ; °

Af =275 = %/Jduq% X 21 + 66,00 — i = igsin(2n(s — L))

-ig

i

negligeable

s=0 s=1 =2

i,

12 1 3/2 2

Les SQUID (Superconducting QUantum Interference Device) sont alors constitués de 2 jonctions iden-

tiques et 66, = 06, =[7](s — (}%)

I/2+i
La présence d'un champ B rompt la symétrie et "
801 = 00 + av, 505 = 60 — v, '.
1/271 :zosm(éﬁl) et I/2+Z :Z()SZTL(592) @B
soit I = 2igcos(m(s — (}%))sina = Ipax sina

1/2-i

o

— on mesure ’évolution du courant max pouvant circuler dans ma
le squid.en fonction du flux appliqué
Mesure de treés grande précision du flux (donc de Paimantation)

18



eTD 3

Exercice (extrait partiel 2007)

1) On place un cylindre supraconducteur creux d’épaisseur d et de rayon r (d<< A << r) dans
un champ magnétique B parallele a son axe. Montrer que le cylindre est parcouru par un

courant de vitesse : /] [0
vo=—(s-—)
S oorm D,

ou s est un entier et ® le flux traversant le cylindre (on donnera la signification de @)

2) Que devient cette vitesse si le cylindre est « coupé » par une partie non

supraconductrice. Tracer v, en fonction de B dans les deux cas ?.

2 1
3) On se place dans le cas 1, montrer que : @+ B[] +Emvf =0

4) Montrer que |¥|* s’annule pour une valeur critique de la température :

ou T, est la température critique en champ nulle et 1/£*=1/&,*(1-T/T,)

2
§ @ )]
r

@,

T2=T([1—

5) La figure ci-contre représente la dépendance en champ gmg T=1.05K l al s
de la chaleur spécifique obtenu 1.05K (a) et 1.00K (b) dans B AG |ow=
un anneau cylindrique d’aluminium (effet Little-Parks). Lo 1 ke}
p . o S s T 8C s
Donner une valeur approchée de la température critique de g &
I’aluminium. 3 | T= 100K l bles
Chy "B
) o ) ) 8 1353] AC O
6) Expliquer ’origine des oscillations (8C) et du saut Susa Tac b
prinCiPal (AC) “5'26. )é T4 6 B 10 12 14 16 18 20 22 24
£ o Magnetic field H, mT ]
7) La transformé de Fourier de la courbe (b) est représentée ,E 12l ¢
en Figure (c). Interpréter le résultat obtenu, en déduire la g 8 T=100K
valeur du rayon r. o4 !
g 4
B % i 3 a4
- H1, (mT)"
Etat Mixte
e interaction vortex-vortex (par unité de longueur) : S
_e _ _ %
Wiz = 22B(r) = ST Ko(r/AL) O ]
- = 32 - Log(r/€&) sir < A — | L
F12 = —VW12 = ﬁKl(T‘/AL)UT = . ’
HoAL exp(-r/A) sit > A.
= q)otfl X Z /
attention ceci est la force exercée par un courant (J1) sur une |
ligne de champ (2) alors que la force de Laplace est au contraire u

la champ exercée par un champ sur une ligne de courant.
— formation d’un réseau triangulaire.
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remarque Sous 'action d’un courant J, le réseau de vortex ”glisse” perpendiculairement a J générant

un champ électrique E = ¥ x B donnant lieu A une résistance électrique non négligeable : R = R, X Hiz
(résistance de Bardeen-Stephens, R,, est la résistance de 1’état normal). Pour éviter cette dissipation il
est nécessaire de piéger les vortex.

Elasticité vs désordre Si les interaction vortex-vortex devrait conduire a I'existence dun réseau
de vortex, la présence de défauts aura, au contraire, tendance a détruire 'ordre a longue portée. Il n’est
alors pas évident de ”devinner” quel sera la structure des vortex dans un échantillon réel. Pour cela il est
important de connaitre les énergies mises en jeu.

e Le réseau possede une élasticité et on peut définir une énergie associée a toute déformation du réseau
: B =5 [(Vu)?d?r ou u est le déplacement de la ligne de flux / sa position ”idéale”
— C;; constante élastique/unité de longueur :
C11  : compression ~ B?/ug
Cya . torsion ~ B?/ug
Ces : cisaillement ~ B®q/(16mpoA%)

e interaction vortex / défauts : tout défaut topologique ou chimique ”affaiblissant” la supraconductivité
constitue un centre de piegeage pour les vortex car I’énergie de condensation associée a la formation du
coeur normal y est plus faible : Eges = [V(r)p(r)d?r ot V est le potentiel de piegeage (on suppose ici
que l'on est en présence d'un grand nombre de défauts en interaction faible avec les vortex) et p est la
densité de vortex : p =", 8(r — RY — u;) (out RY serait la position “idéale” du vortex).

La

En introduisant un champ de déformation ¢(r,z) = r — u(r, z), la densité peut s’écrire sous la forme :
p = po[l + Oatia + 3 5o exp(iK¢)] 1. Le second terme correspond aux lentes fluctuations de la densité
(K ~ 0) et on peut montrer qu’il ne joue un réle que pour d < 2. Le dernier terme a été introduit pour
tenir compte des fluctuations & courte distance liées a la présence d’'un grand nombre d’impuretés (plus
courte que la distance inter-vortex, ce terme n’existe pas dans le cas des cristaux atomiques). Les lignes
de champs cherchent & ”optimiser” leur position au sein du potentiel associé a la distribution aléatoire
des défauts + énergie élastique. Petit a petit elles s’écartent de leur position idéale : existe-t-il un taille
caractéristique (R,) pour laquelle u ~ ag (pas du réseau).

IT.Giamarchi and P.Le Doussal, Phys. Rev. B, 52, 1242 (1995).
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Une analyse dimensionelle (pour d=3) permet d’écrire: F; ~ %(1‘%—0)2]%2 alors que le terme de désordre

(dernier terme) varie comme Eges ~ V%\/Rg (en introduisant pg = 1/a3, la racine carrée est liée a la

moyenne statistique sur le désordre aléatoire)

/ C%ad
En égalant ces deux terme on trouve que | Ry ~ =72 |

Que se passe-t-il pour r > R, 7 — le réseau se brise-t-il en cristallites ?

Pour quantifier le désordre, on défini : A(r) = < |u(r) — u(0)|% >

(< ... > : moyenne sur les fluctuations thermiques, — : moyenne sur le désordre). Le calcul de A (i.e.
de u(r)) est un calcul trés complexe notamment du fait qu'’il existe des fluctuations de la densité a des
échelles plus petites que le pas du réseau (la densité des défauts est trés largement supérieure a celle des
vortex). Ce calcul admet néanmoins une solution exacte pour les petites valeurs de R (due & Larkin)
pour lesquelles on peut écrire Eges = [ f(r)u(r)d?r, on montre alors que, en dimension d, A(r) oc r*=¢
pour r < R, (avec u(R.) = §). Pour R. < r < R, u continue a croitre de facon algébrique mais avec un
exposant différent : A(r) oc 72 mais pour r > R, : A(r) o logr : accroissement extrémement lent du

désordre.

T.Giamarchi et P.Le Doussal ont montré qu’il existe une nouvelle STRUCTURE DE LA MATIERE,
baptisée VERRE DE BRAGG intermédiaire entre le cristal parfait et le systeme désordonnée. Cette phase
est caractérisée par :

e Un ordre & longue distance ”presque parfait” : caractérisé par des pics de diffraction (divergence
en loi de puissance pour ¢ = K). Le facteur de diffraction S(q) est la TF de la fonction de la fonction
de corrélation C(r) = exp(—K?A(r)/2). Dans le cas d’un ordre parfait C(r) = 1 [ou exp(—KZI2./2) en
présence de fluctuations thermiques| et S(q) = d(q—Kp) alors que dans le cas d’un systeme désordonné C(r)
décroit exponentiellement (sur une distance L) conduisant & un élargissement de S(g) (avec une largeur
A mi-hauteur ~ 1/L). Dans le cas du verre de Bragg C(r) o« 1/r" (avec n ~ 1) et S(q) ~ 1/(q — Ko)?.
En fait, on peut montrer que dans une expérience de diffraction la largeur & mi-hauteur des pics est fixée
par la résolution de I'instrument alors que leur hauteur est directement proportionnelle & R,. Comme R,
décroit avec B, les pics s’effondrent sans élargissement (I'intensité passe dans les ailes du pic).

S(a)
A
C(r) cristal parfait
1
1— e-K02|T2/2
Fluctuations Thermiques

L Verre de Bragg

” A

systeme désordonné r Ko q
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e L’absence de défauts topologiques (pas de dislocations)
e Des propriétés dynamiques vitreuses.

ce probleme est caractéristique d’'un grand nombre de systemes tels : les cristaux électroniques, les
billes chargées, les ondes de densité de charges et donc les vortex dans les supraconducteurs..... mais cela
nécessite une double interaction : particule-particule (élasticité) et particule-désordre et donc l'existence
de 2 échelles de longueur et ce concept ne s’applique donc pas aux cristaux atomiques.

Influence du champ magnétique, ”fusion” du verre de Bragg : L’augmentation de la con-

stante élastique avec B (rigidification du "réseau” du fait de la décroissance de la distance inter-vortex)
étant plus faible que 1/ag, R, diminue avec B (typiquement comme 1/B? dans un modele simple : le
désordre effectif croit abec B)) et lorsque R, ~ 20ag : A(ag) ~ c2a3 avec ¢y, ~ 0.2, le réseau devient
instable et des dislocations proliferent dans le solide de vortex.
Phénomene identique a la FUSION mais induite par H et non pas T : transition ORDRE-DESORDRE
(ler ordre) entre le verre de Bragg et un ”verre de vortex” (lignes enchevétrées). La fusion est également
possible si E. ~ kT (les fluctuations thermique conduisent & une valeur de u?, ~ T/c et Tp,/c ~ c}ad).
On obtient donc plusieurs phases de vortex possible selon la valeur de T et/ou H.

saut Brutal de la résistance électrique

saut de Chaleur spécifique
(YBCO seulement)

1.65

o
el

C(H) / T (.mol 'K ?)

IS
&

saut de I'aimantation (BSCCO seulement)
+

. . .
70 80 90
Température (K)

Disparition des pics de diffractions de neutrons

Remarque 1 : Dans la majorité des cas R, >> taille du systéme et la ”signature” du verre de Bragg
ne peut pas étre observée, il a fallut attendre la découverte des oxydes ayant un fort caractére 2D (donc
un C treés faible mais aussi une forte 7. et donc des fluctuations thermiques, kT, fortes) pour mettre en
évidence l'existence de ces nouvelles phases de vortex.

Remarque 2 : Le mouvement des vortex dans la phase liquide conduit & une forte dissipation (R # 0) et

il est tres difficile de différencier le liquide de vortex de I’état normal, la ligne H.s - si elle existe toujours...
- devient alors tres difficile & mesurer (la ligne H.; n’a pas été représentée par simplicité).
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Piégeage des vortex, courant critique : On s’intéressera ici uniquement au piegeage d’un vortex
par un grand nombre de défauts (de densité n) mais ne pouvant pas pieger individuellement un vortex
(piegeage collectif faible). On suppose que le rayon d’action d’un piege est ~ £ On note f, la force
excercée par un défaut. L’énergie (par unité de longueur) associée au piegeage par les défauts est alors
Eges/L =~ fp\/ﬁ ¢/L (le gain est proportionnel & la racine carrée du nombre de défauts N = n&?L
rencontré par la ligne, statistique de type "marche aléatoire”). Mais ces déformations (de 'ordre de &)

ont un coiit en énergie élastique : E.;/L ~ €y(£/L)? olt ¢ est la "tension de ligne” que 1'on a déja ren-
_ _ %
T AmpoA: T

contré lors du calcul de H.y (ordre de grandeurs, on peut ”oublier” le terme en Ln(x)+c(k)) : €o

On obtient une longueur optimale permettant d’obtenir le gain Eg4.s/L maximal sans exéder E.;/L :

L.~ (ﬁ)l/?’ ou v = f2n&? (pour laquelle Eges ~ Eep).

On défini ainsi une énergie U, = E(L = L) (= Eges(L = L)) ~ (yeo€*)/3.

En présence d’une densité de courant J, il s’exerce une force de Lorentz sur la ligne Fp = J®yL,
(JLcLy X Ly x B et BLyL, = ®) et le gain énergétique associé a un déplacement de I'ordre de £ (rayon
d’action des défauts) est donc Ep ~ J®oL.£. Si Ep > E. le vortex se ”dépiege” et on obtient donc une
densité de courant critique pouvant circuler sans déplacement des vortex :

Jo = 5% X (L%)2 ou Jy = @5—& est le courant maximal pouvant étre appliqué sans destruction des paires.

e TD 4

On se place dans le cadre du modele de « piégeage collectif ». On
néglige les interactions entre vortex (champ faible). Chaque vortex est
alors piégé « collectivement » par les défauts présents dans le matériau.
Le vortex (de direction moyenne Oz) se déforme pour adopter une
configuration lui permettant de minimiser son énergie totale (U,). On
note u’(r) le déplacement quadratique moyen d’un vortex a 1’abscisse r
(=L,) par rapport a sa position « idéale » (i.e. en I’absence de défauts)

1) Quelles sont les deux (principales) énergies entrant en compte dans le
calcul de U, en I’absence de courant. On peut montrer que u*(r)=Ex(r/L)*
ou & est la longueur de cohérence et T est un exposant caractéristique du
régime de piégeage considéré (1/2 < T< 1). Quelle est la signification
physique de L.

L’énergie de piégeage du vortex s’écrit alors ex(r)=U, (r/L.)*".

2) En appliquant la force de Lorentz associée a une densité de courant J sur
un « cube » (L,L,L,, voir figure ci-contre) montrer que 1’énergie de Lorentz
associée 2 un déplacement u est de I’ordre de &, =JO L ET/L,)*".

4) Tracer schématiquement 1’évolution de e=ge,-¢_ en fonction de r pour
différentes valeurs de J (J ~0,J < J.etJ >J. ou J, est le courant au dela
duquel le vortex est dépiégé). En déduire que, pour J<J, il existe une longueur « optimale » (L)
permettant de piéger des segments de vortex et donner la valeur de &(r=L,,.J) correspondante.
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Remarque 1 : Le mouvement des vortex pour J > J,. conduit
a lapparition d’un champ électrique E = v x B et donc
a de la DISSIPATION (E.J), on perd lintérét premier du
supraconducteur (R # 0).

Pour T > 0, le dépiegeage des vortex est thermiquement possi-
ble méme si J < J,., on peut montrer que 1’énergie de piegeage
dépend du courant : U(J) ~ U((J./J)* — 1), la vitesse TS0
de déplacement est alors v o exp(—U(J)/kT) et le champ

électrique correspondant E(J) = v x B « exp(=U(J)/kT). Ce :
déplacement est appelé FLUAGE. Je J

Remarque 2 : Il est également possible d’avoir des centres de piegeage ”fort” : macles, fissures, agrégats
non supraconducteurs, défauts colonnaires introduits artificiellement par irradiation aux ions lourds,....

Remarque 3 : Pour les fortes valeurs de H, on doit tenir compte de l'interaction entre les vortex dans le
calcul de U, (on remplace €y car Cy;) mais le raisonnemant est similaire.

Remarque 4 : Les lignes telles les parois de domaines magnétiques, les fronts de mouillage ou de feux de
foréts, les lignes de fracture et/ou les dislocations.... relévent de la méme problématique.

Comment mesure-t-on expérimentalement J, 7

—: mesure d’aimantation. En effet, & aimantation dite réversible (voir chapitre précédent) s’ajoute
une contribution irréversible liée a la distribution inhomogene des vortex : lorsqu’on augmente H des
vortex se créent a la périphérie mais ces vortex ne peuvent pas gagner le centre de 1’échantillon car ils
restent piégés par les défauts présents prés des bords (on néglige ici les effet géométriques) : il apparat
donc un gradient de champ magnétique (du fait de la plus forte densité de vortex pres des bords) liée au
courant critique par 1’équation de Maxwell rotB = MOJ et donc une aimantation (irreversible) associée
M= #1 J Bdxz — H. Cette contribution est en effet irreversible car les vortex restent piégés au centre
lorsque B décroit et la distribution de B est différente pour B croissant et décroissant.

L’évolution de cette composant de M en fonction du champ appliquée est représentée ci-dessous (la
composante réversible n’est pas représentée). Pour un échantillon infini, rotB ~ 0B/0x = ugd. et en
champ croissant B décroit donc ~ linéairement avec x (a) (voir aussi examen ci-dessous). L’aimantation
(irréversible) diminue jusqu'a ce que le front arrive au centre de ’échantillon (b) puis reste constante (si
Je ne dépend pas de B) ~ —J.d/2 (c) olt d est le rayon de 'échantillon). Lorsque ’on décroit le champ, le
profil de B s’inverse (d)(les vortex pres des bords quittent ’échantillon) et aimantation augmente jusqu’a
atteindre +J.d/2 (e). Il reste donc une aimantation positive (vortex piégés) dans I’échantillon méme pour
H, = 0. Remarque : Pour T" > 0, la largeur du cycle n’est pas exactement déterminée par J. mais le
courant induit J défini par la relation E(J) et I’équation de Maxwell E/d ~ 0B/0t.
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eTD 5

On mesure I’induction B a la surface d’un film mince de Nobium.

1) On fait varier progressivement le champ magnétique extérieur
woH, de 0 a ~ 0.02T puis de ~ 0.02T a 0. On mesure la distribution 0015 1 p
de B, présentée sur la figure ci-contre (en fonction du numéro de la : -
sonde) pour différentes valeurs de H, (appliqué perpendiculairement
au film). Discuter la forme des profils obtenus. Lors de quelle
séquence de champs (i.e. champ croissant ou décroissant) ces profils
ont-ils été réalisés ? Le Nobium est-il un supraconducteur de type I 0005
ou de type II (justifier votre réponse) ?

B(T)

2) Dessiner schématiquement les profils que 1’on aurait obtenu lors % 2 P 8 10
de l’autre séquence (pour quelques valeurs de H,).Dessiner

schématiquement quelques lignes de flux dans le film (en vue de profil) pour uoH, ~ 0.02T. Ce profil

de champ est associé a un courant critique J, supposé indépendant de B. Quelle relation lie J et B, en
déduire pourquoi le profil n’est pas parfaitement linéaire pour uoH, ~ 0.02T?

Eléments de théorie BCS (Bardeen - Cooper - Schrieffer, Prix Nobel 1972)

Si on note ®°** le potentiel extrieur, ®*°" celui des ions (nus) et ®* celui des électrons, le poten-
tiel total @ = &t 4 O 4 ® est relié & P par lintermédiaire d’'une constante diélectrique e :
Ot Je = (Pt L Pion) [l = (Pt 4 Pel) /€197 et € est donc égal A €l 4-¢?°" — 1. L’écrantage de la répulsion
Coulombienne & longue distance & I'intérieur du gaz électronique conduit a remplacer V (r) = e?/(4meqor)
par [e2/(4meor)]exp(—kor) soit V(q) o< 1/¢ par V(q) o 1/(q® + k2) et on a donc € = 1+ k3/q? (si
w << vpq, e (k,w) ~ e(k)). Par ailleurs la réponse des ions peut étre obtenue par analogie au mode de
vibration longitudinale d’un gaz électronique soumis & un champ extérieur : € =1 — Q2 /w? (ou Q,, est
la fréquence plasma des ions). On en déduit que :
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1 _ 1 % w?
€ 14+kZ/k? wzfQ%/eel

ou Qf,/eez = w(k) est la relation de dispersion des phonons. On remarque donc que si iw = €, — € <
hw(k — k'), € est négatif et l'interaction effective entre électrons devient donc ATTRACTIVE. C’est
ce ”"changement de signe” de la constante diélectrique qui est a la base de la supraconductivité. Seul
I'interaction entre électrons proches du niveau de Fermi est sensiblement affectée par les phonons et dans
le cas des supraconducteurs, 1’état k est couplée a un état —k par ce potentiel attracteur (noté ci dessous
-V) ?par I’échange d’un phonon” : on forme alors une PAIRE DE COOPER (q=2e).

Soit un Hamiltonien Hy dont les fonctions propres |n > et les valeurs propres F, sont connues. Soit
H = Hy+V, on note |a > les nouvelles fonctions d’ondes : >~ Co|n >,
<m|H|la >=CyEy, +3, Cy <m|V|n >= E.Cj, et les Cfy, sont donnés par :

Vu+E1—F Via Vis .. CcY 0
Vo1 Voo +Ey — E Vo3 .. cy | _| 0
Va1 Va2 - | Cs 0

On considere 4 états : [k >, | —k >, [k’ > et | — K’ > correspondant & 6 états a 2 particules |k, —k >,
|k, k' >, |k, —k' >.... Seuls |k, —k > (d’énergie 2¢) et k', —k’ > (d’énergie 2¢’) sont couplés (’énergie des
autres états n’est pas affectées par le coupage) et la matrice se réduit a :

2¢e -V — F 0 0 0 0 -V
0 e+e —F 0 0 0 0
0 0 e+e —F 0 0 0
0 0 0 e+e —F 0 0
0 0 0 0 et+e —F 0
-V 0 0 0 0 2 -V — F
2¢e -V - F -V

soit un bloc a diagonaliser. Cette diagonalisation conduit 2 états

-V 2 -V -F
(Ja > et |8 >) dont un a une énergie beaucoup plus basse (i.e. abaissé de A) que 2¢ (et 2¢’). Dans le
cas particulier ou € = €, |a >= 1/v2(|k, —k > +|k', K >) et |3 >= 1/V2(|k,~k > —|k,—k >) avec
B =2 — 2V et Eg = 2e.

Si on généralise a tous les état 0 < €, < hwp on a :

V(Cl —|—CQ—|-C3—|—) = 01(2E1 —E)
V(ICl+Cy+C3+....) = C3(2E;— E)

V(Ci+Co+Cs+....) = C3(2E3—E)

soit % = 2E;C%E avec B =2(Ep — A) et si on note ¢, = Ey, — Ep ~ h2k2/2m — Ep:

1 _ 1
vV = Zk 2(ex+A)
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On a donc v = g(Er) ep de 9(Ep)Ln(tse)

0 e+A
Systéme sans interaction Systéme avec interaction (A << th et g(EF) est la densité d’états de paires).
thI Dans le cas de la création de N paires, le calcul est plus
E: ) compliqué mais conduit également a I'existence d’un
A niveau a —A sous Er et a

Etat fortement lié V

| A(0) =2 x hwpeap(~1/Vg(Er)]

Lorsque T' # 0, les état € ont la probabilité f = d’étre occcupé par un électron célibataire,

1
ek/FT 41
la probabilité de pouvoir former la paire est alors 1 — 2fj, et % => ﬁ(l —2fk), en écrivant que A =0

pour T = T, on trouve kT, = 1.14hwpexp(1/(g(Er)V), soit ’2A(O) = 3.52kT,

o Ak = (Ok/OE)p=p, x A = P2 et AkAzr ~ 1 — Az =& = 132 |

& correspond a la distance moyenne entre deux électrons d’une paire mais attention le couplage a lieu dans
lespace réciproque (+k/-k). Un calcul exact donne & = TK . On remarquera que, contrairtement a GL,
la théorie BCS permet d’obtenir une expression de &.

e 2g(EF) x A électrons sont donc condensés dans I’état supraconducteur. Le gain moyen en énergie est
A/2 (le niveau de Fermi est donc abaisée de cette valeur) et I’énergie totale gagnée est donc g(Er)A% =
woHZ2L3 /2. Dans un modele d’électrons libres :

_ 3N
9(Ep) = 2FEn
Er - m;)F H.=Y6___% | t15s proche de I'expression GL : — 20
¢ = o T 2nV2p0 g | P P " 2mV2porcE
2 _ L3
AL - ;LTNq2
<28, Il apparait donc un gap dans le spectre des
excitations des quasiparticules (électrons non
appariés) dont la densité d’états devient :
= g(E) x E/VE? — A?
\ .

e LE CAS DE MgB,. MgB; a une structure hexagoonal identique a celle du graphite. Elle fait donc
intervenir des liaisons covalentes planaires (de type sp?, liaisons o) et des liaisons 3D (recouvrement radial
des orbiatales p., liaison ).
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orbitale o :
recouvrement de 2

bitales sp?
/p orbiTtale: p
sp?
W 4
\
5p/- = sp?

~ orbitales mr:
recouvrement de

2 orbitales p
O mg Lo
o B a

Dans le cas du graphite les liaisons o se situent treés en dessous du niveau de Fermi et assurent la
cohésion du cristal (systéme covalent), la conduction se fait via les liaisons 7, la particularité de MgBs est
liée & un transfert de charges due & I'intercalation des ions M ¢?*, la bande o se trouve alors partiellement
vidée et la conduction se fait désormais via les bandes m ET o, le couplage e-phonon de la bande o
est particulierement bon et de plus, de par le caratere 2D de cette bande, la densité d’états est forte
~ mL?/mh? malgré un taux de "dopage” faible : la T, est alors de l'ordre de ~ 40K. La bande m

conduit elle aussi a de la supraconductivité mais avec une 7, ~ 10K : DEUX SUPRACONDUCTEURS
COEXISTENT dans un méme matériau.

Graphite MgB,
5,0 |/ o] 5 IR
g 201 5 ‘8
= T i : : S S T 5
K 40, 3 : m ! ; :
1 o 3%, K}
-6.0] 2% A 33 60] i| Wi
-8.0 o %3’ J - % 8.0 LT P
r M K r A L T M K r A L

Ces deux nappes (voir surface de Fermi correspondante sur la figure ci-dessous, en rouge : les nappes
”tubulaire” associées a la bande o quasi-2D et en bleu le ”réseau” 3D associée a la bande ) conduisent
donc a l'existence de DEUX GAPS, qui ont été clairement mis en évidence par spectroscopie. Lorsque le
courant est injecté dans les plans ab les deux gaps sont visibles (courbes du haut) mais seul le petit gap

est lisible pour I//c (courbe du bas). Les deux bandes sont néanmoins (faiblement) couplés et il n’existe
qu’une seule Tt.
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On remarque donc que dans ce cas la valeur des gaps est diffrente de celle prédite par le modele BCS
: 2A1 4meV ~ 1.2kgT, et 2A5 15meV ~ 4.6kpT,

eTD 6

MgB, se caractérise avant tout par sa structure électronique particuliere. En effet deux bandes
participent a la supraconductivité et tout se passe alors comme si deux supraconducteurs
coexistent dans un méme matériau. On note &, A, m, et T, (resp. &,, A,, m, et T,) les
grandeurs caractéristiques du supraconducteur 1 (resp. du supraconducteur 2) et

. 1 1 B .
AF s’écrit alors : AF = al\lpl\z + az\wz\z + 551W1\4 + 5/32@2‘4 — YW, FPP,) +

1) Complétez les « ... » laissés libres dans I’écriture de AF ci-dessus. y est le parametre de
couplage entre les deux bandes, exprimez o, et f3; en fonction des grandeurs caractéristiques
des deux supraconducteurs.
Y| 1 4 1 4

+— + = + ..
Yl 5o

*
2

2) Montrez que AF peut s’écrire sous la forme AF =[y, ,]|M

ou M est une matrice 2x2 dont on précisera les coefficients. Par analogie avec la définition de
T.dans les systeme a 1 gap quelle sera la valeur de la température critique dans ce cas. Deux
valeurs sont possibles de T,, tracez leur évolution en fonction de y. En fait Les deux bandes
couplées ne présentent qu’une valeur commune de T, égale a la plus grande de ces deux
valeurs, le couplage est-il « intéressant » ou non ?

e La conduction sans perte est assurée par les paires de cooper condensées a Er mais il nous reste a
élucider un dernier point : POURQUOI R =07

Dans un métal normal sous 'action d’un champ électrique E, la sphére de Fermi se décale de 5k = Lt

|

mais la diffusion ”compense” I'action de E et on obtient un équilibre pour 6k = % = ‘f—{.

Dans le supraconducteur si k est diffusé en k + Edif, —k est alors diffusé en —k + Edif du fait du

couplage k /- k (voir exercice ci-dessous) et la vitesse de déplacement global de la sphére n’est donc PAS
AFFECTE PAR LA DIFFUSION : R=0.
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Exercice (extrait partiel 2006)

On note A le gap supraconducteur relié a la longueur de cohérence par
A = hv, /7§ . Une paire de Cooper est représentée par les cercles blancs sur
la figure ci-contre. En présence d’un courant J (selon 0x) la sphére de Fermi
est « décalée » de dk,<< kg. On s’intéresse a la diffusion vers « I’arriére » de
I’€électron « avant » de la paire (diffusion de 1 en 1°).

1) On note k; et k, les valeurs de k des deux électrons de la paire. Donner k, et k,
(avant la diffusion) en fonction de kg et dk,. Montrer que 1’énergie d’une paire de
Cooper est de I’ordre de 7%k;”/m-2A (au premier ordre en 8k /kg). que se passe-t-il
pour I’électron 2 lorsque 1 est diffusé en 1°, en déduire que I’énergie de la paire
n’est pas affectée par la diffusion.

2) On suppose maintenant que la paire est brisée par la diffusion 1 -> 1°. Quelles sont les nouvelles
valeurs de k; et k,. Quelle est alors la valeur de 1’énergie de la paire (on se limitera a un
développement limité au premier ordre en dk,/kg). En déduire la valeur maximale (J.) du courant
pouvant circuler dans le matériau. Conclusion.

3) Donner ’ordre de grandeur de J. (pour T ~ 0) pour un supraconducteur de & ~100A et A ~ 1000A.
Une mesure effectuée sous champ (H > H,,) montre que le matériau présente de la dissipation (i.e. une
résistance non nulle) pour J > 10° A/cm’. Pourquoi.

La diffusion ne brise pas la paire tant que hkﬁék reste inférieur a A soit pour une densité de courant
J < J. ~ngA/hkp ~ H./AL (en introduisant J = nqv = LY

m
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