
Cours de supraconductivité
M2-Physique

Introduction

o 1908 : Leiden, Hollande, Groupe de H.Onnes : liquéfaction de l’Hélium
→ comportement de la résistivité des métaux pour T → 0

o 1911 :

son étudiant (G.Holst) est chargé de mesurer le mercure (qui peut être obtenu dans un
état très pur) et remarque que la résistance disparâıt juste au-dessus de 4K (R=0).
Cette découverte est onfirmatée en 1912 dans l’étain (3.7K) puis le plomb (7.2K) :
Prix Nobel en 1913.

o 1933 :
Berlin , Meissner et Ochsenfeld mettent en vidence l’expulsion totale du champ
magnétique (B=0) : phénomène de lévitation.

o 1934 :
théorie électromagnétique : LONDON, basée sur les équations de Maxwell +
B=0/R=0, prédit l’existence d’une longueur de pénétration.

o 1950 :
théorie des transition de phases : GINZBURG-LANDAU, prédit l’existence dune
seconde échelle de longueur : longueur de cohérence → état mixte (Abrikosov).

o 1955 : théorie microscopique BCS : rôle des phonons.

Quelques applications :

- R=0 : lignes de transport, aimants supraconducteurs, limiteurs de courant ( fusibles )
- B=0 : blindages magnétiques, train à lévitation
- Cohérences : SQUID (mesure de M), détecteurs micro-ondes

Matériaux

? Corps purs (sauf Cu,...) : supraconducteurs de type I (sauf Nb, V, Tc), Tc ≤ 10K

? Alliages : A15 (β-tungsten) : A3B
- B sommet et centre du cube
- A par groupe de 2 sur les faces.

V3Al : 9.6K → Nb3Ge : 23.2K

1



? Phases de Laves (C15 : AB2) : ZrV2 : 9.6K.

? Phases de Chevrel MxMo6X8 X=S,Se,Te (chalcogenure), M=Sn,Pb,La : PbMo6S8 : 15K.

? Organiques (fortement bidimentionnels)
BEDT-TTF-Cu(CNS)2 ∼ 10K.

? Fullerenes, boules de carbone C60 aux sommets d’une
structure cubique, dopage en alcalin (interstitiels) :
A3C60 (Cs2Rb)C60 : 33K (1991) (voir aussi diamant
dopé ci-dessous).

? Oxydes : (Ba,La)2CuO4 : Bednorz/Muller 1986 (30K).
La1.85Sr0.15CuO4 : 40K,
YBa2Cu3O7−δ : 92K,
Bi2Sr2Ca2Cu3O10 : 110K,
et même Hg0.8Tl0.2Ba2Ca2Cu3O8.3 : 138K
Des traces de supraconductivité ont été reporté dans
(Sn1.0Pb0.5In0.5)Ba4Tm5Cu7O20 à.... 185K le 6 Mars 2008, ce qui
place cette Tc 1K au dessus de la température la plus basse relevée en
antartique (le 21 juillet 1983) : il s’agirait donc du premier supracon-
ducteur à température ambiante....
Tous ces systèmes ont une structure fortement lamellaire : plans CuO2

supraconducteurs + mécanisme non BCS (non encore déterminé).

! Phases de Laves (C15 : AB2) : ZrV2 : 9.6K. 

! Phases de Chevrel MxMo6X8 X=S,Se,Te (chalcogenure), 

M=Sn,Pb,La : PbMo6S8 : 15K. 

! Organiques  (fortements bidimentionnel) 

BEDT-TTF-Cu(CNS)2 : 10K. 

! Fullerenes, boules de carbone C60 au sommet d’une structure 

cubique, dopage en alcalin (interstitiels) : A3C60 

(Cs2Rb)C60 : 33K (1991). 

! Oxydes : (Ba,La)2CuO4 : Bednorz/Muller 1986 (30K). 

La1.85Sr0.15CuO4 : 40K, YBa2Cu3O7-d (92K), Bi2Sr2Ca2Cu3O10 (110K) 

et même Hg0.8Tl0.2Ba2Ca2Cu3O8.3 : 138K 

structure fortement lamellaire : plans CuO2 : supraconducteurs 

 mécanisme non BCS (non encore déterminé). 

mais aussi  (K,Ba)BiO3 : 32K – cubique,   

sommet Bi+octahedre O, centre du cube K,Ba 

! Fermions lourds : Ce ou Uranides (U,…), bande d très étroite fortement hybridée aux 

électrons de conductions (Pt, Be) : m*/m ~ 200, UBe3 : 8.8K. 

! MgB2 : plans hexagonaux B (de type graphite) : orbitales pz (!) et pxy : liaisons 

covalentes sp2 ("). dopage des liaisons " par Mg
2+

 (interplans) : ces laisons 

deviennent alors supraconductrices avec un excellent couplage e-phonons : Tc = 39K 

les liaisons ! sont elles aussi supraconductrices (mais avec Tc = 10K) : coexistence de 

2 supraconducteurs (faiblement couplés). 

! Diamants dopé au B : la encore des orbitales " mais en configuration sp3 (qq K) 

 

 

 

 

 

 

 

 

A noter aussi (K,Ba)BiO3 : 32K cubique, sommet Bi+octahedre O, centre du cube K,Ba

? Fermions lourds : Ce ou Uranides (U,...), bande d très étroite fortement hybridée aux électrons de
conductions (Pt, Be) : m ∗ /m ∼ 200, UPt3 : 1.5K.

? MgB2 : plans hexagonaux B (de type graphite) : orbitales pz (π) et pxy : liaisons covalentes sp2 (σ).
dopage des liaisons σ par Mg2+ (interplans) : ces liaisons deviennent alors supraconductrices avec un
excellent couplage e-phonons : Tc = 39K
les liaisons π sont elles aussi supraconductrices (mais avec Tc = 10K) : coexistence de 2 supraconduc-
teurs (faiblement couplés).
Des calculs ab-initio dans d’autres systmes suggèrent que la Tc pourrait dpasser plusieurs 10 aines de
K par dopage des laisons σ sp2 : BC3 : > 40K, LixBC : > 150K....

? Diamant dopé au B : la encore des orbitales σ mais en configu-
ration sp3 (qq K mais aussi Si:B : Tc ∼ 0.7K). La Tc pourrait la
encore être très fortement augmentée pour dépasser 50K dans BC
(Wurtzite). La diffuculté réside ici dans le dopage de ces liaisons
covalentes et de très fortes valeurs de Tc ont été prédite dans des
systèmes de type ”cage” : clathrates de Carbone (F:C34, 7K déjà
observée dans les clathrates de Si).
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1LPMCN, Université Claude Bernard Lyon I and CNRS, UMR 5586, Bâtiment Brillouin, 43 Bd du 11 Novembre 1918,
69622 Villeurbanne Cedex, France
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We present a joint experimental and theoretical study of the superconductivity in doped silicon
clathrates. The critical temperature in Ba8@Si-46 is shown to strongly decrease with applied pressure.
These results are corroborated by ab initio calculations using MacMillan’s formulation of the BCS
theory with the electron-phonon coupling constant ! calculated from perturbative density functional
theory. Further, the study of I8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped
within a rigid-band approach show that the superconductivity is an intrinsic property of the sp3 silicon
network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an
effective electron-phonon interaction much larger than in C60.
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The superconductivity in column-IV elemental com-
pounds has been extensively studied in the case of carbon.
In particular, the large observed critical temperature (Tc)
in doped C60 fullerene networks has stimulated a lot of
work [1] while recent theoretical predictions emphasized
that by reducing the fullerene size down to C36 [2] or even
C28 [3], Tc could be significantly increased.

Contrary to carbon, silicon does not form sp2-like
networks and, at ambient pressure, there is no supercon-
ductivity associated with the sp3 diamond phase. It is
only at higher pressure, upon phase transformation into
metallic phases such as the "-tin and simple hexagonal
(sh-V) phases at 11 and 13–14 GPa, respectively, that
superconductivity with a Tc of 6–8 K could be measured
and explained using electron-phonon calculations within
the BCS theory [4].

The absence of superconductivity in silicon or carbon
sp3 networks raises the problem of the doping of such
dense insulating phases. High doping changes the average
lattice constant and introduces mechanical stresses with
misfit dislocations [5]. In addition, doping is always
limited by the solubility limit for the impurity in the
solid which is small at low temperature. Practically, in
heavily n-doped silicon, the well known ‘‘doping rule
limit’’ predicts [6] a Fermi level located a few tenths of
eVabove the conduction band minimum (CBM) where the
electronic density of states (EDOS) is not large enough to
induce superconductivity.

In this perspective, silicon clathrates [7] are promising
candidates as they are cagelike materials allowing inter-

calation. In the case of the type-I clathrates studied here,
they are built from a regular arrangement of a combina-
tion of Si20 (Ih) and Si24 (D6d) cages (Fig. 1). Contrary to
C60 fullerene-assembled films, the silicon cages are
strongly linked together since the polyhedra share pen-
tagonal and hexagonal faces. All silicon atoms are thus
covalently bonded within a four-neighbor sp3 environ-
ment as in the diamond phase, and silicon clathrates are
!1:8 eV band gap semiconductors [8]. Doping of type-I
clathrates leads to a X8@Si-46 stoichiometry, where X is
the in-cage guest atom, displaying thus a huge 8=46 ratio
of intercalated to host network atoms. As a result, the
Fermi level (Ef) can be strongly displaced in the valence
or conduction bands.

FIG. 1. Symbolic representation of face sharing Si20 and Si24
cages as a building unit of type-I clathrates.
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? La découverte très récente (printemps 2008) de Tc > 50K dans
les oxypnictide de Fer : X(O,F)FeAs où X est un Lanthanide :
La,Sm,Nd,.... fait l’objet de très nombreux travaux.
Plans supraconducteurs : FeAs, contenant un élément magnétique
et réservoir de charge : XO dopé par substitution de F sur le site
de l’oxygène.

Modèle de London

Ce modèle est basé sur les équations de Maxwell

~rot ~E = −∂ ~B/∂t

div ~E = ρ/ε0

div ~B = 0
~rot ~B = µ0

~J

et ~J = −nq~v (pour une charge -q) où n est la densité de porteurs (et div(ρ~v) + ∂ρ/∂t = 0, conservation
de la masse). Dans un métal normal → existence d’une force de frottement (diffusion par les impuretés
et les phonons) : ~fF = −(m/τ)~v. Pour t >> τ (régime continu) ~v = (−qτ/m) ~E, ~J = (nq2τ/m) ~E et
σ = nq2τ/m.

A priori un conducteur parfait (σ →∞) est caractérisé par ~E = ~0 et ce conducteur parfait ”s’oppose”
alors à toute variation de flux → génération d’un courant d’écrantage :

conducteur parfait, B = cte; ∂B/∂t = 0

T > Tc,H 6= 0 T < Tc,H 6= 0 T < Tc,H = 0
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Néanmoins, il faut écrire : −q ~E = m× d~v/dt et :

d ~J/dt = (nq2/m) ~E

soit ~rot(∂ ~B/∂t) = µ0∂ ~J/∂t = µ0(nq2/m) ~E
~rot( ~rot(∂ ~B/∂t)) = ~grad(div(∂ ~B∂t))−4(∂ ~B/∂t) = 0−4(∂ ~B/∂t) = µ0(nq2/m) ~rot ~E = −1/λ2

L
~rot(∂ ~B/∂t)

avec λ2
L = m

µ0nq2

Mais un supraconducteur n’est pas simplement un conducteur parfait, il possède également la propriété
de pouvoir EXPULSER le champ et donc B = 0 (et non pas (∂B/∂t)). On peut (voir ci-dessous) donc
r”emplacer” ∂B/∂t par B dans l’équation ci-dessus et

→ 4 ~B = ~B/λ2
L

4 ~J = ~J/λ2
L

→ µ0 ~rot ~J = ~B/λ2
L Eq. de LONDON

Remarque : systèmes dissipatifs : ~J = σ ~E, 4 ~J = σµ0∂ ~J/∂t → épaisseur de peau δ =
√

2
µ0σω

0 d

B
0

z

B = ch(z/λL)
ch(d/λL)

µ0M = 1
d

∫ d/2

−d/2
B(z)dz − µ0H = −B0(1− 2λL

d
th(2λL

d
))

d << λL, χ = dM/dH = −(d/2λL)2 et
d >> λL, χ = −1(1− (d/λL))

z

2r

B0

x

Normale Supraconductrice

∂2Bz/∂r2 + 1/r.∂Bz/∂r − 1/λ2
l Bz = 0

→ BZ = B0.
I0(r/λL)
I0(R/λL)

où I0 est la fonction de Bessel d’ordre zero ∼ ex/x pour x →∞
remarque : même équation pour J donc un courant de transport ne circule
que sur une épaisseur λL

Lorsque le supraconducteur est refroidit sous champ en dessous de sa température critique, il y a
expulsion du flux : effet Meissner → LEVITATION
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T > Tc,H 6= 0 T < Tc,H 6= 0 T < Tc,H = 0

• Aspect énergétique

z

2r

B0

x

Normale Supraconductrice

On suppose que B = B0e
−x/L

Energie magnétique : Emag = 1
2µ0

∫∞
0

B2dτ = 1
2µ0

∫∞
0

B2dx × S; soit
Emag ∼ LS ×B2/4µ0

et J = 1
µ0

∂B
∂x = B0

µ0Le−x/L

→ Energie cinétique : Ecin = m
2

∫∞
0

v2ndτ = m
2nq2

∫∞
0

J2dx × S; soit
Ecin ∼ SB2m/4nq2Lµ0

∂(Emag + Ecin)/∂L)|L=λL
= 0 → λ2

L = m
µ0nq2

La longueur de London permet donc au système de minimiser l’énergie totale (magnétique + cinétique).

retour sur l’équation du mouvement; le calcul en page 4 est évidemment faux ! Il faut en fait écrire :
d~v
dt = ∂~v

∂t + 1
2

~gradv2 − ~v × ~rot~v et ~rot ~gradv2 = 0, ~rot ~E = −∂ ~B
∂t , md~v

dt = −q( ~E + ~v × ~B)
d’où ∂ ~rot~v

∂t − ~rot(~v × ~rot~v) = −q
m ( ~rot( ~E) + ~rot(~v × ~B)) = −q

m (−∂ ~B
∂t + ~rot(~v × ~B)) soit :

∂~ω
∂t = ~rot(~v × ~ω)

~ω = ~rot~v + −q ~B
m

Eq Helmholtz

remarque Eq. Helmoltz traduit l’évolution d’un fluide non visqueux en mécanique des fluides = liq-
uide de Fermi sans viscosité. C’est bien sur le cas des supraconducteurs mais plus généralement de tout
conducteur parfait (si un tel système existait) et cette équation se substitue alors à 4 ~J = σµ0∂ ~J/∂t pour
un conducteur ”normal”. Le supraconducteur correspond à la solution particulière : ωINIT = 0 et donc
∂ω/∂t = 0 et ω reste nul [c’est bien la solution qui correspond à B=0 au centre de l’échantillon].
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Soit ~rot~v − q ~B/m = ~0 Eq. de London.

remarque sur les jauge : Cette équation de London s’écrit ~rot( ~J + 1
µ0λ2

L

~A) = ~0 (en introduisant ~B =

~rot ~A) soit ~J = nq2

m ( ~gradχ − ~A) oú χ est une fonction scalaire quelconque. ~A et V sont définis à une
”constante près” : les lois physique ne sont pas changés si on remplace V → V + ∂χ/∂t et ~A → ~A + ~∇χ.
On introduit la jauge de London : ~A.~n = 0 et div ~A = 0 et on peut montrer que dans ce cas, pour un

système simplement connexe (sans trous) : ~gradχ = 0 soit ~J = −nq2

m
~A . En mécanique quantique on

défini l’impulsion généralisée : ~P = m~v − q ~A et on remarque donc la jauge de London est celle pour

laquelle l’impulsion ~P = ~0 dans un supraconducteur.

• Champ critique, rappels thermodynamiques

Champ magnétique crée par un solénoide : H = nsi (où ns est le nombre de spires par mètre)
→ Φ = nsLBaS → apparition d’une f.e.m. e = −dΦ/dt → δWsolenoide = −eiδt = HδBaV = µ0HδHV .

du = Tds + HdB : matière + solénoide (énergie par unité de volume, on suppose pour simplifier qu’il
n’y a pas d’effets démagnétisants (H = Ha) mais le résultat est général).

Si on condidère uniquement la matière, il faut retrancher δWsolenoide, soit : du = Tds + HdB −
µ0HdH = Tds + µ0Hdm (où m est l’aimantation : B = µ0(M + H)). On a donc :

Matière seule Matière + solénoide

énergie : u du = Tds + µ0HdM dU = Tds + HdB

enthalpie libre (Gibbs): g
g = u− Ts− µ0HM
dg = −sdT − µ0MdH

g = u− Ts−HB
dg = −sdT −BdH

L’état normal est supposé non magnétique : M = 0 (B = µ0H) et pour le supraconducteur : B = 0
(M = −H) et on a :

Matière seule Matière + solénoide

gN gS gN gS

gN
0 = gN (T,H = 0) gS

0 (T ) + 1
2µ0H

2 gN
0 (T )− 1

2µ0H
2 gS

0 = gS(T,H = 0)

L’écrantage a donc un coût énergétique (µ0H
2/2) (mise en mouvement des supercourants). La phase

supraconductrice est stable pour H < Hc =
√

2
µ0

(gN
0 − gS

0 ) i.e. gN > gS
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• Energie libre de surface

δg = gS − gN = µ0
2 (H2 − H2

c ) mais la condition m =
−H n’est pas réalisée à la surface de l’échantillon. En
supposant que B = B0e

−x/λL on a M = H(e−x/λL −1) →
la surface STABILISE la phase supraconductrice.

!g

"

1/2#0Hc
2

1/2#0(H-Hc
2)

r

cout en énergie 
de condensation

gain en enthalpie 
libre de surface

S N S

première approche des vortex : est-il energetiquement favorable de créer une ”zone” normale au sein
du supraconducteur ?

Un tube de phase normale (de rayon r)
sera stable si le gain en enthalpie libre de surface est
supérieur au cout en énergie de condensation:
π((r + λL)2 − r2)µ0H

2/4 > πr2µ0(H2
c −H2)/2

i.e. si H ≥ H∗ ∼
√

2r
r+λL

Hc

!g

"

1/2#0Hc
2

1/2#0(H-Hc
2)

r

cout en énergie 
de condensation

gain en enthalpie 
libre de surface

S N S

De tels filaments de phases normales existe dans certain supraconducteur - dits de type II - mais pas tous
(les autres sont dits de type I) → on les appele VORTEX car le coeur normal est entouré d’un ”tourbil-
lon” de courant, on verra que chaque vortex porte un quantum de flux Φ0 = h/2e = 2.10−15Tm2 (voir
ci-dessous)

Théorie de Ginzburg-Landau

La question se pose alors est de savoir pourquoi il existe des supraconducteurs de type I ? Il faut une
enthalpie libre positive pour contrebalancer l’effet négatif du ”défaut d’aimantation” sur l’épaisseur de
London.
→ le passage entre l’état normal et l’état supraconducteur n’est pas abrupte : la densité de porteurs dans
l’état supraconducteur (nS) ne s’établit que sur une longueur ξ appelé longueur de cohérence.
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δg = µ0
2 (H2 −H2

c ) = δgm + δgc

δgc ∼ −mu0
H2

c

2 ( (n(x)
ns

)2

: énergie de condensation
δgm ∼ µ0

H2

2 (1− e−x/λL) : énergie magnétique
0 d

B0

z

SUPRA

Normal
Hc

Tc

H

T

-1

0

1

2

3

4

5

6

20 25 30 35

!
C

p
(T

,H
)/

T
 (

m
J.

m
o

l-1
.K

-2
)

0T

1T

2T

3T

5T

T (K)

!g

"

1/2#0Hc
2

1/2#0(H-Hc
2)

r

cout en énergie 
de condensation

gain en enthalpie 
libre de surface

S N S

Ha

Hd

B0

x

Normale Supraconductrice

B0

Normale Supraconductrice

"

x

nS

$

2 cas sont alors possibles :

λL < ξ
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!
L

"

-0.8

-0.6

-0.4

-0.2

0

0.2
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g
 (

u
.a

.)

u / !
L

H = 0.7 H
c

K = 0.5

0 2 4 6 8 10

u / !
L

H = 0.7 H
c

K=2

→ il n’existe pas d’enthalpie libre négative as-
sociée à la surface : type I

λL > ξ

-1.2

-0.8

-0.4

0

0.4

0 2 4 6 8 10

g
 (

u
.a

.)

u / !
L

Enthalpie magnétique

Enthalpie de condensation

!
L

"

-1.2

-0.8

-0.4

0

0.4

0 2 4 6 8 10

g
 (

u
.a

.)

u / !
L

Enthalpie magnétique

Enthalpie 
de condensation

!
L

"

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6 8 10

g
 (

u
.a

.)

u / !
L

H = 0.7 H
c

K = 0.5

0 2 4 6 8 10

u / !
L

H = 0.7 H
c

K=2

→ il existe une enthalpie libre négative as-
sociée à la surface : type II

Le calcul exact (non démontré ici) place la limite à κ = λL

ξ = 1√
2

Transition de phase entre l’état normal et l’état supraconducteur.

GL traite la transition supraconductrice comme toute transition de phase. Une transition de phases
est une modification des propriétés du système induite par la variation d’un paramètre extérieur. Elle
intervient lorsque le potentiel thermodynamique n’est pas analytique. Ehrenfest proposa une classi-
fication des transitions de phases en fonction du degré de non analycité : une transition est du neme

ordre lorsqu’une dérivée neme du potentiel est discontinue. Néanmoins cette définition ne prend pas en
compte la possibilité de divergence d’une dérivée (mais uniquement les discontinuités). Cette divergence
est néanmoins présente dans la nature : transition superfluide de l’Hélium 4 au point λ (2.17K, appelé
ainsi du fait de la forme de la courbe Cp(T )).

On distingue aujourd’hui 2 type de transition (1er ou second ordre) en fonction de l’existence ou non
d’une chaleur latente (T∆S, attention néanmoins à la relation de Clapeyron : ∆S = −(∂P/∂T )∆V =
V (∂H/∂T )∆M s’annule si ∂P/∂T ou ∂H/∂T ou toute autre dérivée s’annule). Les transition du 2eme
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ordre sont plus facile à décrire du fait de l’absence de discontinuité des propriétés. Il est alors possible
d’introduire des exposants critiques permettant de décrire l’évolution des propriétés au voisinnage de la
température de transition (Tc) : X ∝ (T−Tc)α. L’ensemble de ces exposants définie la classe d’universalité
de la transition.

Généralement une transition de phase s’accompagne d’une rupture de symétrie. Landau introduit alors
une variable supplémentaire permettant de tenir compte de cette rupture : le paramètre d’ordre.

A titre d’exemple on peut citer
(i) transition liquide/solide Ψ = densité
(i) transition ferro/para Ψ = Ms (aimantation spontanée)
(iii) alliage équiatomique AB cristalisant en structure cubique centrée
on note Cα

A la concentration de A aux sommets des cubes (position α) (resp. Cα
B)

on note Cβ
A la concentration de A au centre des cubes (position β) (resp. Cβ

B)
on peut noter Cα

A = 1−Ψ
2 (= Cβ

B) et respectivement Cβ
A = 1+Ψ

2 (= Cα
b ) : Ψ = Cβ

A − Cα
A

Ψ représente alors l’ordre chimique i.e. si Ψ = 0 les éléments A et B sont aléatoire en site α et β (sommets
et centres) et si Ψ = 1 l’alliage est parfaitement ordonné avec A en position α et B en position β.

Il s’agit donc de définir un parametre d’ordre Ψ pour la transition normal/supra. On le supposera nul
dans l’état normal et 6= 0 dans la phase supraconductrice.

remarque Cette transition est du second ordre (en champ nul) et le paramètre d’ordre s’annule alors
de facon continue. Dans ce type de transition il n’y a pas de ”séparation de phase” type surfusion mais
les fluctuations spatiales et temporelles peuvent être grandes au voisinage de Tc

Dans le cas de la transition supraconductrice Landau défini un parametre d’ordre complexe :
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Ψ = |Ψ|eiθ avec |Ψ| = √ns

Laudau → développement de l’énergie libre en :

f(Ψ) = f0 + α.Ψ2 + 1
2β.Ψ4 avec α = a(T − Tc)

Remarque : les termes impaires ne sont prśents que pour une
transition du 1er ordre
Pour tenir compte des fluctuations spatiales du parametre
d’ordre on introduit un terme supplémentaire : γ.[∇Ψ]2

en M.Q. ∇Ψ ≡ i
h̄p.Ψ, p = opérateur impulsion. Ce terme

correspond en fait l’énergie cinétique des ”paires” supracon-
ductrices (la notion de paire sera définie plus tard) : γ ≡ h̄2

2m .

Enfin en présence d’un champ magnétique il faut :
(i) tenir compte de l’énergie magnétique B2

2µ0
(matière + solénoide)

(ii) remplacer h̄
i
~∇ par h̄

i
~∇− q ~A (charge -q), d’où :
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→ fs = fn + α|Ψ|2 +
1
2
β|Ψ|4 +

1
2m
| h̄
i

~∇Ψ− q ~AΨ|2︸ ︷︷ ︸
[...]

+ B2

2µ0
matière + solénoide

Enfin comme les variables du système sont T et H (et non pas S et B), on passe à l’enthalpie libre
g=f-BH et gs = fn + [...] + 0 et gn = fn − µ0H2

2 .

remarque : pour la matière seule on doit retrancher l’énergie du solénoide µ0H2

2 et g = f − µ0Hm, on

trouve donc gs = fn + [...] + µ0H2

2 et gn = fn soit le même ∆g.

En minimisant
∫ ∫ ∫

volume
δg(Ψ(r))d3r on trouve [après un long calcul...] :

αΨ + βΨ|Ψ|2 + 1
2m [ h̄

i
~∇− q ~A]2Ψ = 0

~J = ih̄q
2m [Ψ~∇Ψ∗ −Ψ∗~∇Ψ]− q2 ~A

m |Ψ|2 Eq. Ginzburg-Landau

champ nul on considère une interface plane : Ψ(x) et en l’absence de courant (J = 0) [Ψ∇Ψ∗−Ψ∗∇Ψ] =

0 donc Ψ est réel. On pose y =
√

β
|α|Ψ. La première équation de GL s’écrit alors :Ψ + β

αΨ− h̄2

2mα
d2Ψ
dx2 = 0

i.e. h̄2

2m|α|
d2y
dx2 + y(1− y2) = 0. Soit y = th( x√

2ξ
) avec ξ2 = h̄2

2m|α| .
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Courant « critique » 

 

La transition entre l’état normal (N) et l’état supraconducteur (S) peut se décrire à partir du 

formalisme de Ginzburg – Landau. La différence de densité d’énergie libre entre ces deux états 

s’écrit alors (pour le système « supraconducteur + bobine »): 
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h
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1) Quelle est l’origine physique des différents termes de cette expression. 

La minimisation de l’énergie libre totale conduit alors aux équations : 

(GL1) : 

  

! 

"# + $##
2

+
1

2m

h

i
% & qA

' 

( ) 
* 

+ , 

2

# = 0
 où A est le potentiel vecteur et 

(GL2) : 
  

! 

J =
ihq

2m
"#"* $"*#"[ ] $

q
2
A

m
"

2 où J est le courant circulant dans le matériau 

2) Commentez la différence entre l’équation (GL2) et celle obtenue à partir du modèle de London. 

 

Exercice (extrait partiel 2006) 

 

1) On suppose que la densité de paires est uniforme et on note !="!"ei#(r). Que deviennent les 

équations (GL1) et (GL2) dans ce cas. On rappelle que dans la jauge de London : 

  

2) On suppose que le supraconducteur est parcouru par un courant J, soit vs la vitesse correspondante 

des paires supraconductrices. Montrer que :   

! 

" + #$
2

+
1

2
mv

s

2
= 0 

3) On note "!!"=-$/% et y="!"/"!!", montrer que :

  

! 

J =
h

µ
0
q"2#

y
2
1$ y

2  

4) Quelle est la signification physique de & (profondeur de pénétration) et ' (longueur de cohérence). 

 

5) Tracer J(y) et en déduire la valeur Jc maximale pouvant circuler dans le matériau. 

 

 

 

On souhaite désormais comparer cette valeur à celle obtenue à partir de la 

théorie BCS. On note ( le gap supraconducteur relié à la longueur de 

cohérence par   

! 

" = hv
F
/#$ . Une paire de Cooper est représentée par les 

cercles blancs sur la figure ci-contre. En présence d’un courant J (selon 0x) 

la sphère de Fermi est « décalée » de )kx<< kF. On s’intéresse à la diffusion 

vers « l’arrière » de l’électron « avant » de la paire (diffusion de 1 en 1’). 

 

8) On note k1 et k2 les valeurs de k des deux électrons de la paire. Donner k1 et k2 

(avant la diffusion) en fonction de kF et )kx. Montrer que l’énergie d’une paire de 

Cooper est de l’ordre de   

! 

h
2kF

2/m-2( (au premier ordre en )kx/kF). que se passe-t-il 

pour l’électron 2 lorsque 1 est diffusé en 1’, en déduire que l’énergie de la paire n’est pas affectée par 

la diffusion. 

 

9) On suppose maintenant que la paire est brisée par la diffusion 1 -> 1’. Quelles sont les nouvelles 

valeurs de k1 et k2’. Quelle est alors la valeur de l’énergie de la paire (on se limitera à un 

développement limité au premier ordre en )kx/kF). En déduire la valeur maximale (Jc) du courant 

pouvant circuler dans le matériau. Conclusion. 

 

10) Donner l’ordre de grandeur de Jc (pour T ~ 0) pour un supraconducteur de ' ~100A et & ~ 1000A. 

Une mesure effectuée sous champ (H > Hc1) montre que le matériau présente de la dissipation (i.e. une 

résistance non nulle) pour J > 105 A/cm2. Pourquoi. 

densité uniforme de paires : |Ψ| = cte; Ψ = |Ψ|eiθ(r) → ∇Ψ = i∇θΨ. Les équations de GL deviennent
αΨ + βΨ|Ψ|2 +

1/2mv2
s︷ ︸︸ ︷

1
2m

[h̄~∇θ − q ~A]2 Ψ = 0 GL1
~J = q

m |Ψ|
2︸︷︷︸

n

[h̄~∇θ − q ~A]︸ ︷︷ ︸
mvs

GL2

Cette deuxième équation est à comparé à : ~J = nq2

m (~∇χ − ~A) (modèle de London). GL donne donc que
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χ ≡ h̄
q θ, un changement de Jauge est donc équivalent à un changement de phase de la fonction d’onde.

Au coeur du matériau, vs = 0 α + β|Ψ∞|2 = 0 soit |Ψ∞|2 = −α
β = ns = m

µ0q2λ2
L

soit β = µ0
2 ( h̄λLq

mξ )2

et (gs − gn)(0) = α|Ψ∞|2 + β
2 |Ψ∞|4 = −α2

2β = −µ0H2
c

2

d’où Hc = h̄√
2µ0qξλL

= Φ0

2π
√

2µ0ξλL
avec Φ0 = h

q .

état mixte : Nous avons vu que dans les supraconducteurs dits de type II, il est énergétiquement
favorable de créer un vortex pour H > H∗ (voir si dessous pour la définition précise de H∗ appelé Hc1).
En effet, en présence d’un champ extérieur le supraconducteur ”crée” un courant (∼ H/λL) permettant
d’écranter le champ extérieur mais J ne peut pas excéder Jc et au delà de Hc1 le supraconducteur ”autorise”
la pénétration partielle de B sous la forme de tubes de flux entourés de courants (assurant l’écrantage de
B en dehors du tube) appelés VORTEX. Il y a donc coexistence des phases supraconductrice et normale,
cet état est appelé état mixte. Comme Φ s’annule au centre du vortex, la taille de son coeur normal ∼ 2ξ
(pour minimiser le coût en énergie de condensation) le coeur doit minimiser sa taille (phase normal) alors
que sa ”taille magnétique” est ∼ 2λL.
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H croissant

H < Hc1, le courant d’écrantage
(∝ H) assure l’expulsion de B

H > Hc1, J = Jc

nucléation de vortex
Le nombre de vortex augmente jusqu’à
occuper tout l’espace (Hc2)

La prédiction théorique des vortex a été faite par A.A.Abrikosov en 1957 - 1ere preuve expérimentale :
U.Essmann (1967).

Prédiction théorique de 
l’existence des vortex :

A.A.Abrikosov
USSR Soviet Physics, 1957

Première visualisation 
expérimentale :U.Essmann 1967

décoration bitter
(pulvérisation de poudre 

magnétique sur la surface)
Pb - 1.1K - 195G

to the presence of quasiperiodic and disordered pinning po-
tentials. We investigate whether the vortex pattern in the
sample is the result of the structure growth from nucleation
centers distributed at random or if it follows a predetermined
pattern characteristic of each sample. This is achieved using
a simple technique recently developed in our laboratory that
allows us to engineer pinning potentials by means of a novel
method: Bitter pinning. In this technique the Fe clumps used
to observe the vortex structure in a first Bitter decoration
become pinning centers for new vortex structures. A second
decoration allows the observation of the new vortex pattern
and the comparison with the Fe clump distribution of the first
one.
The Bitter pinning technique is shown to be appropriate to

determine the conditions for an effective matching between
vortex and artificially induced pinning structures. We dem-
onstrate that the matching condition is rather subtle and does
not require the expected stronger pinning associated with the
Fe pattern, as compared with that of the bulk. When bulk
pinning is essentially zero an extremely weak quasiperiodic
potential is capable of locking commensurate vortex struc-
tures breaking the translational as well as the rotational sym-
metry of the vortex lattice.

II. EXPERIMENTAL TECHNIQUE AND SAMPLE

CHARACTERIZATION

In the vortex decoration technique small Fe particles !of
the order of 200 Å diameter" diffusing in a He gas atmo-
sphere are attracted by the field modulation produced by the
vortex pattern at the surface of the sample.14 The clumps
formed by the iron particles remain attached to the surface by
van der Waals forces and are observed by SEM at room
temperature. In the Bitter pinning the sample is cooled again
in the presence of the Fe clumps and the effect of the surface
introduced pinning on the new vortex structure is analyzed.
In all the experiments described in this work the vortices

are nucleated in field cooling experiments.
The influence of the pinning induced by the Fe clumps on

the critical current is studied by dc electrical resistance, mag-
netization loops and ac susceptibility measurements.
The relevance of the resultant weak Fe periodic pinning

potential on the vortex distribution and correlation in real
space is made evident by the following procedure: Once the
sample is decorated in a first FC experiment it is warmed up
to room temperature to observe the Fe clumps. Subsequently,
the sample is FC again down to 4 K and a second Bitter
decoration is performed to observe the vortex structure. A
portion of the sample is masked in the first decoration in
order to verify the quality of the second one. Details of the
technique have been reported elsewhere.15,16

The degree of periodic order in the first Fe pattern to be
used in the Bitter pinning can be controlled by making use of
two effects: dynamical ordering and dynamical memory.
Dynamical ordering was theoretically predicted and ob-

served experimentally and in computer simulations.9,17–19 It
has been shown that the disorder of vortex patterns nucleated
in the presence of random potentials is strongly reduced
when the vortex structure is displaced by forces exceeding
the critical.
Dynamical memory is an experimental result showing

that the dynamically induced order is preserved when the
force acting on the vortex structure is suddenly removed.
This memory effect shows that the direction of the applied
force determines the orientation of the vortex quenched lat-
tice. Dynamical memory is of basic importance to produce
the oriented quasiperiodic pinning potential of the Bitter pin-
ning technique. In this way polycrystalline vortex structures
nucleated in NbSe2 are transformed into almost perfect peri-
odic structures extended over the whole sample.15 An ex-
ample is shown in Fig. 1: Thousands of Fe dots induced in
the first decoration become the quasiperiodic structure to be
used in subsequent decorations.
A simple technique to generate dynamical ordering and

preserve memory is to induce currents exceeding the critical
by rapid magnetic field rotations.20 This method has the ad-
vantage of inducing currents with no need of electrical con-
tacts in the sample. The sample is FC from room temperature
down to 4 K, the applied magnetic field is rotated to a given
angle and then rapidly returned to the original orientation.
The rotation used in the experiments described in this paper
is accomplished by switching on and off a field HT , perpen-
dicular to the applied one. We call this experiment field cool-
ing rotation !FCR".
The samples used in this work are single crystals of

Bi2Sr2CaCu2O8 grown using the self-flux technique in a
large temperature gradient.21 The samples are annealed in an
Ar atmosphere at 500 °C for 20 h followed by a fast cool
down to achieve optimal doping. The crystals are character-
ized by x-ray diffraction and energy dispersive spectroscopy
!EDS" to ensure the right structure and composition. The
critical temperature TC#87 K is determined using ac suscep-
tibility measurements. The superconducting parameters are
$#2000 Å and %#10 Å . Typical sample dimensions are 1
mm2 area and 50 &m l thickness, with the c axis oriented
parallel to the thin dimension.
In order to keep the surface of the sample in optimal

conditions the decoration is made using different freshly
cleaved samples.

FIG. 1. Magnetic decoration pattern of the flux-line lattice in
NbSe2 superconductor. The white dots depict the positions of the
vortices after a FCR process !see text" down to 4.2 K at 36 Oe with
a field rotation at an angle of 60°. In the inset, the Fourier transform
of the vortex pattern shows a six peak structure that makes evident
its crystalline nature.

15 184 PRB 62FASANO, MENGHINI, de la CRUZ, AND NIEVA

NbSe2 - 4K - 36 G

décoration Bitter
(pulvérisation de poudre magnétique
sur la surface) - Pb : 1.1K - 195G.

Prédiction théorique de 
l’existence des vortex :

A.A.Abrikosov
USSR Soviet Physics, 1957

Première visualisation 
expérimentale :U.Essmann 1967

décoration bitter
(pulvérisation de poudre 

magnétique sur la surface)
Pb - 1.1K - 195G

to the presence of quasiperiodic and disordered pinning po-
tentials. We investigate whether the vortex pattern in the
sample is the result of the structure growth from nucleation
centers distributed at random or if it follows a predetermined
pattern characteristic of each sample. This is achieved using
a simple technique recently developed in our laboratory that
allows us to engineer pinning potentials by means of a novel
method: Bitter pinning. In this technique the Fe clumps used
to observe the vortex structure in a first Bitter decoration
become pinning centers for new vortex structures. A second
decoration allows the observation of the new vortex pattern
and the comparison with the Fe clump distribution of the first
one.
The Bitter pinning technique is shown to be appropriate to

determine the conditions for an effective matching between
vortex and artificially induced pinning structures. We dem-
onstrate that the matching condition is rather subtle and does
not require the expected stronger pinning associated with the
Fe pattern, as compared with that of the bulk. When bulk
pinning is essentially zero an extremely weak quasiperiodic
potential is capable of locking commensurate vortex struc-
tures breaking the translational as well as the rotational sym-
metry of the vortex lattice.

II. EXPERIMENTAL TECHNIQUE AND SAMPLE

CHARACTERIZATION

In the vortex decoration technique small Fe particles !of
the order of 200 Å diameter" diffusing in a He gas atmo-
sphere are attracted by the field modulation produced by the
vortex pattern at the surface of the sample.14 The clumps
formed by the iron particles remain attached to the surface by
van der Waals forces and are observed by SEM at room
temperature. In the Bitter pinning the sample is cooled again
in the presence of the Fe clumps and the effect of the surface
introduced pinning on the new vortex structure is analyzed.
In all the experiments described in this work the vortices

are nucleated in field cooling experiments.
The influence of the pinning induced by the Fe clumps on

the critical current is studied by dc electrical resistance, mag-
netization loops and ac susceptibility measurements.
The relevance of the resultant weak Fe periodic pinning

potential on the vortex distribution and correlation in real
space is made evident by the following procedure: Once the
sample is decorated in a first FC experiment it is warmed up
to room temperature to observe the Fe clumps. Subsequently,
the sample is FC again down to 4 K and a second Bitter
decoration is performed to observe the vortex structure. A
portion of the sample is masked in the first decoration in
order to verify the quality of the second one. Details of the
technique have been reported elsewhere.15,16

The degree of periodic order in the first Fe pattern to be
used in the Bitter pinning can be controlled by making use of
two effects: dynamical ordering and dynamical memory.
Dynamical ordering was theoretically predicted and ob-

served experimentally and in computer simulations.9,17–19 It
has been shown that the disorder of vortex patterns nucleated
in the presence of random potentials is strongly reduced
when the vortex structure is displaced by forces exceeding
the critical.
Dynamical memory is an experimental result showing

that the dynamically induced order is preserved when the
force acting on the vortex structure is suddenly removed.
This memory effect shows that the direction of the applied
force determines the orientation of the vortex quenched lat-
tice. Dynamical memory is of basic importance to produce
the oriented quasiperiodic pinning potential of the Bitter pin-
ning technique. In this way polycrystalline vortex structures
nucleated in NbSe2 are transformed into almost perfect peri-
odic structures extended over the whole sample.15 An ex-
ample is shown in Fig. 1: Thousands of Fe dots induced in
the first decoration become the quasiperiodic structure to be
used in subsequent decorations.
A simple technique to generate dynamical ordering and

preserve memory is to induce currents exceeding the critical
by rapid magnetic field rotations.20 This method has the ad-
vantage of inducing currents with no need of electrical con-
tacts in the sample. The sample is FC from room temperature
down to 4 K, the applied magnetic field is rotated to a given
angle and then rapidly returned to the original orientation.
The rotation used in the experiments described in this paper
is accomplished by switching on and off a field HT , perpen-
dicular to the applied one. We call this experiment field cool-
ing rotation !FCR".
The samples used in this work are single crystals of

Bi2Sr2CaCu2O8 grown using the self-flux technique in a
large temperature gradient.21 The samples are annealed in an
Ar atmosphere at 500 °C for 20 h followed by a fast cool
down to achieve optimal doping. The crystals are character-
ized by x-ray diffraction and energy dispersive spectroscopy
!EDS" to ensure the right structure and composition. The
critical temperature TC#87 K is determined using ac suscep-
tibility measurements. The superconducting parameters are
$#2000 Å and %#10 Å . Typical sample dimensions are 1
mm2 area and 50 &m l thickness, with the c axis oriented
parallel to the thin dimension.
In order to keep the surface of the sample in optimal

conditions the decoration is made using different freshly
cleaved samples.

FIG. 1. Magnetic decoration pattern of the flux-line lattice in
NbSe2 superconductor. The white dots depict the positions of the
vortices after a FCR process !see text" down to 4.2 K at 36 Oe with
a field rotation at an angle of 60°. In the inset, the Fourier transform
of the vortex pattern shows a six peak structure that makes evident
its crystalline nature.

15 184 PRB 62FASANO, MENGHINI, de la CRUZ, AND NIEVA

NbSe2 - 4K - 36 G

→ NbSe2 - 4K - 36G
Aujourd’hui plusieurs autres techniques permettent de ”visualiser” les vortex :

11



Technique

Mesures magnétiques
Microscopie à :
- force magnétique
- sonde de Hall
- microSQUID
- Lorentz
- magnéto-optique

Spectroscopie tunnel Diffraction de neutrons

sensible à λL ξ structure

gamme de champ qqG →∼ 100G qq100G → qq1000G qq100G → qqT

distance intervortex ∼ µm qq100Å qq10Å - 100Å
Microscopie Lorentz

Microscope magneto-optique

NbSe2 - 2K - 1T

MgBe2 - 2K - 0.2T

Microscopie Tunnel : sensible à ! et non pas "

remarque des inclusions de phase normale au sein de la matrice supraconductrice peuvent apparâıtre
même dans les supraconducteurs de type I (état intermédiaire) mais elles sont liées aux effets ”dé”magnétisants
(effet géométriques). H = Ha + Hd et Hd = −NM , M = −H → H = Ha

1−N > Ha

pour les échantillons de forme elliptique la condition H = Hc

est remplie simultanement en tout point de la surface mais ceci
n’est pas vrai pour un échantillon de forme quelconque (pour
lequel M n’est plus uniforme) → cette condition est alors rem-
plie localement induisant en cet endroit la formation de phase
normale mais de taille � taille des vortex des supraconducteurs
de type II (de l’ordre de qq 10− 100Å).

H
a

H
d

Quantification du flux

C

sur un contour fermé ∆θ = 2nπ =
∮

C
m

nqh̄Jdl +
∮

C
qA
h̄ dl

loin du coeur J = 0, 2nπ =
∮

C
qA
h̄ dl = q

h̄

∫ ∫
S

BdS = q
h̄Φ

Φ = nΦ0 avec Φ0 = h
q , en fait on peut montrer que n = 1

il est énergétiquement plus favorable de créer deux vortex avec n=1
qu’une seul avec n=2
on mesure Φ0 = 2.10−15Tm2 soit q = 2e : paire...

La quantification du flux implique que le nombre de vortex augmente avec H : B.S = nΦ0 soit n/S =
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B/Φ0 = α/a2
0 où a0 est la distance inter-vortex et α est coefficient numérique dépendant de la symétrie

du réseau de vortex. Généralement les réseau de vortex est hexagonal (le réseau carré a une énergie très
légerement supérieure et peut exister dans certains composés) et α = 2/

√
3. La supraconductivité est

totalement détruite lorsque les vortex finissent par occuper tout l’échantillon (a0 ∼ 2ξ) et on peut estimer
Bc2 ∼ Φ0

2
√

3ξ2 .

On peut calculer la valeur exacte à partir du modèle de GL. Près de Hc2 |Ψ|2 ≈ 0, on peut donc
négliger le terme en βΨ|Ψ|2 et → αΨ + 1

2m [ h̄
i∇ − qA]2Ψ = 0. GL est donc équivalent à l’équation de

Schroedinger d’une particule dans un champ magnétique→ solution = NIVEAUX DE LANDAU (−α = E)

B = µ0

 0
0
H

, A = µ0

 0
Hx
0

, → − h̄2

2m4Ψ− iqh̄Bx
m

dΨ
dy +

q2B2x2

2m︸ ︷︷ ︸
1
2 kx2

=
h̄2

2mξ2︸ ︷︷ ︸
E

Ψ

On cherche les solution sous la forme Ψ = eiayϕ(x) (en négligeant les variations le long de B), on
trouve après avoir effectué le changement de variable X = x + ah̄

qB : − h̄2

2mϕ′′(X) + 1
2kX2ϕ(X) = Eϕ avec

k = 1
m ( 2πh̄B

Φ0
)2, ω =

√
k
m et En = (n + 1/2)h̄ω = (n + 1/2) 2πh̄2B

mΦ0
= h̄2

2mξ2 . Le champ maximal admettant

une solution non nulle est donc Bc2 = Φ0
2πξ2 =

√
2κHc (n = 0).z
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remarque: Ce calcul est un calcul de nucléation d’une
phase supraconductrice au sein d’une matrice nor-
male sous champ fort, il reste valable dans le cas des
supraconducteurs de type I (pour H décroissant) mais
comme dans ce cas κ < 1/

√
2, Hc2 < Hc → appari-

tion d’un hysteresis.

mais quelle est la valeur de Hc1 ?

en l’absence de vortex gs = fn + α|Ψ∞|2 + 1
2β|Ψ∞|4 (B = 0, J = 0)

en présence de vortex gv
s = fn + α|Ψ|2 + 1

2β|Ψ|4 −HB + B2

2µ0
+ 1

2m |
h̄
i∇Ψ− qAΨ|2
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= ++ +
énergie pour amener 

le vortex à l’infini

énergie pour amener 

le vortex à l’infini
énergie du vortex

énergie de 

condensation du 

coeur

énergie 

magnétique

énergie 

cinétique 

des paires
= + + +

δG/L =
∫ ∫

[ +α|Ψ∞|2 +
1
2
β|Ψ∞|4 − α|Ψ|2 − 1

2
β|Ψ|4︸ ︷︷ ︸ −HB

B2

2µ0
+

1
2m
| h̄
i
∇Ψ− qAΨ|2︸ ︷︷ ︸]ds

énergie de condensation du coeur
δgc

formation du vortex à ∞
champ au coeur

+courant d’écrantage

1
2µ0

(B2 + λ2
L(rotB)2)∫ ∫

δgcds ∼ µ0H2
c

2 πξ2 : négligeable
∫ ∫

[...]ds = −Φ0H
∫ ∫

[...]ds ≈ Φ2
0

4πµ0λ2
L
ln(λ

ξ ) = ε1

Il y a apparition du premier vortex lorsque 1
S

∫ ∫
δgsds = 0 soit Hc1 = Φ0

4πµ0λ2
L
[ln(λ/ξ) + c(λ/ξ)︸ ︷︷ ︸

∼0.5+ 1.69
2κ+0.58

]

la présence de ξ dans ε1 peut parâıtre étonnant mais traduit la ”coupure” de la divergence de B dans
le coeur du vortex :

saturation → B(r) = C(1− (r/ξ)2) r < ξ
symétrie cylindrique → B(r) = Φ0

2πλ2
L
K0(r/λ) r > ξ

Quel est alors le champ magnétique (Bmax) au centre du vortex ?
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Combien de vortex pénetrent à Hc1 ?

si un vortex est stable, pourquoi n’en crée-t-on pas 2,3,.... ?
→ il faut tenir compte de l’interaction vortex-vortex
→ on remplace B par Φ0

2πλ2
L

∑
j K0(|r − rj |/λL)

et δG/L = [nε1 − nHΦ0 + nΦ2
0

4πµ0λ2
L

∑
j 6=0 K0(dj(n)/λL)]

avec ε1 = Φ0Hc1

Le nombre de vortex est celui qui minimise δG/L

∂δG/∂n|n=neq
= 0

→ H = Hc1 + Φ0
4πµ0λ2

L

∑
j 6=0(K0(dj(n)/λL) + (dJ/λL)K1(dj/λL)/2)

(car d ∝ 1/
√

n)
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• Pour H ≈ Hc1 seules les interactions entre premiers voisins sont importantes (|r − rj | >> λL)

→ H −Hc1 = Φ0
2µ0λ2

L
×

1ervoisins︷︸︸︷
z ×

√
(

πd

2λL
)e−d/λL︸ ︷︷ ︸

K0(d/λL)

où d =
√

Sα
n(H)

et d(H)
λL

= ln[ Φ0z
2µ0λ2

L(H−Hc1)
] +

1
2
ln[

π

2
ln(...)]︸ ︷︷ ︸

negligeable

avec B = nΦ0
S = 2Φ0√

3d2 et z = 6 pour le réseau hexagonal (le plus stable).

On a M = B/µ0 −H = nΦ0

Sµ0
−H

• limite de London ξ << d << λL → variation lente de B (on néglige toujours la contribution de coeur).∑
K0 → n

S

∫ ∫
K0(r/λL)d2r

→ δgs = (nΦ0
S )(Hc1−H)+(nΦ0

S )2 µ
2µ0

K1(µ) avec µ = 1/
√

πnλL soit µ0(H−Hc1) = B[µK1(µ)+ µ2

4 K0(µ)]
et finalement on trouve M ≈ − Φ0

8πµ0λ2
L
ln(0.36/h).

• A haut champ (typiquement pour H > Hc2/3), les coeurs finissent par se superposer et B ≈ µ0H −
µ0

Hc2−H
(2κ2−1).β (soit M = Hc2−H

(2κ2−1).β ) où β = <Ψ4>
<Ψ2>2 ∼ 1.1 (régime d’Abrikosov).

remarque : la détermination de Hc1 est très délicate du fait des effets ”démagnétisants”. Pour une

ellipse H = Ha − N.M ;µ0M = B−µ0Ha

1−N , dM
dHa

= dM/dH
1+NdM/dH → 1/N |H=Hc1 mais

∫ Hc2

0
MdHa = − H2

c

2µ0

indépendament de N.
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La transition à Hc2 est du second ordre (au sens d’Ehrenfest : les dérivées seconde de gs sont discon-
tinues) : changement de pente de la courbe d’aimantation (M ∝ −∂g/∂H) et saut de la chaleur spécifique
(Cp = T∂S/∂T = −T∂2g/∂T 2). Par contre, tout comme la transition à Hc dans les type I, la transition
à Hc1 est du premier ordre mais ”faiblement” : il y a un saut d’aimantation mais correspondant à.... 1
vortex : ∆M = Φ0

Sµ0
, un pic est visible (théoriquement car difficile à observer) dans Cp.
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Supraconducteur de type I :
Le long de la ligne de transition
dgN = dgS

soit : −SNdT + 0 = −SSdT + µ0HcdHc

→ (sN − sS)|H=Hc
= −µ0HcdHc/dT

et δC = T ( ∂s
∂T )H=Hc

d’où δC = −µ0T [(∂Hc

∂T )2 + Hc(∂2Hc

∂T 2 )]
δC|T=Tc = −µ0Tc(∂Hc

∂T )2|T=Tc

• TD 2

! 

GS = gs
"d / 2

d / 2

# (z )dz

 

Exercice (extrait partiel 2006) 

 

On s’intéresse au champ critique du plaque mince d’épaisseur d << !, ". On applique à l’aide 

d’une bobine un champ magnétique Ha (// Ox) parallèlement à la surface de la plaque. 

1) Justifier que la densité d’enthalpie libre du système « supraconducteur + bobine » s’écrit :  

                          

! 

gs = gN +"#
2

+
1

2
$#

4

+
1

2m
qA#

2

+
B
2

2µ
0

%H.B  

2) Que peut-on dire de la variation spatiale de B à l’intérieur de la plaque. En déduire une forme 

approchée de B et l’expression correspondante du potentiel vecteur A. 

 

3) En déduire une expression de l’enthalpie libre par unité de surface du système :  

donner la valeur de 

! 

"
2

permettant de minimiser Gs (on note #$!#=-%/&). 

 

4) En déduire l’existence d’un champ critique Hc*, comparer cette valeur au champ critique (Hc) d’une 

plaque épaisse.! 

 

 

Distribution des vortex dans un film mince de Nobium 

 

On mesure l’induction B à la surface d’un film mince de 

Nobium (carré gris, figure ci-contre) à l’aide d’un 

réseau constitué de 9 croix de Hall. Le réseau est plaqué 

sur l’échantillon et est parcouru par un courant I. La 

tension Vi mesurée sur la i
ème

 sonde est alors 

proportionnelle à la composante (Bz) de B 

perpendiculaire à la sonde en ce point (1 < i < 9, par 

souci de clarté seule V3 a été représentée sur le schéma).  

 

1) Expliquer très brièvement le fonctionnement d’une croix de Hall. 

 

2) On fait varier progressivement le champ magnétique extérieur 

µ0Ha de 0 à ~ 0.02T puis de ~ 0.02T à 0. On mesure la distribution 

de Bz présentée sur la figure ci-contre (en fonction du numéro de la 

sonde) pour différentes valeurs de Ha (appliqué perpendiculairement 

au film). Discuter la forme des profils obtenus. Lors de quelle 

séquence de champs (i.e. champ croissant ou décroissant) ces profils 

ont-ils été réalisés ? Le Nobium est-il un supraconducteur de type I 

ou de type II (justifier votre réponse) ? 

 

3) Dessiner schématiquement les profils que l’on aurait obtenu lors 

de l’autre séquence (pour quelques valeurs de Ha). 

 

4) Dessiner schématiquement quelques lignes de flux dans le film (en vue de profil) pour µ0Ha ~ 

0.02T. Ce profil de champ est associé à un courant critique Jy supposé indépendant de B. Quelle 

relation lie J et B, en déduire pourquoi le profil n’est pas parfaitement linéaire pour µ0Ha ~ 0.02T?  

 

5) Même si le profil n’est pas parfaitement linéaire, on peut définir une 

pente « moyenne » (dBz/dx)moy reliée à Jy par (dBz/dx)moy ~ µ0[4Jyb/a] où 

b/a est le rapport épaisseur/largeur ~ 10
-3

. Sachant que les sondes sont 

espacées de 20µm, donner un ordre de grandeur de Jy (et son incertitude). 
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Effet JOSEPHSON

Systèmes couplés en mécanique quantique :
(

E1 K
K E2

)
.

(
C1

C2

)
= ih̄ ∂

∂t

(
C1

C2

)
avec Ei =< Φi|H|Φi >, K =< Φi|H|Φj > et Φ = C1Φ1 + C2Φ2.
par analogie, pour deux supraconducteurs couplés, potentiel ± qV

2 :(
qV
2 K

K − qV
2

)
.

(
Ψ1

Ψ2

)
= ih̄ ∂

∂t

(
Ψ1

Ψ2

)
avec Ψi =

√
nie

iθi et ṅ1 + ṅ2 = 0 (conservation du nombre de particules).
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S1
S2

V

[
qV
2 .Ψ1 + KΨ2 = ih̄∂Ψ1

∂t

K.Ψ1 − qV
2 Ψ2 = ih̄∂Ψ2

∂t

]
.

[
Ψ∗

1

Ψ∗
2

]
.

en égalant les parties imaginaires : ṅ1 = 2K
h̄

√
n1n2sin(θ1 − θ2)

en égalant les partie réelles : θ̇1 = K
h̄

√
n2
n1

cos(θ2 − θ1)− qV
2h̄ .

Pour deux supras identiques, le transfert de charge est faible (n1 ∼ n2): ∆θ̇ ∼ qV
h̄ et I1→2 ∝ ṅ1

soit I = I0sin( qV t
h̄ + ∆θ0) : courant fréquence : 3.109Hz/µV .

En fait, une jonction Josephson réelle n’est pas qu’une source de
courant mais une représentation réaliste d’une jonction supraconduc-
trice est donnée par la figure ci-contre.
I = I0sin∆θ+V/R+CV̇ i.e. (Ch̄/q)∆̈θ = [I−I0sin∆θ]−(h̄/qR)∆̇θ
(h̄/qR)∆̇θ sont donc des ”pertes par frottement” et [I−I0sin∆θ] cor-
respond à une force dérivant du potentiel : U = −[I∆θ − I0cos∆θ]
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S1
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V

I

V

C

R

Pour I < I0, la ”particule” se piège dans un des puit et seul un courant supraconducteur (V = 0) peut
circuler (I = I0sin∆θ). Pour I > I0 : la ”particule” se dépiège et δθ crôıt; il y a conduction d’électrons
normaux (→ V = RI) + composante HF (e supraconducteurs) qui se moyenne à zéro (à bnoter le retour
hystérétique, la particule se piège dans un puit différent).

I

V

U

I<I0 : Δθ=Δθ0

I>I0 : Δθ

Δθ

I

V

U

I<I0 : Δθ=Δθ0

I>I0 : Δθ

Δθ
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en présence d’une irradiation RF de fréquence ω, effet de ”syn-
chronisation” du courant supraconducteur à la fréquence ω :
apparition d’une tension Vn = n h̄ω

q amortie par C : marches de
Shapiro.
remarque définition métrologique du volt : tension au borne
d’une jonction Josephson en présence d’une irradiation ra-
diofréquence de 483597.9 GHz
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Soit une boucle d’un matériau supraconducteur comprenant une jonction

∆θ = 2πs =
m

nqh̄

∫
Jdl︸ ︷︷ ︸

negligeable

+ Φ
Φ0
× 2π + δθjct → i = i0sin(2π(s− θ

θ0
))
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Les SQUID (Superconducting QUantum Interference Device) sont alors constitués de 2 jonctions iden-
tiques et δθ1 = δθ2 = π (s− Φ

Φ0
)

La présence d’un champ B rompt la symétrie et
δθ1 = δθ + α, δθ2 = δθ − α,
I/2− i = i0sin(δθ1) et I/2 + i = i0sin(δθ2)
soit I = 2i0cos(π(s− Φ

Φ0
))sinα = IMAXsinα
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→ on mesure l’évolution du courant max pouvant circuler dans
le squid.en fonction du flux appliqué
Mesure de très grande précision du flux (donc de l’aimantation)
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8) On mesure l’évolution de la largeur !M du cycle pour 

Ha=0.1T (figure ci-contre). Pourquoi cette largeur relaxe-

t-elle vers zéro. Expliquez en quoi cette courbe est reliée 

à la courbe v(J). 

 

 

Effet Little-Parks 
 

La transition entre l’état normal (N) et l’état supraconducteur (S) peut se décrire à partir 

du formalisme de Ginzburg – Landau. La différence de densité d’énergie libre entre ces 

deux états s’écrit alors (pour le système « supraconducteur + bobine ») : 

  

 

 

 

Exercice (extrait partiel 2007) 

1) On place un cylindre supraconducteur creux d’épaisseur d et de rayon r (d<< " << r) dans 

un champ magnétique B parallèle à son axe. Montrer que le cylindre est parcouru par un 

courant de vitesse :              

 

où s est un entier et # le flux traversant le cylindre (on donnera la signification de #0)  

 

2) Que devient cette vitesse si le cylindre est « coupé » par une partie non 

supraconductrice. Tracer vs en fonction de B dans les deux cas ?. 

 

3) On se place dans le cas 1, montrer que :    

 

4) Montrer que $%$2 s’annule pour une valeur critique de la température : 

 

où Tc est la température critique en champ nulle et 1/&2=1/&0
2(1-T/Tc) 

 

5) La figure ci-contre représente la dépendance en champ 

de la chaleur spécifique obtenu 1.05K (a) et 1.00K (b) dans 

un anneau cylindrique d’aluminium (effet Little-Parks). 

Donner une valeur approchée de la température critique de 

l’aluminium. 

 

6) Expliquer l’origine des oscillations ('C) et du saut 

principal (!C). 

 

7) La transformé de Fourier de la courbe (b) est représentée 

en Figure (c). Interpréter le résultat obtenu, en déduire la 

valeur du rayon r.  

Etat Mixte

• interaction vortex-vortex (par unité de longueur) :
W12 = Φ0

µ0
B(r) = Φ2

0
2πµ0λ2

L
K0(r/λL)

~F12 = −~∇W12 = Φ2
0

2πµ0λ3
L
K1(r/λL) ~ur =

{
Log(r/ξ) si r < λ,

exp(-r/λ) si r > λ.

= Φ0
~J1 × ~z

attention ceci est la force exercée par un courant ( ~J1) sur une
ligne de champ (2) alors que la force de Laplace est au contraire
la champ exercée par un champ sur une ligne de courant.
→ formation d’un réseau triangulaire.

!"

I<I0

I>I0

T<Tc

T>Tc
f

#

#eq$0

#eq=0

B0

Normale Supraconductrice

%

x

nS

&

J

y

Jc

Bmax

Bc2

B

Bc2Bc2

Bc1

Faible K

Fort K

1

2

5 K

Bmax

Bc1

champ faible

n

neq'g

avec interaction

sans interaction

n((1-H)0)

Meissner London Abrikosov

Hc1 Hc2M H

Cascade de vortex dM/dH!*

Hp Hc2M Ha

pente 1/(1-N) pente 1/N

Cylindre L>>R

Sphère Film t<<R 

z

2r

0 d

B0

z

SUPRA

Normal
Hc

Tc

H

T

-1

0

1

2

3

4

5

6

20 25 30 35

!
C

p
(T

,H
)/

T
 (

m
J.

m
o

l-1
.K

-2
)

0T

1T

2T

3T

5T

T (K)

'g

%

1/2+0Hc
2

1/2+0(H-Hc
2)

r

cout en énergie 
de condensation

gain en enthalpie 
libre de surface

S N S

Ha

Hd

B0

x

Normale Supraconductrice

C

Hc2

Tc

H

T

Hc1

T

C

Pic de C : Hc1

Saut de C : Hc2

Hc2 Hc HM

S1
S2

V

I

V

C

R

i0

-i0

s=0 s=1 s=2

"/"0

1/2 1 3/2 2

#"jct

i

Imax

I I

V V

B

I/2+i

I/2-i

I

La

R
a

z

r

1

2

z

ur

19



remarque Sous l’action d’un courant J , le réseau de vortex ”glisse” perpendiculairement à J générant
un champ électrique ~E = ~v × ~B donnant lieu à une résistance électrique non négligeable : R = Rn × H

Hc2
(résistance de Bardeen-Stephens, Rn est la résistance de l’état normal). Pour éviter cette dissipation il
est nécessaire de piéger les vortex.

Elasticité vs désordre Si les interaction vortex-vortex devrait conduire à l’existence d’un réseau
de vortex, la présence de défauts aura, au contraire, tendance à détruire l’ordre à longue portée. Il n’est
alors pas évident de ”devinner” quel sera la structure des vortex dans un échantillon réel. Pour cela il est
important de connâıtre les énergies mises en jeu.

• Le réseau possède une élasticité et on peut définir une énergie associée à toute déformation du réseau
: Eel = C

2

∫
(∇u)2ddr ou u est le déplacement de la ligne de flux / sa position ”idéale”

→ Cii constante élastique/unité de longueur :
C11 : compression ∼ B2/µ0

C44 : torsion ∼ B2/µ0

C66 : cisaillement ∼ BΦ0/(16πµ0λ
2
L)

• interaction vortex / défauts : tout défaut topologique ou chimique ”affaiblissant” la supraconductivité
constitue un centre de piegeage pour les vortex car l’énergie de condensation associée à la formation du
coeur normal y est plus faible : Edes =

∫
V (r)ρ(r)ddr où V est le potentiel de piegeage (on suppose ici

que l’on est en présence d’un grand nombre de défauts en interaction faible avec les vortex) et ρ est la
densité de vortex : ρ =

∑
i δ(r −R0

i − ui) (où R0
i serait la position ”idéale” du vortex).
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En introduisant un champ de déformation φ(r, z) = r − u(r, z), la densité peut s’écrire sous la forme :
ρ = ρ0[1 + ∂αuα +

∑
K 6=0 exp(iKφ)] 1 . Le second terme correspond aux lentes fluctuations de la densité

(K ∼ 0) et on peut montrer qu’il ne joue un rôle que pour d ≤ 2. Le dernier terme a été introduit pour
tenir compte des fluctuations à courte distance liées à la présence d’un grand nombre d’impuretés (plus
courte que la distance inter-vortex, ce terme n’existe pas dans le cas des cristaux atomiques). Les lignes
de champs cherchent à ”optimiser” leur position au sein du potentiel associé à la distribution aléatoire
des défauts + énergie élastique. Petit à petit elles s’écartent de leur position idéale : existe-t-il un taille
caractéristique (Ra) pour laquelle u ∼ a0 (pas du réseau).

1T.Giamarchi and P.Le Doussal, Phys. Rev. B, 52, 1242 (1995).
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Une analyse dimensionelle (pour d=3) permet d’écrire: Eel ∼ C
2 ( a0

Ra
)2R3

a alors que le terme de désordre
(dernier terme) varie comme Edes ∼ V 1

a2
0

√
R3

a (en introduisant ρ0 = 1/a2
0, la racine carrée est liée à la

moyenne statistique sur le désordre aléatoire)

En égalant ces deux terme on trouve que Ra ∼ C2a8
0

V 2 .

Que se passe-t-il pour r > Ra ? → le réseau se brise-t-il en cristallites ?

Pour quantifier le désordre, on défini : A(r) = < |u(r)− u(0)|2 >

(< ... > : moyenne sur les fluctuations thermiques, ... : moyenne sur le désordre). Le calcul de A (i.e.
de u(r)) est un calcul très complexe notamment du fait qu’il existe des fluctuations de la densité à des
échelles plus petites que le pas du réseau (la densité des défauts est très largement supérieure à celle des
vortex). Ce calcul admet néanmoins une solution exacte pour les petites valeurs de R (due à Larkin)
pour lesquelles on peut écrire Edes =

∫
f(r)u(r)ddr, on montre alors que, en dimension d, A(r) ∝ r4−d

pour r < Rc (avec u(Rc) = ξ). Pour Rc < r < Ra u continue à crôıtre de facon algébrique mais avec un
exposant différent : A(r) ∝ r2ν mais pour r > Ra : A(r) ∝ logr : accroissement extrêmement lent du
désordre.

T.Giamarchi et P.Le Doussal ont montré qu’il existe une nouvelle STRUCTURE DE LA MATIERE,
baptisée VERRE DE BRAGG intermédiaire entre le cristal parfait et le système désordonnée. Cette phase
est caractérisée par :

• Un ordre à longue distance ”presque parfait” : caractérisé par des pics de diffraction (divergence
en loi de puissance pour q = K). Le facteur de diffraction S(q) est la TF de la fonction de la fonction
de corrélation C(r) = exp(−K2A(r)/2). Dans le cas d’un ordre parfait C(r) = 1 [ou exp(−K2

0 l2T /2) en
présence de fluctuations thermiques] et S(q) = δ(q−K0) alors que dans le cas d’un système désordonné C(r)
décrôıt exponentiellement (sur une distance L) conduisant à un élargissement de S(q) (avec une largeur
à mi-hauteur ∼ 1/L). Dans le cas du verre de Bragg C(r) ∝ 1/rη (avec η ∼ 1) et S(q) ∼ 1/(q −K0)2.
En fait, on peut montrer que dans une expérience de diffraction la largeur à mi-hauteur des pics est fixée
par la résolution de l’instrument alors que leur hauteur est directement proportionnelle à Ra. Comme Ra

décrôıt avec B, les pics s’effondrent sans élargissement (l’intensité passe dans les ailes du pic).

e
-K0

2
lT

2
/2

Fluctuations Thermiques

cristal parfait

rsystème désordonné

L Verre de Bragg

1/r

C(r)
1

K0 q

1/L

S(q)
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• L’absence de défauts topologiques (pas de dislocations)

• Des propriétés dynamiques vitreuses.

ce problème est caractéristique d’un grand nombre de systèmes tels : les cristaux électroniques, les
billes chargées, les ondes de densité de charges et donc les vortex dans les supraconducteurs..... mais cela
nécessite une double interaction : particule-particule (élasticité) et particule-désordre et donc l’existence
de 2 échelles de longueur et ce concept ne s’applique donc pas aux cristaux atomiques.

Influence du champ magnétique, ”fusion” du verre de Bragg : L’augmentation de la con-
stante élastique avec B (rigidification du ”réseau” du fait de la décroissance de la distance inter-vortex)
étant plus faible que 1/a4

0, Ra diminue avec B (typiquement comme 1/B2 dans un modèle simple : le
désordre effectif crôıt abec B)) et lorsque Ra ≈ 20a0 : A(a0) ∼ c2

La2
0 avec cL ∼ 0.2, le réseau devient

instable et des dislocations prolifèrent dans le solide de vortex.
Phénomène identique à la FUSION mais induite par H et non pas T : transition ORDRE-DESORDRE
(1er ordre) entre le verre de Bragg et un ”verre de vortex” (lignes enchevêtrées). La fusion est également
possible si Eel ∼ kT (les fluctuations thermique conduisent à une valeur de u2

th ∼ T/c et Tm/c ∼ c2
l a

2
0).

On obtient donc plusieurs phases de vortex possible selon la valeur de T et/ou H.
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Remarque 1 : Dans la majorité des cas Ra >> taille du systéme et la ”signature” du verre de Bragg
ne peut pas être observée, il a fallut attendre la découverte des oxydes ayant un fort caractére 2D (donc
un C très faible mais aussi une forte Tc et donc des fluctuations thermiques, kT , fortes) pour mettre en
évidence l’existence de ces nouvelles phases de vortex.

Remarque 2 : Le mouvement des vortex dans la phase liquide conduit à une forte dissipation (R 6= 0) et
il est très difficile de différencier le liquide de vortex de l’état normal, la ligne Hc2 - si elle existe toujours...
- devient alors très difficile à mesurer (la ligne Hc1 n’a pas été représentée par simplicité).
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Piégeage des vortex, courant critique : On s’intéressera ici uniquement au piegeage d’un vortex
par un grand nombre de défauts (de densité n) mais ne pouvant pas pieger individuellement un vortex
(piegeage collectif faible). On suppose que le rayon d’action d’un piege est ∼ ξ. On note fp la force
excercée par un défaut. L’énergie (par unité de longueur) associée au piegeage par les défauts est alors
Edes/L =∼ fp

√
Nξ/L (le gain est proportionnel à la racine carrée du nombre de défauts N = nξ2L

rencontré par la ligne, statistique de type ”marche aléatoire”). Mais ces déformations (de l’ordre de ξ)
ont un coût en énergie élastique : Eel/L ∼ ε0(ξ/L)2 où ε0 est la ”tension de ligne” que l’on a déjà ren-
contré lors du calcul de Hc1 (ordre de grandeurs, on peut ”oublier” le terme en Ln(κ)+c(κ)) : ε0 = Φ2

0
4πµ0λ2

L
.

On obtient une longueur optimale permettant d’obtenir le gain Edes/L maximal sans exéder Eel/L :

Lc ∼ ( ε20ξ2

γ )1/3 où γ = f2
p nξ2 (pour laquelle Edes ∼ Eel).

On défini ainsi une énergie Uc = Eel(L = Lc) (≡ Edes(L = Lc)) ∼ (γε0ξ
4)1/3.

En présence d’une densité de courant J , il s’exerce une force de Lorentz sur la ligne FL = JΦ0Lc

(JLcLy ×Lx ×B et BLxLy = Φ0) et le gain énergétique associé à un déplacement de l’ordre de ξ (rayon
d’action des défauts) est donc EL ∼ JΦ0Lcξ. Si EL > Ec le vortex se ”dépiege” et on obtient donc une
densité de courant critique pouvant circuler sans déplacement des vortex :

Jc = ε0
Φ0ξ × ( ξ

Lc
)2 où J0 = ε0

Φ0ξ est le courant maximal pouvant être appliqué sans destruction des paires.

• TD 4

On se place dans le cadre du modèle de « piégeage collectif ». On 
néglige les interactions entre vortex (champ faible). Chaque vortex est 
alors piégé « collectivement » par les défauts présents dans le matériau. 
Le vortex (de direction moyenne Oz) se déforme pour adopter une 
configuration lui permettant de minimiser son énergie totale (Uc). On 
note u2(r) le déplacement quadratique moyen d’un vortex à l’abscisse r 
(=Lz) par rapport à sa position « idéale » (i.e. en l’absence de défauts) 
 

1) Quelles sont les deux (principales) énergies entrant en compte dans le 
calcul de Uc en l’absence de courant. On peut montrer que u2(r)=!2(r/Lc)2" 
ou ! est la longueur de cohérence et " est un exposant caractéristique du 
régime de piégeage considéré (1/2 < " < 1). Quelle est la signification 
physique de Lc.  

 
L’énergie de piégeage du vortex s’écrit alors #P(r)=Uc(r/Lc)2"-1.  
 

2) En appliquant la force de Lorentz associée à une densité de courant J sur 
un « cube » (LxLyLz, voir figure ci-contre) montrer que l’énergie de Lorentz 
associée à un déplacement u est de l’ordre de #L=J$0Lc!(r/Lc)"+1. 
 
4) Tracer schématiquement l’évolution de #=#P-#L en fonction de r pour 
différentes valeurs de J (J ~0, J < Jc et J > Jc où Jc est le courant au delà 
duquel le vortex est dépiégé). En déduire que, pour J<Jc, il existe une longueur « optimale » (Lopt) 
permettant de piéger des segments de vortex et donner la valeur de #(r=Lopt,J) correspondante.  
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Remarque 1 : Le mouvement des vortex pour J > Jc conduit
à l’apparition d’un champ électrique E = v × B et donc
à de la DISSIPATION (E.J), on perd l’intérêt premier du
supraconducteur (R 6= 0).

Pour T > 0, le dépiegeage des vortex est thermiquement possi-
ble même si J < Jc, on peut montrer que l’énergie de piegeage
dépend du courant : U(J) ∼ Uc((Jc/J)α − 1), la vitesse
de déplacement est alors v ∝ exp(−U(J)/kT ) et le champ
électrique correspondant E(J) = v ×B ∝ exp(−U(J)/kT ). Ce
déplacement est appelé FLUAGE.
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Remarque 2 : Il est également possible d’avoir des centres de piegeage ”fort” : macles, fissures, agrégats
non supraconducteurs, défauts colonnaires introduits artificiellement par irradiation aux ions lourds,....

Remarque 3 : Pour les fortes valeurs de H, on doit tenir compte de l’interaction entre les vortex dans le
calcul de Uc (on remplace ε0 car Cii) mais le raisonnemant est similaire.

Remarque 4 : Les lignes telles les parois de domaines magnétiques, les fronts de mouillage ou de feux de
forêts, les lignes de fracture et/ou les dislocations.... relèvent de la même problématique.

Comment mesure-t-on expérimentalement Jc ?

→: mesure d’aimantation. En effet, à l’aimantation dite réversible (voir chapitre précédent) s’ajoute
une contribution irréversible liée à la distribution inhomogène des vortex : lorsqu’on augmente H des
vortex se créent à la périphérie mais ces vortex ne peuvent pas gagner le centre de l’échantillon car ils
restent piégés par les défauts présents près des bords (on néglige ici les effet géométriques) : il apparat
donc un gradient de champ magnétique (du fait de la plus forte densité de vortex près des bords) liée au
courant critique par l’équation de Maxwell ~rot ~B = µ0

~Jc et donc une aimantation (irreversible) associée
: M = 1

µ0d

∫
Bdx−H. Cette contribution est en effet irreversible car les vortex restent piégés au centre

lorsque B décrôıt et la distribution de B est différente pour B croissant et décroissant.

L’évolution de cette composant de M en fonction du champ appliquée est représentée ci-dessous (la
composante réversible n’est pas représentée). Pour un échantillon infini, rotB ∼ ∂B/∂x = µ0Jc et en
champ croissant B décroit donc ∼ linéairement avec x (a) (voir aussi examen ci-dessous). L’aimantation
(irréversible) diminue jusqu’à ce que le front arrive au centre de l’échantillon (b) puis reste constante (si
Jc ne dépend pas de B) ∼ −Jcd/2 (c) où d est le rayon de l’échantillon). Lorsque l’on décroit le champ, le
profil de B s’inverse (d)(les vortex près des bords quittent l’échantillon) et l’aimantation augmente jusqu’à
atteindre +Jcd/2 (e). Il reste donc une aimantation positive (vortex piégés) dans l’échantillon même pour
Ha = 0. Remarque : Pour T > 0, la largeur du cycle n’est pas exactement déterminée par Jc mais le
courant induit J défini par la relation E(J) et l’équation de Maxwell E/d ∼ ∂B/∂t.
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forêts, les lignes de fracture et/ou les dislocations.... relèvent de la même problématique.

Comment mesure-t-on expérimentalement Jc ?

→: mesure d’aimantation. En effet, à l’aimantation dite réversible (voir chapitre précédent) s’ajoute

une contribution irréversible liée à la distribution inhomogène des vortex : lorsqu’on augmente H des

vortex se créent à la périphérie mais ces vortex ne peuvent pas gagner le centre de l’échantillon car ils

restent piégés par les défauts présents près des bords (on néglige ici les effet géométriques) : il apparat

donc un gradient de champ magnétique (du fait de la plus forte densité de vortex près des bords) liée au

courant critique par l’équation de Maxwell �rot �B = µ0
�Jc et donc une aimantation (irreversible) associée

: M =
1

µ0d

�
Bdx−H. Cette contribution est en effet irreversible car les vortex restent piégés au centre

lorsque B décrôıt et la distribution de B est différente pour B croissant et décroissant.

L’évolution de cette composant de M en fonction du champ appliquée est représentée ci-dessous (la com-

posante réversible n’est pas représentée). Pour un échantillon infini, rotB ∼ ∂B/∂x = µ0Jc et en champ

croissant B décroit donc ∼ linéairement (a) (voir aussi examen ci-dessous). L’aimantation (irréversible)

diminue jusqu’à ce que le front arrive au centre de l’échantillon (b) puis reste constante (si Jc ne dépend

pas de B) ∼ −Jcd/2 (c) où d est le rayon de l’échantillon). Lorsque l’on décroit le champ, le profil de B

s’inverse et l’aimantation augmente (d)(les vortex près des bords quittent l’échantillon) jusqu’à atteindre

+Jcd/2 (e). Il reste donc une aimantation positive (vortex piégés) dans l’échantillon même pour Ha = 0.
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(e)

x

B
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• TD 5
 

On mesure l’induction B à la surface d’un film mince de Nobium. 
 
1) On fait varier progressivement le champ magnétique extérieur 
µ0Ha de 0 à ~ 0.02T puis de ~ 0.02T à 0. On mesure la distribution 
de Bz présentée sur la figure ci-contre (en fonction du numéro de la 
sonde) pour différentes valeurs de Ha (appliqué perpendiculairement 
au film). Discuter la forme des profils obtenus. Lors de quelle 
séquence de champs (i.e. champ croissant ou décroissant) ces profils 
ont-ils été réalisés ? Le Nobium est-il un supraconducteur de type I 
ou de type II (justifier votre réponse) ? 
 
2) Dessiner schématiquement les profils que l’on aurait obtenu lors 
de l’autre séquence (pour quelques valeurs de Ha).Dessiner 
schématiquement quelques lignes de flux dans le film (en vue de profil) pour µ0Ha ~ 0.02T. Ce profil 
de champ est associé à un courant critique Jy supposé indépendant de B. Quelle relation lie J et B, en 
déduire pourquoi le profil n’est pas parfaitement linéaire pour µ0Ha ~ 0.02T?  
 

Eléments de théorie BCS (Bardeen - Cooper - Schrieffer, Prix Nobel 1972)

Si on note Φext le potentiel extrieur, Φion celui des ions (nus) et Φel celui des électrons, le poten-
tiel total Φ = Φext + Φion + Φel est relié à Φext par l’intermédiaire d’une constante diélectrique ε :
Φext/ε = (Φext+Φion)/εel = (Φext+Φel)/εion et ε est donc égal à εel +εion−1. L’écrantage de la répulsion
Coulombienne à longue distance à l’intérieur du gaz électronique conduit à remplacer V (r) = e2/(4πε0r)
par [e2/(4πε0r)]exp(−k0r) soit V (q) ∝ 1/q2 par V (q) ∝ 1/(q2 + k2

0) et on a donc εel = 1 + k2
0/q2 (si

ω << vF q, εel(k, ω) ≈ ε(k)). Par ailleurs la réponse des ions peut être obtenue par analogie au mode de
vibration longitudinale d’un gaz électronique soumis à un champ extérieur : εion = 1−Ω2

p/ω2 (ou Ωp est
la fréquence plasma des ions). On en déduit que :
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1
ε = 1

1+k2
0/k2 × ω2

ω2−Ω2
p/εel

ou Ω2
p/εel = ω(k) est la relation de dispersion des phonons. On remarque donc que si h̄ω = εk − εk‘ <

h̄ω(k − k‘), ε est négatif et l’interaction effective entre électrons devient donc ATTRACTIVE. C’est
ce ”changement de signe” de la constante diélectrique qui est à la base de la supraconductivité. Seul
l’interaction entre électrons proches du niveau de Fermi est sensiblement affectée par les phonons et dans
le cas des supraconducteurs, l’état ~k est couplée à un état −~k par ce potentiel attracteur (noté ci dessous
-V) ”par l’échange d’un phonon” : on forme alors une PAIRE DE COOPER (q=2e).

Soit un Hamiltonien H0 dont les fonctions propres |n > et les valeurs propres En sont connues. Soit
H = H0 + V , on note |α > les nouvelles fonctions d’ondes :

∑
nCα

n |n >,
< m|H|α >= Cα

mEm +
∑

n Cα
n < m|V |n >= E.Cα

m, et les Cα
m sont donnés par :


V11 + E1 − E V12 V13 ...

V21 V22 + E2 − E V23 ...
V31 V32 ... ...

................. ... ... ...

 .


Cα

1

Cα
2

Cα
3

...

 =


0
0
0
...


On considère 4 états : |k >, | − k >, |k′ > et | − k′ > correspondant à 6 états à 2 particules |k,−k >,

|k, k′ >, |k,−k′ >.... Seuls |k,−k > (d’énergie 2ε) et |k′,−k′ > (d’énergie 2ε′) sont couplés (l’énergie des
autres états n’est pas affectées par le coupage) et la matrice se réduit à :

2ε− V − E 0 0 0 0 −V
0 ε + ε′ − E 0 0 0 0
0 0 ε + ε′ − E 0 0 0
0 0 0 ε + ε′ − E 0 0
0 0 0 0 ε + ε′ − E 0
−V 0 0 0 0 2ε′ − V − E


soit un bloc

(
2ε− V − E −V

−V 2ε′ − V − E

)
à diagonaliser. Cette diagonalisation conduit 2 états

(|α > et |β >) dont un a une énergie beaucoup plus basse (i.e. abaissé de ∆) que 2ε (et 2ε′). Dans le
cas particulier ou ε = ε′, |α >= 1/

√
2(|k,−k > +|k′,−k′ >) et |β >= 1/

√
2(|k,−k > −|k,−k >) avec

Eα = 2ε− 2V et Eβ = 2ε.
Si on généralise à tous les état 0 < εk < h̄ωD on a :


V (C1 + C2 + C3 + ....) = C1(2E1 − E)
V (C1 + C2 + C3 + ....) = C2(2E2 − E)
V (C1 + C2 + C3 + ....) = C3(2E3 − E)

...

soit 1
V =

∑
k

1
2Ek−E avec E = 2(EF −∆) et si on note εk = Ek − EF ∼ h̄2k2/2m− EF :

1
V =

∑
k

1
2(εk+∆)
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2�) et |k�,−k
�
> (d’énergie 2�

�) sont couplés (l’énergie des autres états n’est pas affectées par le coupage)

et la matrice se réduit à :




2�− V − E 0 0 0 0 −V

0 � + �
� − E 0 0 0 0

0 0 � + �− E
� 0 0 0

0 0 0 � + �
� − E 0 0

0 0 0 0 � + �
� − E 0

−V 0 0 0 0 2�
� − V − E





soit un bloc

�
2�− V − E −V

−V 2�
� − V − E

�
à diagonaliser. Cette diagonalisation conduit 2 états

(|α > et |β >) dont un a une énergie beaucoup plus basse (i.e. abaissé de ∆) que 2� (et 2��). Dans le

cas particulier ou � = �
�, |α >= 1/

√
2(|k,−k > +|k�,−k

�
>) et |β >= 1/

√
2(|k,−k > −|k,−k >) avec

Eα = 2�− 2V et Eβ = 2�.

!

Système avec interactionSystème sans interaction

Etat fortement lié

!"D EF

Si on généralise à tous les état 0 < �k < h̄ωD on a :
1
V =

�
k

1
Ek−E avec E = 2(EF −∆) et Ek ∼ 2�, soit :

1
V =

�
k

1
2(�k+∆) = g(EF )

� h̄ωD

0
d�

�+∆

i.e.
1
V ∼ g(EF )Ln(

h̄ωD
∆ ) (∆ << h̄ωD et g(EF ) est la den-

sité d’états de paires). Soit ∆(0) ∼ h̄ωDexp(−1/V g(EF )

Dans le cas de la création de N paires, le calcul est plus compliqué mais conduit également à l’existence

d’un niveau à−∆ sous EF et on a
1
V =

�
k

1
2Ek

avec Ek =
�

�
2
k + ∆2 et : ∆(0) = 2× h̄ωDexp(−1/V g(EF )

Lorsque T �= 0, les état �k ont la probabilité fk =
1

e�k/kT +1
d’être occcupé par un électron célibataire, la

probabilité de pouvoir former la paire est alors 1 − 2fk et
1
V =

�
k

1
2Ek

(1 − 2fk), en écrivant que ∆ = 0

pour T = Tc, on trouve kTc = 1.14h̄ωDexp(1/(g(EF )V ), soit 2∆(0) = 3.52kTc .

• ∆k = (∂k/∂E)E=EF ×∆ =
m∆
h̄kF

et ∆k∆x ∼ 1→ ∆x = ξ =
h̄vF
∆ .

ξ correspond à la distance moyenne entre deux électrons d’une paire mais attention le couplage a lieu dans

l’espace réciproque (+k/-k). Un calcul exact donne ξ =
h̄vF
π∆ . On remarquera que, contrairtement à GL,

la théorie BCS permet d’obtenir une expression de ξ.

• 2g(EF )×∆ électrons sont donc condensés dans l’état supraconducteur. Le gain moyen en énergie est

∆/2 (le niveau de Fermi est donc abaisée de cette valeur) et l’énergie totale gagnée est donc g(EF )∆2 =

µ0H
2
c L

3
/2. Dans un modèle d’électrons libres :

g(EF ) =
3
2

N
EF

EF =
mv2

F
2

ξ =
h̄vF
π∆

λ
2
L =

mL3

µ0Nq2





Hc =

√
6

π
Φ0

2π
√

2µ0λLξ
, très proche de l’expression GL :

Φ0
2π
√

2µ0λLξ
.
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On a donc 1
V = g(EF )

∫ h̄ωD

0
dε

ε+∆ ∼ g(EF )Ln( h̄ωD

∆ )
(∆ << h̄ωD et g(EF ) est la densité d’états de paires).
Dans le cas de la création de N paires, le calcul est plus
compliqué mais conduit également à l’existence d’un
niveau à −∆ sous EF et à

∆(0) = 2× h̄ωDexp(−1/V g(EF )

Lorsque T 6= 0, les état εk ont la probabilité fk = 1
eεk/kT +1

d’être occcupé par un électron célibataire,
la probabilité de pouvoir former la paire est alors 1− 2fk et 1

V =
∑

k
1

2Ek
(1− 2fk), en écrivant que ∆ = 0

pour T = Tc, on trouve kTc = 1.14h̄ωDexp(1/(g(EF )V ), soit 2∆(0) = 3.52kTc .

• ∆k = (∂k/∂E)E=EF
×∆ = m∆

h̄kF
et ∆k∆x ∼ 1 → ∆x = ξ = h̄vF

∆ .
ξ correspond à la distance moyenne entre deux électrons d’une paire mais attention le couplage a lieu dans
l’espace réciproque (+k/-k). Un calcul exact donne ξ = h̄vF

π∆ . On remarquera que, contrairtement à GL,
la théorie BCS permet d’obtenir une expression de ξ.

• 2g(EF )×∆ électrons sont donc condensés dans l’état supraconducteur. Le gain moyen en énergie est
∆/2 (le niveau de Fermi est donc abaisée de cette valeur) et l’énergie totale gagnée est donc g(EF )∆2 =
µ0H

2
c L3/2. Dans un modèle d’électrons libres :

g(EF ) = 3
2

N
EF

EF = mv2
F

2

ξ = h̄vF

π∆

λ2
L = mL3

µ0Nq2

 Hc =
√

6
π

Φ0

2π
√

2µ0λLξ
, très proche de l’expression GL : Φ0

2π
√

2µ0λLξ
.
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Il apparâıt donc un gap dans le spectre des
excitations des quasiparticules (électrons non
appariés) dont la densité d’états devient :
g(E) ∝ E/

√
E2 −∆2

• LE CAS DE MgB2. MgB2 a une structure hexagoonal identique à celle du graphite. Elle fait donc
intervenir des liaisons covalentes planaires (de type sp2, liaisons σ) et des liaisons 3D (recouvrement radial
des orbiatales pz, liaison π).
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c
b

a

orbitales ! : 

recouvrement de 

2 orbitales p

orbitale " :

recouvrement de 2 

orbitales sp2p

sp2

sp2
sp2

Dans le cas du graphite les liaisons σ se situent très en dessous du niveau de Fermi et assurent la
cohésion du cristal (système covalent), la conduction se fait via les liaisons π, la particularité de MgB2 est
liée à un transfert de charges due à l’intercalation des ions Mg2+, la bande σ se trouve alors partiellement
vidée et la conduction se fait désormais via les bandes π ET σ, le couplage e-phonon de la bande σ
est particulièrement bon et de plus, de par le caratère 2D de cette bande, la densité d’états est forte
∼ mL2/πh̄2 malgré un taux de ”dopage” faible : la Tc est alors de l’ordre de ∼ 40K. La bande π
conduit elle aussi à de la supraconductivité mais avec une Tc ∼ 10K : DEUX SUPRACONDUCTEURS
COEXISTENT dans un même matériau.
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
the hole doping of the s bands. Belashchenko et al. [17]
have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
magnitude and effects of interplanar coupling. The light
hole and heavy hole s bands in MgB2 can be modeled
realistically in the region of interest (near and above ´F)
with dispersion of the form

´k ! ´0 2
k2

x 1 k2
y

2m"
2 2t# cos!kzc# , (1)

where the planar effective mass m" is taken to be positive
and t# ! 92 meV is the small dispersion perpendicular to
the layers. The light and heavy hole masses are m"

lh"m !
0.20, m"

hh"m ! 0.53, and the mean band edge is ´0 !
0.6 eV. In general, the in-plane (yxy) and perpendicular
(yz) Fermi velocities are expected to be anisotropic: yxy $
kF"m", yz $ 2ct# where t# is small. Near the band edge
(kF # 2m"ct#) this anisotropy becomes small, and this is
roughly the case in MgB2. The p bands are also effectively
isotropic [10,11].

Now we discuss why the quasi-2D character of the s
bands is an important feature of MgB2 and its supercon-
ductivity. Neglecting the kz dispersion, the 2D hole den-
sity of states is constant: N0

h!´# ! m"
lh1m"

hh

p h̄2 ! 0.25 states"
eV-cell, independently of the fact that the hole doping
level is small. The kz dispersion has only the small effect
displayed in Fig. 2, where the discontinuity in the quasi-2D
DOS is seen to be broadened by $2t#. For MgB2 the s
band contribution to N!´F# is reduced by about 10% by
kz dispersion.

If superconductivity is primarily due to the existence of
holes in the s band, and we provide evidence for such a
picture below, then the DOS in Fig. 2 suggests that electron
doping will decrease N!´F#. The decrease will be smooth
to a doping level corresponding to an increase by 0.4 eV
of the Fermi level. Then N!´F# should drop precipitously
with further doping. A rigid band estimate gives a value of
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
the hole doping of the s bands. Belashchenko et al. [17]
have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
magnitude and effects of interplanar coupling. The light
hole and heavy hole s bands in MgB2 can be modeled
realistically in the region of interest (near and above ´F)
with dispersion of the form

´k ! ´0 2
k2

x 1 k2
y

2m"
2 2t# cos!kzc# , (1)

where the planar effective mass m" is taken to be positive
and t# ! 92 meV is the small dispersion perpendicular to
the layers. The light and heavy hole masses are m"

lh"m !
0.20, m"

hh"m ! 0.53, and the mean band edge is ´0 !
0.6 eV. In general, the in-plane (yxy) and perpendicular
(yz) Fermi velocities are expected to be anisotropic: yxy $
kF"m", yz $ 2ct# where t# is small. Near the band edge
(kF # 2m"ct#) this anisotropy becomes small, and this is
roughly the case in MgB2. The p bands are also effectively
isotropic [10,11].

Now we discuss why the quasi-2D character of the s
bands is an important feature of MgB2 and its supercon-
ductivity. Neglecting the kz dispersion, the 2D hole den-
sity of states is constant: N0

h!´# ! m"
lh1m"

hh

p h̄2 ! 0.25 states"
eV-cell, independently of the fact that the hole doping
level is small. The kz dispersion has only the small effect
displayed in Fig. 2, where the discontinuity in the quasi-2D
DOS is seen to be broadened by $2t#. For MgB2 the s
band contribution to N!´F# is reduced by about 10% by
kz dispersion.

If superconductivity is primarily due to the existence of
holes in the s band, and we provide evidence for such a
picture below, then the DOS in Fig. 2 suggests that electron
doping will decrease N!´F#. The decrease will be smooth
to a doping level corresponding to an increase by 0.4 eV
of the Fermi level. Then N!´F# should drop precipitously
with further doping. A rigid band estimate gives a value of
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
the hole doping of the s bands. Belashchenko et al. [17]
have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
magnitude and effects of interplanar coupling. The light
hole and heavy hole s bands in MgB2 can be modeled
realistically in the region of interest (near and above ´F)
with dispersion of the form

´k ! ´0 2
k2

x 1 k2
y

2m"
2 2t# cos!kzc# , (1)

where the planar effective mass m" is taken to be positive
and t# ! 92 meV is the small dispersion perpendicular to
the layers. The light and heavy hole masses are m"

lh"m !
0.20, m"

hh"m ! 0.53, and the mean band edge is ´0 !
0.6 eV. In general, the in-plane (yxy) and perpendicular
(yz) Fermi velocities are expected to be anisotropic: yxy $
kF"m", yz $ 2ct# where t# is small. Near the band edge
(kF # 2m"ct#) this anisotropy becomes small, and this is
roughly the case in MgB2. The p bands are also effectively
isotropic [10,11].

Now we discuss why the quasi-2D character of the s
bands is an important feature of MgB2 and its supercon-
ductivity. Neglecting the kz dispersion, the 2D hole den-
sity of states is constant: N0

h!´# ! m"
lh1m"

hh

p h̄2 ! 0.25 states"
eV-cell, independently of the fact that the hole doping
level is small. The kz dispersion has only the small effect
displayed in Fig. 2, where the discontinuity in the quasi-2D
DOS is seen to be broadened by $2t#. For MgB2 the s
band contribution to N!´F# is reduced by about 10% by
kz dispersion.

If superconductivity is primarily due to the existence of
holes in the s band, and we provide evidence for such a
picture below, then the DOS in Fig. 2 suggests that electron
doping will decrease N!´F#. The decrease will be smooth
to a doping level corresponding to an increase by 0.4 eV
of the Fermi level. Then N!´F# should drop precipitously
with further doping. A rigid band estimate gives a value of
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
the hole doping of the s bands. Belashchenko et al. [17]
have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
magnitude and effects of interplanar coupling. The light
hole and heavy hole s bands in MgB2 can be modeled
realistically in the region of interest (near and above ´F)
with dispersion of the form

´k ! ´0 2
k2

x 1 k2
y

2m"
2 2t# cos!kzc# , (1)

where the planar effective mass m" is taken to be positive
and t# ! 92 meV is the small dispersion perpendicular to
the layers. The light and heavy hole masses are m"

lh"m !
0.20, m"

hh"m ! 0.53, and the mean band edge is ´0 !
0.6 eV. In general, the in-plane (yxy) and perpendicular
(yz) Fermi velocities are expected to be anisotropic: yxy $
kF"m", yz $ 2ct# where t# is small. Near the band edge
(kF # 2m"ct#) this anisotropy becomes small, and this is
roughly the case in MgB2. The p bands are also effectively
isotropic [10,11].

Now we discuss why the quasi-2D character of the s
bands is an important feature of MgB2 and its supercon-
ductivity. Neglecting the kz dispersion, the 2D hole den-
sity of states is constant: N0

h!´# ! m"
lh1m"

hh

p h̄2 ! 0.25 states"
eV-cell, independently of the fact that the hole doping
level is small. The kz dispersion has only the small effect
displayed in Fig. 2, where the discontinuity in the quasi-2D
DOS is seen to be broadened by $2t#. For MgB2 the s
band contribution to N!´F# is reduced by about 10% by
kz dispersion.

If superconductivity is primarily due to the existence of
holes in the s band, and we provide evidence for such a
picture below, then the DOS in Fig. 2 suggests that electron
doping will decrease N!´F#. The decrease will be smooth
to a doping level corresponding to an increase by 0.4 eV
of the Fermi level. Then N!´F# should drop precipitously
with further doping. A rigid band estimate gives a value of
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Ces deux nappes (voir surface de Fermi correspondante sur la figure ci-dessous, en rouge : les nappes
”tubulaire” associées à la bande σ quasi-2D et en bleu le ”réseau” 3D associée à la bande π) conduisent
donc à l’existence de DEUX GAPS, qui ont été clairement mis en évidence par spectroscopie. Lorsque le
courant est injecté dans les plans ab les deux gaps sont visibles (courbes du haut) mais seul le petit gap
est lisible pour I//c (courbe du bas). Les deux bandes sont néanmoins (faiblement) couplés et il n’existe
qu’une seule Tc.
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symmetry (that is, the gap is of the same sign and non-zero
everywhere on the Fermi surface), but the size of the gap changes
greatly on the different sections of the Fermi surface. Themagnitude
of the energy gap at 4 K ranges from 6.4 to 7.2meVon the j sheets,
and from 1.2 to 3.7meV on the p sheets (Fig. 2a, b). The average
values of the gap are 6.8meV for the j sheets and 1.8meV for the p
sheets. In experimental measurements, there has been a debate on
the number of gaps3–9,21–26. Our result is consistent with the recent
experiments reporting two gaps, ranging from 1.5 to 3.5meV for the
small gap and 5.5 to 8meV for the large gap3–9,26.

The variation of the superconducting energy gap on the Fermi
surface can be measured by techniques such as high-resolution
angle-resolved photoelectron spectroscopy. Moreover, as the
j-bonding states are confined to the boron planes, the strong
pairing gap of around 6.8meV is associated with these planes
(Fig. 2c). In Fig. 2c, we introduce the concept of a local gap
distribution r(r,D) at position r given by rðr;DÞ ¼P

kjwkðrÞj2dðD2DkÞ; where wk(r) is the electron wavefunction
with crystal momentum k. Our result shows that the small gaps
should be seen preferentially in tunnelling experiments along the c
axis, as indicated in some recent measurements6,7.

Figure 3a depicts the calculated superconducting energy gaps at
various temperatures below the transition temperature. The energy
gap of the j-bonding states and that of the p-bonding states show
different temperature dependences. Compared to the small energy
gap of the p-bonding states, the large energy gap of the j-bonding
states changes more slowly at low temperature, but more rapidly
near the transition temperature. Both the p and j gaps vanish at the
same transition temperature, although their values are greatly
different at low temperatures27. This temperature dependence of
the superconducting energy gaps explains recent tunnelling, optical
and specific-heat measurements3–9.

The superconducting energy gap determines the quasiparticle
density of states. The quasiparticle energy is the excitation energy of
a system when an electron is added or removed. In a superconduc-
tor, the quasiparticle energy is equal to, or greater than, the super-
conducting energy gap D. Because the energy gap differs
considerably for the j- and p-bonding states in MgB2, the density
of quasiparticle excitations as a function of energy shows two
thresholds (Fig. 3b). Only p-bonding quasiparticle states are
allowed for energies between the minimal superconducting energy
gap of the p-bonding states and that of the j-bonding states. For
energies above the minimal superconducting energy gap of the
j-bonding states, quasiparticle excitation becomes possible for both
the j- and p-bonding states. The quasiparticle density of states can
be deduced experimentally from tunnelling experiments and var-

Figure 2 The superconducting energy gap of MgB2. a, b, The superconducting energy
gap on the Fermi surface at 4 K given using a colour scale (a), and the distribution of gap
values at 4 K (b). The Fermi surface of MgB2 consists of four distinctive sheets. Two j
sheets (‘cylinders’), derived from the j-bonding px,y orbitals of boron, are shown split into

eight pieces around the four vertical G–G lines. Two p sheets (‘webbed tunnels’), derived

from the p-bonding pz orbitals of boron, are shown around K–M and H–L lines (upper and

lower K–M lines are equivalent). The superconducting energy gap is ,7.2 meV on the

narrower j cylindrical sheet, shown in red, with variations of less than 0.1 meV. On the

wider j cylindrical sheet, shown in orange, the energy gap ranges from 6.4 to 6.8meV,

having a maximum near G and a minimum near A. On the p sheets, shown in green and

blue, the energy gap ranges from 1.2 to 3.7meV. The density of states at the Fermi

energy is 0.12 states per (eV atom spin), 44% of which comes from the j sheets and the

other 56% comes from the p sheets. c, Local distribution of the superconducting energy
gap on a boron plane and on planes at 0.05, 0.10 and 0.18 nm above a boron plane,

respectively.

Figure 3 Calculated temperature dependence of the superconducting gaps and the
quasiparticle density of states. a, Temperature dependence of the superconducting gaps.
Vertical solid curves represent the distribution of the superconducting gap values at

various temperatures from 4 K to 38 K. Dashed curves are of the form DðT Þ ¼ Dð0Þ$
ð12 ðT=T cÞp Þ1=2 fitted separately to the calculated average energy gap of the j-bonding
states and that of the p-bonding states. For the j sheets, D(0) ¼ 6.8meV

ð2Dð0Þ=k BT c ¼ 4:0Þ (k B ¼ Boltzmann’s constant) and p ¼ 2.9. For the p sheets,

D(0) ¼ 1.8 meV ð2Dð0Þ=k BT c ¼ 1:06Þ and p ¼ 1.8. b, The quasiparticle density of
states at various temperatures. The quasiparticle density of states N(q) for the

quasiparticle energy q is given by NðqÞ=Nð0Þ ¼ Rekðqþ iGÞ=ððqþ iGÞ2 2
Dðk;qÞ2Þ1=2l; where N(0) is the electron density of states at the Fermi level,
i ¼ (21)1/2, and k· · ·l indicates an average over a surface of constant q. This curve is
obtained from the calculated gap function D(k, q) and an assumed finite lifetime G of

0.1meV.

Figure 4 The specific heat of MgB2. The measured and calculated electronic contribution
to the specific heat divided by temperature are plotted as a function of temperature. The

red solid curve represents the result of our calculation. The specific heat difference

(C S 2 C N) between the superconducting and normal states is obtained by C S 2 CN ¼
2T ðd2=dT 2ÞðF S 2 F NÞ from the corresponding free energy difference (F S 2 F N) which

is calculated using a generalized Bardeen–Stephen formula28. The normal-state specific

heat is calculated to be C N ¼ Y nT with Y n ¼ 2:62mJmol21 K22 (ref. 16). Symbols are

the results of experimental measurements3–5, and the dashed curve is the standard one-

gap BCS prediction corresponding to a transition temperature of 39.4 K.
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will be able to provide direct spectroscopic information
about the superconducting energy gap. In the pure An-
dreev limit, if a quasiparticle is accelerated by an applied
voltage V such that jV j , D!e, a direct transfer to the
superconducting electrode is forbidden and a hole is then
retroreflected in the normal electrode in order to allow the
formation of a Cooper pair in the superconductor. The
overall current (and differential conductance s ! dI!dV )
for jV j , D!e is then two times higher than the value for
jV j . D!e. In the intermediate case a dip appears for
V ! 0. Two peaks are then visible at V " 6D!e. The
evolution of the dI!dV vs V curves for different interfaces
characterized with the barrier strength Z is schematically
presented in Fig. 1a. Because the point-contact geome-
try directly probes the coherence of the superconducting
state, it is probably the most adapted technique to deter-
mine the superconducting energy gap. Another advantage

∆

∆

∆

∆

(a)

(b)

FIG. 1. (a) Numerical simulation of the BTK model at
different values of the barrier strength Z, representing be-
havior of the point-contact spectra for D ! 7 meV between
Giaever tunneling (Z ! 10) and clean Andreev reflection
(Z ! 0) at T ! 4.2 K. (b) Experimentally observed evolution
of the Cu-MgB2 point-contact spectra at T ! 4.2 K (solid
lines). The upper curves are vertically shifted for clarity. The
dotted lines display fitting results for the thermally smeared
BTK model with DS ! 2.8 6 0.1 meV, DL ! 6.8 6 0.3 meV
for different barrier transparencies and weight factors.

of the point-contact spectroscopy is that the normal elec-
trode is pushed into the sample in order to probe a clean
surface.

Point-contact measurements have been performed on
polycrystalline MgB2 samples with Tc ! 39.3 K and
DTc ! 0.6 K. A special point-contact approaching
system with a negligible thermal expansion allows for
the temperature and magnetic field measurements up to
100 K. The point contacts were stable enough to be
measured in the magnetic field of a superconducting
coil. A standard lock-in technique at 400 Hz was used to
measure the differential resistance as a function of applied
voltage on the point contacts. The microconstrictions
were prepared by pressing a copper tip (formed by elec-
trochemical etching) on the freshly polished surface of the
superconductor. MgB2 samples were prepared from boron
powder (99.5% pure, Ventron) and magnesium powder
(98% Mg 1 2% KCl, MCP Techn.), in relative proportion
1.05:2. A 2 g mass of the mixed powders was introduced
into a tantalum tube, then sealed by arc melting under ar-
gon atmosphere (purity 5N5). The tantalum ampoule was
heated by high frequency induction at 950 ±C for about
three hours. After cooling down to room temperature, the
sample was analyzed by x-ray diffraction and scanning
electron microscope. Among the brittle dark grey MgB2
powder (grain size ,20 mm), a few hard but larger grains
(0.1–1 mm) were found. Laue patterns show evidence for
only a limited number of single crystals in each grain.
Resistivity and ac susceptibility measurements of these
larger grains reveal a particularly abrupt superconducting
transition (DTc # 0.6 K), indicating their high quality in
comparison with that of the fine powder.

Figure 1b shows typical examples of the conductance
versus voltage spectra obtained for the various Cu-MgB2
junctions with different barrier transparencies. All shown
point-contact conductances were normalized to the value at
the high-voltage bias. The spectrum had a more tunneling-
like character when the tip first touched the surface (i.e.,
with a barrier resistance R " 100 V# and then continu-
ously transformed into a form with a direct conductance
as the tip was pushed into the sample (down to R " 6 V).
Almost all curves reveal a two-gap structure, where the
smaller-gap maxima are displayed at about 2.8 mV and
the large gap maxima at about 7 mV, placed symmetri-
cally around the zero bias. Even if, in some case, only the
smaller gap is apparent (as shown in the lowest curve of
Fig. 1b), its width hides the contribution of the second gap.
Then, as we show below, a magnetic field can suppress
the smaller gap and the large one will definitely emerge.
All our curves could be fitted by the sum of the two BTK
conductances asS 1 $1 2 a#sL with the weight factor a
varying from "10% to "90% depending on the position
of the tip (this scattering of the a value is probably related
to different crystallographic orientations at the different
microconstrictions). We thus definitely observed two dis-
tributions with the smaller gap scattered at about 2.8 meV
and the second one at about 7 meV.

137005-2 137005-2

On remarque donc que dans ce cas la valeur des gaps est diffrente de celle prédite par le modèle BCS
: 2∆1 4meV ∼ 1.2kBTc et 2∆2 15meV ∼ 4.6kBTc

• TD 6 
 
MgB2 se caractérise avant tout par sa structure électronique particulière. En effet deux bandes 
participent à la supraconductivité et tout se passe alors comme si deux supraconducteurs 
coexistent dans un même matériau. On note !1, "1, m1 et Tc1 (resp. !2, "2, m2 et Tc2) les 
grandeurs caractéristiques du supraconducteur 1 (resp. du supraconducteur 2) et 

#F s’écrit alors :  

! 

"F =#1$1
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1) Complétez les « … » laissés libres dans l’écriture de #F ci-dessus. $ est le paramètre de 
couplage entre les deux bandes, exprimez %i et &i en fonction des grandeurs caractéristiques 
des deux supraconducteurs. 

 2) Montrez que #F peut s’écrire sous la forme 
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où M est une matrice 2x2 dont on précisera les coefficients. Par analogie avec la définition de 
Tc dans les système à 1 gap quelle sera la valeur de la température critique dans ce cas. Deux 
valeurs sont possibles de Tc, tracez leur évolution en fonction de $. En fait Les deux bandes 
couplées ne présentent qu’une valeur commune de Tc égale à la plus grande de ces deux 
valeurs, le couplage est-il « intéressant » ou non ?  

• La conduction sans perte est assurée par les paires de cooper condensées à EF mais il nous reste à
élucider un dernier point : POURQUOI R = 0 ?
Dans un métal normal sous l’action d’un champ électrique ~E, la sphére de Fermi se décale de δ~k = q ~E

mh̄ t

mais la diffusion ”compense” l’action de ~E et on obtient un équilibre pour δ~k = m~v
h̄ = q ~Eτ

mh̄ .

Dans le supraconducteur si ~k est diffusé en ~k + ~kdif , −~k est alors diffusé en −~k + ~kdif du fait du
couplage ~k/−~k (voir exercice ci-dessous) et la vitesse de déplacement global de la sphère n’est donc PAS
AFFECTE PAR LA DIFFUSION : R=0.
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Courant « critique » 

 

La transition entre l’état normal (N) et l’état supraconducteur (S) peut se décrire à partir du 

formalisme de Ginzburg – Landau. La différence de densité d’énergie libre entre ces deux états 

s’écrit alors (pour le système « supraconducteur + bobine »): 
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1) Quelle est l’origine physique des différents termes de cette expression. 

La minimisation de l’énergie libre totale conduit alors aux équations : 

(GL1) : 
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 où A est le potentiel vecteur et 

(GL2) : 
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2 où J est le courant circulant dans le matériau 

2) Commentez la différence entre l’équation (GL2) et celle obtenue à partir du modèle de London. 

 

Exercice (extrait partiel 2006) 

 

1) On suppose que la densité de paires est uniforme et on note !="!"ei#(r). Que deviennent les 

équations (GL1) et (GL2) dans ce cas. On rappelle que dans la jauge de London : 

  

2) On suppose que le supraconducteur est parcouru par un courant J, soit vs la vitesse correspondante 

des paires supraconductrices. Montrer que :   
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3) On note "!!"=-$/% et y="!"/"!!", montrer que :

  

! 

J =
h

µ
0
q"2#

y
2
1$ y

2  

4) Quelle est la signification physique de & (profondeur de pénétration) et ' (longueur de cohérence). 

 

5) Tracer J(y) et en déduire la valeur Jc maximale pouvant circuler dans le matériau. 

 

 

Exercice (extrait partiel 2006) 

 

On note ( le gap supraconducteur relié à la longueur de cohérence par 

  

! 

" = hv
F
/#$ . Une paire de Cooper est représentée par les cercles blancs sur 

la figure ci-contre. En présence d’un courant J (selon 0x) la sphère de Fermi 

est « décalée » de )kx<< kF. On s’intéresse à la diffusion vers « l’arrière » de 

l’électron « avant » de la paire (diffusion de 1 en 1’). 

 

1) On note k1 et k2 les valeurs de k des deux électrons de la paire. Donner k1 et k2 

(avant la diffusion) en fonction de kF et )kx. Montrer que l’énergie d’une paire de 

Cooper est de l’ordre de   

! 

h
2kF

2/m-2( (au premier ordre en )kx/kF). que se passe-t-il 

pour l’électron 2 lorsque 1 est diffusé en 1’, en déduire que l’énergie de la paire 

n’est pas affectée par la diffusion. 

 

2) On suppose maintenant que la paire est brisée par la diffusion 1 -> 1’. Quelles sont les nouvelles 

valeurs de k1 et k2’. Quelle est alors la valeur de l’énergie de la paire (on se limitera à un 

développement limité au premier ordre en )kx/kF). En déduire la valeur maximale (Jc) du courant 

pouvant circuler dans le matériau. Conclusion. 

 

3) Donner l’ordre de grandeur de Jc (pour T ~ 0) pour un supraconducteur de ' ~100A et & ~ 1000A. 

Une mesure effectuée sous champ (H > Hc1) montre que le matériau présente de la dissipation (i.e. une 

résistance non nulle) pour J > 105 A/cm2. Pourquoi. 

La diffusion ne brise pas la paire tant que h̄kF

m δk reste inférieur à ∆ soit pour une densité de courant
J < Jc ∼ nq∆/h̄kF ∼ Hc/λL (en introduisant J = nqv = nq h̄δk

m ).
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