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MODELE DE DRUDE DES METAUX

Le modele de Drude, constitue I'application aux métaux des développement ultimes de
la physique du XIXe¢me siecle : pour la premicre fois les charges électriques négatives des
métaux sont clairement identifiées comme étant des électrons (découverts en 1897 par JJ.
Thomson), et leurs propriétés sont traitées en utilisant les équations de Maxwell de
I'électromagnétisme et la théorie cinétique des gaz parfaits. Bien que conceptuellement faux,
ce modele permet de prédire qualitativement de nombreuses propriétés électriques et optiques
des métaux, avec méme parfois (bien que rarement) un bon accord quantitatif avec
l'expérience. Les limites de ce modele montrerent de facon criante les insuffisances de la
physique classique dans le traitement des propriétés microscopiques de la matiere. Il faudra
attendre les développements de la mécanique quantique pour fournir une description
satisfaisante des métaux, et des solides en général.

1. Hypothéses fondamentales du modéle de Drude

Pour comprendre les hypotheses de la théorie de Drude, il faut se rappeler qu'a
I'époque la structure interne des atomes n'était pas encore connue; seule l'existence de
I'électron venait d'étre mise en évidence. Drude fait I'hypothése qu'un métal est constitué
d'électrons libres de se déplacer et d'ions du réseau, supposées fixes, dont la charge compense
exactement celle du gaz d'électrons libres.

Les électrons de conduction sont traités comme un gaz parfait classique : la théorie
cinétique des gaz de Maxwell est utilisée, et les interactions électron-électron sont totalement
négligées. Sachant que pour un métal monovalent la densité électronique est de l'ordre de
1000 fois plus élevée que la densité de I'atmosphere terrestre, on peut douter de la validité de
ces hypotheses. On verra par la suite que la nature fermionique des électrons permet de

négliger les interactions électron-électron dans de nombreux métaux.

@ o © @

Electron
Ion fixe

- /@ -
o o o o
® & o o o

Figure 1.1 - Structure schématique d’'un métal dans le modele de Drude. Chaque électron a une
trajectoire aléatoire résultant des chocs avec les ions du réseau, mais on suppose qu’en moyenne la durée
entre 2 chocs consécutifs est une constante T , appelée temps de relaxation.

5
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Les électrons peuvent subir des chocs avec les ions du réseau. On suppose qu’apres chaque
choc la vitesse de I’électron est redistribuée aléatoirement, avec une norme correspondant a
I’équilibre thermodynamique a la température T : ||V || ~ 4/kgT/m. Le temps moyen entre

deux collisions est appelé temps de relaxation, et noté 7.

La densité de courant f(t) est reliée a la vitesse moyenne des électrons de conduction, V' (¢)par
la relation

J(0) = nev(r)

ou n est la densit¢ volumique d'électrons de conduction, supposée indépendante de la
température (ce qui est correct en tres bonne approximation pour la plupart des métaux).

On applique une force extérieure f(z) sur les électrons. Considérons I'évolution de la

: , . . dt
vitesse moyenne des électrons pendant un intervalle de temps dt. Une fraction — des
T
¢lectrons subira au moins une collision pendant dt, avec une contribution nulle a I'évolution de

. . , . dt R
la vitesse moyenne. La fraction restante des électrons, soit (1 ——), est soumise a la force
T
f (@)

extérieure et sa vitesse moyenne par électron V(t +dr) = V() + —=dt + O(d 12).
m

On a alors

¥ = 50+ e+ o] (1 - )

En ne gardant que les termes linéaires en dt, on obtient

d—v — N
m[V(l‘) + d_:dt] Y + f()dt + mV (1)
T

ce qui se simplifie finalement sous la forme

dv

dt

mv -
-—+f@)
T

On obtient I'équivalent de la relation fondamentale de la dynamique newtonienne ! On peut
remarquer que la résultante des chocs microscopiques introduits dans le modele est

L . o m
équivalente a une force de frottements fluide f; = ——7".
T
. : o s dv .
A chaque fois nous chercherons des solutions stationnaires définies par —— =0, soit
I . , . , .
v = — f. Nous allons appliquer ces équations aux cas d'une pure force Coulombienne pour

m
déterminer la conductivité des métaux, et d'une force de Lorentz pour décrire I'effet Hall et la

magnétorésistance.
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2. Transport électrique dans les métaux

2.1.Conductivité en courant continu

. N = g . . .
Dans ce cas les électrons sont soumis a une force f=—|e|E, et la vitesse stationnaire
- lelr—
m
- ne’*r —
La densité de courant s’écrit alors j = —n|e|V =

. re - s . .
On reconnait la loi d'Ohm locale j = opE avec la conductivité électrique en courant continu

ne-t

Opc =

On verra par la suite que la conductivité peut encore s'écrire de cette maniére lorsqu'on
considére la nature quantique des électrons, bien que cette similarité soit purement
accidentelle.

2.2.Conductivité en courant alternatif

Supposons maintenant que le gaz d'électrons est soumis a un champ électrique alternatif
E = E, e~ Pour des pulsations pas trop grandes, on pourra négliger les variations spatiales
du champ lié a sa propagation dans le conducteur, et en bonne approximation le champ est

homogene dans le conducteur.

Dans cette approximation les électrons vont suivre les variations temporelles du champ,

et la vitesse moyenne par électron s'écrira V' = Ve @) ['équation (ref) s'écrit alors :

N mv —
m(—iw)v =————|e| E
T
. \ ’ . — |6|T 1 —
qui amene le résultat suivant : v = — (—) E
m l-iwt
. ., > _, ne’r 1 — —
On réécrit alors la densité de courant : j = —nle| Vv = (1—> E=06(w)E
—1lT

d'ou l'on tire l'expression de la conductivité électrique en courant alternatif :

ne’r 1
o(@) =——(——)
l-ior
_ Opc
l—-iwt
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Il est logique en régime alternatif de trouver une conductivité sous la forme d’un nombre
complexe (cf cours d’électricité de L1). Les parties réelle et imaginaire s’écrivent

1

) —_—

@) 1+ w22 P€

0T

Sew)=  —2

(@) 1+ w222 P€

O,
qu’on peut condenser sous la forme o(w) = ﬁ exp [i arctan(w 1)] , ou l'on fait apparaitre
w’t

explicitement I'amplitude et le déphasage du courant par rapport au champ excitateur.

La figure 1.1 présente les parties réelle et imaginaire de la conductivité en fonction de la
fréquence. La partie réelle présente une forme Lorentzienne typique, connue sous le nom de
"pic de Drude". On peut expliquer simplement la diminution de la conductivité avec la
fréquence : a basse fréquence les électrons peuvent "suivre" les oscillations du champ
électrique et établir un courant alternatif, alors qu'a haute fréquence I'inertie des électrons les
empcche de suivre les variations du champ. Il n'y a pas en moyenne de courant de charges
qui se crée sous l'effet du champ : la conductivité apparait plus faible.

La largeur a mi-hauteur du pic de Drude est exactement @pyyy = 1/7. Clest pour cette
valeur également que la partie imaginaire présente un maximum, et que le déphasage est de
/4.

G((D)“ T —r—rrrvrvry ——Trrrrry

0.10

0.05

Conductivity (uQ-1 cm™)

0.00

=R /

1/t
Frequency (GHz2)

Figure 1.2 - Conductivité du composé UPd2AI3
mesurée a T=2.75 K. Les mesures sont en excellent
accord avec le modele de Drude (courbes lisses).
D’apres [Nature 438, 1135-1137].

Figure 1.1 - Conductivité des métaux dans le modele
de Dude

On peut voir en figure 1.2 les mesures expérimentales effectuées sur le composé UPdoAls a
une température de 2.75 K, qui vérifient en excellente approximation les prédictions du
modele de Drude (en traits pleins). Les parameétres extraits du modele sont

opc = 0.105(uQ.cm)~ et 7 = 4.8.107 !5, ce qui correspond a un trés bon métal avec trés peu
de défauts.
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3. Magnétoreésistance et effet Hall

Dans ce cas les électrons sont soumis a un champ électrique et un champ magnétique
constants. En régime stationnaire les électrons sont soumis a la force de Lorentz et la vitesse

stationnaire obéit a I'équation :

La géométrie de l'expérience de Hall est représentée en figure 1.3. Le courant est contenu
dans le plan  xOy , et le champ magnétique est appliqué dans la direction Oz
perpendiculaire a ce plan. L'équation précédente se décompose alors de la fagon suivante sur
les trois axes :

lelz lelz

v, =— - (Ex+vsz_szy)=_T(Ex-l_vyB)
lelz lelz

1= - (Ey"'Vsz_Vsz):_T(Ey_va)
elr

v, =— L] (E,+v.B,—v,B,)=0
m

Figure 1.3 - Schéma de principe

X
de l'expérience de Hall
1
En l'absence de champ magnétique on impose un courant selon l'axe Ox : j, =-—nle|v,.

Sous l'effet du champ magnétique les électrons vont étre déviés vers les bords du barreau et
vont s'y accumuler, créant un exces de charges négatives sur une paroi et un exces de charges
positives sur l'autre paroi du conducteur, et donc un champ électrostatique transverse E,.
L'équilibre est atteint lorsque ce champ atteint une valeur Ey qui compense exactement la
composante magnétique de la force de Lorentz; on a alors v, =0 et on peut simplifier les

équations de la vitesse stationnaire :

Ve =~ Ex
m
lelz
vy = - (Ey—v,B)=0
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d’ou l’on tire la valeur de j, et du champ de Hall Ej; :

) ne’r
Je=—nlelv,= E =opcE,
et
elr j
EH=VXB=—| | EB=—%_
m —nle]

On définit alors la magnétorésistance p(B) comme le rapport du champ électrostatique
appliqué sur le courant traversant le barreau de Hall en présence de champ magnétique:

E, 1
p(B)=—=—
Jx Opc

Cette grandeur est indépendante du champ dans le modele de Drude, ce qui ne correspond
pas du tout a I'expérience ! Il faudra en fait tenir compte du spin de I'électron pour expliquer
la magnétorésistance, et cela n'est possible que dans le cadre d'une description quantique des
solides.

Une autre grandeur importante est le rapport du champ transverse sur le courant multiplié
par le champ appliqué, grandeur appelée constante de Hall Ry :

Ey 1
RH:._:_
JxB nlel

Il est intéressant de réaliser que la constante de Hall est une grandeur macroscopique qui
donne directement acceés aux parametres microscopiques d'un matériau donné que sont la
densité de porteurs de charge et leur signe : Ry < 0 si les porteurs ont une charge négative, et
Ry > 0 si les porteurs ont une charge positive.

Le modele de Drude prédit une constante de Hall indépendante de la température et toujours
négative. Cependant, 'expérience montre que dans la plupart des cas la constante de Hall
varie avec la température, et peut méme changer de signe dans le cas de matériaux complexes
(un exemple récent étant le supraconducteur a haute température critique YBaoCuszO7 sous-
dopé). Une compréhension plus complete de ces phénomenes nécessite un traitement
quantique des solides cristallins, qui sera abordé dans les cours de physique du solide avancée
en S8 et en Master 2 MQ).

De méme des mesures d'effet Hall effectuées sur un gaz d'électrons quasi-bidimensionnel, en
champ magnétique intense et a treés basse température, montrent que la résistance de Hall
n'augmente pas linéairement avec le champ magnétique mais présente des valeurs quantifiées.
Cet effet est d'origine purement quantique et n'est donc pas prédit par le modele de Drude. 11
résulte de la quantification des états électroniques en niveaux discrets, appelés niveaux de
Landau, sous I'effet du champ magnétique, comme on le verra plus tard.

10
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4. Transport thermique dans les métaux

4.1.Conductivité thermique des métaux

Les métaux ont en général une bien meilleure conduction thermique que les isolants. Drude
fait I'hypothese que la conduction thermique est assurée par les électrons de conduction, les
1ons du réseau, supposés fixes, ne pouvant pas contribuer.

Lorsqu'on applique un gradient de température VT sur un barreau métallique, il apparait un
courant thermique j, proportionnel au gradient de température, selon la loi

jZ=—KVT

« est la conductivité thermique du matériau, qui s'exprime en W.K~!. m~",

Dans le modeéle de Drude un électron subit un choc aprées un temps moyen 7, et possede apres
le choc une vitesse de direction aléatoire et dont la norme correspond a l'équilibre
thermodynamique du gaz d'électrons a la température T’ de I’endroit ou le choc a eu lieu. On
rappelle qu’on se place dans la théorie cinétique des gaz classiques, ce qui signifie qu’on
suppose que ’énergie thermique du gaz d’électrons ne dépend que de la température :
E=ET).

Considérons un barreau métallique sur lequel on applique un gradient de température dans la
direction Ox . Faisons le bilan des électrons passant de la zone chaude a la zone froide (et
inversement) au point x. Par définition, chaque électron « chaud » a en moyenne subi un choc a
I’abscisse x — [ = x — v, 7, la norme de sa vitesse correspond a une température 7'(x — v, 7) , et il
transporte une énergie moyenne E[T(x —v,7)]. Le méme raisonnement s’applique aux
électrons « froids ».

Figure 1.4 - Description des échanges d’énergie thermique dans le modele de Drude : le flux total
d’énergie traversant la surface x est la somme des flux d’électrons « chauds » et « froids »,
provenant en moyenne d’'une distance égale au libre parcours moyen I, et portant une énergie
moyenne correspondant i la température a la distance I du plan x.

11
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On peut alors calculer le flux d’énergie thermique totale traversant la surface en x. Par
analogie avec la définition du courant électrique, on peut écrire

’]Q - JQ chaud B ‘]eroid

— —
= nchaudEchaud V chaud — nfroidEfroid Vfroid

On peut simplifier cette expression en remarquant que :
= Mohaud = Mfroid = 7 CAT seulement la moitié¢ des électrons on leur vecteur vitesse orienté vers

le plan x

- la vitesse moyenne et la température varient peu sur la distance 1 : o0 V4,0 ® Vespig & Vs 5 €8
) dT
¢galement v,7 — < 1
dx

On obtient alors pour le courant, en projetant sur la direction Ox :

. n
.]Qx = va {E[T(X - VxT)] - E[T(x + VxT)]}

Comme v, 7 est une longueur microscopique, on peut faire un développement limité :
) n dT dT
Jox = 3% {E[T(x) — v 1= EIT (@) + 7 E]}
et enfin

L e ATdE 0o AT dE
=—v xX)] -t ——— xX)]+ v, ——
Jox = U dT S x dT
, dEdT
= —nvirT——

dT dx
La simplification et la généralisation de cette expression en 3 dimensions est directe :

d
- par définition n d_; = ¢,, la chaleur spécifique du gaz d'électrons

o ,  <vi>
- pour un systéme isotrope v; = —

.. dr —
- substituion — — VT
dx

On obtient alors I'expression de la conductivité thermique pour un métal 3D isotrope

— 1 E— B ——
jQ=—§<v2>cVTVT=—KVT
1 2
> Kk==—<Vv'>7T
3
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4.2.Nombre de Lorenz - Loi de Wiedemann-Franz

Comme on vient de le voir, dans le modéle de Drude la conduction électrique et la conduction
thermique sont toutes deux dues aux électrons de conduction. Il est alors légitime de
rechercher s'l existe une relation entre ces deux conductivités. Expérimentalement la loi
empirique de Wiedemann-Franz établit que le rapport de la conductivité thermique a la
conductivité électrique est proportionnel a la température, avec une constante de
proportionnalité¢ appelée nombre de Lorentz L dont la valeur est quasi-universelle pour les

métaux :

K
—=1LT

Opc

Avec les formes de « et oy trouvées précédemment, on obtient

K vie,tm mvie,

opc  3ne’r 3ne?

Pour un gaz parfait monoparticulaire I'équipartition de I'énergie impose mv? = 3nkgT et

c, = EkB. On obtient alors

K 3k
— = —2T =LT
Opc 2e

3k \2
:L=—<—B> =111 x 10-8W.Q. K2
2\ |e|

Cette valeur est correcte a un facteur 2 pres, comme on peut le voir dans le tableau ci-dessous.
Pour l'anecdote, il faut savoir que dans le calcul initial une erreur d'un facteur 2 avait conduit
a une valeur du nombre de Lorentz trés proche de la valeur expérimentale, ce qui avait donné

beaucoup de crédit au modele de Drude dans la communauté scientifique.

A notre époque ou la mécanique quantique s'est imposée comme la théorie permettant de
décrire les propriétés des solides avec une précision remarquable, il peut paraitre étonnant que
les hypotheses classiques de Drude ménent a un résultat si proche de l'expérience. Nous
montrerons par la suite que les hypotheses de Drude conduisent a deux erreurs d'un facteur
100 qui se compensent : le nombre réel d'électrons participant aux propriétés physiques des
métaux est environ 100 fois plus faible que supposé, mais leur énergie moyenne est environ
100 fois plus grande que dans le cas d'un gaz parfait.

Métal Ag Au Cd Cu Mo Pb Pt Sb W Zn
Lx10°W.Q.K~'@273k 2.31 2.35 242 223 261 247 251 252 3.04 231

13
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4.3 Effet Seebeck

Dans la détermination de la conductivité thermique, nous avons montré que l'établissement
d'un gradient de température donnait naissance a un courant d'électrons, des zones chaudes
vers les zones froides. Dans un barreau en circuit ouvert, il va alors y avoir accumulation de
charges aux extrémités du barreau et I'établissement d'un champ électrique s'opposant a la
dérive thermique des électrons. Un gradient de température appliqué a un barreau métallique
long et fin doit donc s'accompagner d'un champ électrique opposé a ce gradient (et d'une
différence de potentiel associée) : c'est I'effet Seebeck. On définit le pouvoir thermoélectrique
Q) par la relation :

E=0VT

Pour estimer Q), il suffit d'écrire qu'en régime stationnaire la vitesse de dérive totale (due au
gradient thermique, v, et au champ électrique, vz ) est nulle : vy + vz = 0.

La vitesse de dérive thermique s’évalue comme précédemment :

dv,
vaza[vx(x—vxr)—vx(x+vxr)]=—TVE
ot d mv? Tt dE.dT
 mdx\ 2 )] mdT dx

La généralisation a 3 dimensions isotropes donne alors :

— 71 d€—>
Vg = ————
Q m3dT
_ le|r— le|r
Vg =— E = ovT
m m
1 de c,
>0 =

3le| AT~ 3n|e|
En mécanique classique, ¢, = EnkB’ et on obtient

k
0=-——L_=_043%x10"4V.K"!
2]e]

Ce résultat surestime d'un facteur 100 les valeurs habituellement observées sur les métaux a
température ambiante. C'est la méme erreur qui est survenue deux fois dans les paragraphes
précédents, mais qui cette fois n'est plus compensée. Ce désaccord montre sans équivoque que

la mécanique statistique classique est incorrecte pour décrire les électrons dans les solides.

14
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MATERIAUX DIELECTRIQUES

1. Rappels d'électromagnétisme
1.1.Equations de Maxwell dans le vide

En 1867, Maxwell a unifié¢ les lois de I'électromagnétisme en un jeu de 4 équations locales
décrivant les relations entre les champs électrique et magnétique E et B et les distributions de
charges p(¥) et de courants j(7) leur ayant donné naissance :

= _ P
v.E=L

&o V-
_ 0B VA

ot

o)
I

0

8 —
Ho\J 075

&)
o)
I

VA

Les distributions de charges et de courants introduits dans les équations ci-dessus sont des
g q
distributions "excitatrices", dont on suppose qu'elles ne sont pas modifiées par le cham
) pp q P P p
qu'elles créent. On va voir dans ce qui suit comment les équations de Maxwell sont modifiées

en présence de matériaux diélectriques ou magnétiques.
1.2.Dipole électrique et moment dipolaire

Méme si un systtme est électriquement neutre a I’échelle macroscopique, a I'échelle
microscopique le barycentre des charges positives et négatives n'est pas forcément confondu et
des dipoles électrostatiques peuvent exister, spontanément ou induits par l'application d'un
champ. De méme les électrons a l'intérieur d'une molécule ou d'un solide peuvent étre libre de
se déplacer et former ainsi des sortes de "boucles de courant" microscopiques formant des
dipoles magnétiques.

La forme la plus simple de dipdle électrique consiste en deux charges q égales et opposées
séparées par une distance 2a . On définit le moment dipolaire 7’ = 2aqi . Le champ créé par
un dipdle est la somme des deux champs créés par chaque charge. Cependant, en pratique la
taille typique d'un dipdle est de l'ordre de celle d'un atome et on s'intéresse le plus souvent aux
effets macroscopiques de nombreux dipodles. Il est alors pratique de calculer le potentiel et le
champ électrostatiques créés par le dipole a grande distance r > a

pcos6
V(r,0) =
Amegr?
oV 2pcos0
E(r,0)=—=——
or  4meyr3
oV psin6
Ey(r,0) = — =

rod dregr3
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—

Plongé dans un champ électrique E,., le dipole a une énergie potentielle E, = -7 - E,,, et

ext>

N —_— s —
estsoumisaun couple ' =p A E,,, .

Pour un nombre macroscopique N de dipdles occupant un volume V, on définit la polarisation
P comme le moment dipolaire moyen total par unité de volume :
- N
P=—(p
VP
La moyenne () s'entend ici comme la moyenne thermodynamique a l'équilibre (cf cours de
physique statistique).

2. Réponse de la matiére a un champ extérieur

2.1.Notion de polarisabilité et de susceptibilité

Comme on l'a dit plus haut, certaines molécules et solides portent des moments dipolaires
permanents lorsque le barycentre des charges nucléaires ne correspond pas a celui du nuage
électronique. On parle alors de milieux polaires. Parmi les cas les plus connus on peut citer la
molécule d'eau, dans laquelle I'oxygeéne porte un léger exces d'électrons au détriment des deux
hydrogéne, ou le monoxyde de carbone. Ce caractere a la fois covalent et ionique de la liaison
chimique se retrouve dans certains types de cristaux, ce qui donne naissance a des propriétés
physiques tres riches (piézo-électricité dans BaTiOs par exemple).

Les milieux polaires peuvent étre classés en deux catégories principales :

- des milieux dont la polarisation est nulle en l'absence de champ électrique appliqué, en
raison de l'agitation thermique. Clest le cas de l'eau par exemple. Sous l'effet d'un champ
¢lectrique extérieur les moments dipolaires vont avoir tendance a s'aligner dans le sens du
champ électrique, et la polarisation ne sera alors plus nulle. On parle de milieux

paraélectriques.

- des milieux présentant une polarisation spontanée non nulle, méme en l'absence de champ,
et pour des températures T' inférieures a une température critique 7,. On parle alors de
milieux ferroélectriques. Pour T > T, l'agitation thermique l'emporte et le comportement est
en général paraélectrique. Clest le cas par exemple de certains composés de la famille des
perovskites comme BaTiOs ou PbTiOs.

Les milieux non polaires ne possedent pas de moment permanent. Cependant, un moment
dipolaire peut étre induit par un champ extérieur.

Considérons un modele d'atome simple, dit modele de "Jellium". Le noyau est modélisé par
une charge ponctuelle +Q et le nuage électronique par une spheére indéformable
uniformément chargée de rayon q,, centrée sur le noyau et portant la charge totale -Q).
D'apres le théoreme de Gauss, le champ électrique a l'intérieur de l'atome est nul en l'absence
de champ appliqué et le moment dipolaire est nul car le barycentre des charges du noyau et

16
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S1

on ne considere pas un atome isolé mais un atome au sein d'un solide ou d'un fluide, le champ

du nuage électronique sont confondus. On applique maintenant un champ extérieur E ;.

ressenti par l'atome aura un caractere local en raison de la réponse des autres atomes au
. E—g
champ extérieur. Appelons ce champ E .

Sous l'effet du champ E[uc) le noyau et le nuage électronique se décalent en sens opposés, ce
qui provoque l'apparition d'une force de rappel et d'un moment dipolaire induit p’;,,
L'équilibre mécanique est atteint lorsque la force de rappel compense exactement la force
électrostatique, et on peut alors montrer que le moment induit est relié au champ local par la
relation

. —
Pind = agOEloc

Le parametre a est appelé polarisabilité de 1'atome. 1l est en général proportionnel au volume de
la distribution de charges. Le modéle de Jellium donne par exemple a = 4za] (a comparer au
résultat quantique pour l'électron 1s de l'atome H, a = 1674;), et pour une chaine d'ions

espacés d'une distance d, a = zd°.

A l'échelle macroscopique on définit la susceptibilité diélectrique y par

—

Ping=exE
ou E estle champ macroscopique, E # Eloc'

La relation entre le champ local et le champ macroscopique étant traitée en détails dans de
nombreux ouvrages d'électromagnétisme, nous ne nous attarderons pas sur ce point icl.

On déhinit le vecteur déplacement diélectrique D comme
D= 80F+ P = gy(1 +)()F = eosrf.

Dans les diélectriques on appelle habituellement e, permittivité relative, et dans le cas plus
général on l'appelle constante diélectrique, ou fonction diélectrique, lorsqu'elle dépend
fortement de I'énergie et du vecteur d'onde, comme dans les métaux par exemple.

Remarques :
-y estune grandeur sans unité
- on défit l'indice optique n d'un milieu comme n =/, =+/1+x

- dans le cas général la polarisation et le champ ne sont pas colinéaires. La susceptibilité
di¢lectrique est alors un tenseur y;; tel que  P; = gy, ou  1)=X,y,z

17
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2.1.1.Relation de Clausius

On vient de définir des grandeurs diélectriques locales et des grandeurs globales. On peut
alors se demander quelle est le lien entre ces deux échelles, et on va donc chercher a établir
une relation entre la polarisabilité a, grandeur microscopique, et la constante diélectrique e, ,
grandeur macroscopique.

Tout d'abord, on peut exprimer la polarisation en fonction du champ macroscopique :
D= €OE+ P = go(1 +)E = eoerf

d'ou I'on déduit

P =g, — )E

Dans le cas d'un cristal ou chaque site atomique a une symétrie cubique, le champ local,
appelé champ de Lorentz, peut s’écrire

On peut alors se rappeler que, par définition, la polarisation est le moment dipolaire moyen
par unite de volume :
Dina _ *& ——

P=V=710c

avec les deux équations précédentes, on obtient :

( 1)f (Z€0€r+2f
g€, — =—
0\&r % 3

d'ou l'on tire la relation de Clausius :

Ry
+
S}
w
<
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2.2.Polarisabilité de la matiere

2.2.1.Polarisabilité atomique statique

L'atome est modélisé par une approximation de "jellium" (voir figure 2.1) : on considére un
noyau ponctuel de masse M et de charge +Z|e|, initialement au centre d'un nuage
¢lectronique sphérique, de rayon R, uniformément chargé d'une charge -Z|e|. On applique
alors un champ électrique local de grande longueur d'onde et basse fréquence par rapport a la
taille de l'atome et de sa fréquence d'oscillation propre (concept qui sera défini un peu plus
loin) : ?0: =cte . Sous l'effet du champ le noyau et les électrons vont se déplacer en sens
opposé, jusqu'a une distance d’équilibre r,, telle que la force de rappel électrostatique entre

noyau et ¢lectrons compense exactement 'effet du champ extérieur.

Figure 2.1 - Modele d’atome dans
'approximation du « Jellium »

Al'aide du théoréme de Gauss, il est facile de montrer que le champ électrostatique créé par
le nuage électronique a une distance r de son centre est radial, dirigé vers le centre du nuage,
et de norme :

_ Zlelr

) = ey

A T'équilibre ce champ compense parfaitement le champ appliqué au noyau. La projection sur
l'axe reliant le noyau au centre de la distribution électronique s'écrit alors

Ee~(Tog) = = IRoe Ejp

Le barycentre des charges positives et négatives n'étant plus confondu, il apparait alors un

moment induit

P=ZlelT, = 4nR%¢ E),.

On obtient alors la polarisabilité statique «, = 47R>

Remarque : dans I'hypothese (réaliste) ou l'atome est peu déformé par le champ, ce qui se
traduit par r,, <<a, ,ou am= 0.529A est le rayon de Bohr, le calcul quantique utilisant

la densité électronique de l'orbitale 1s de I'hydrogéne donne une polarisabilit¢ = 16za]
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Ce résultat est proche de la prédiction du modele de Jellium, ce qui s'explique par le fait que
dans les deux modeles la densité électronique conserve la symétrie sphérique, mais aussi par le
fait que dans les deux cas la force de rappel noyau-électron est harmonique (de manicre exacte
pour le Jellium, et approchée pour l'orbitale 1s dans la limite  r,, < <a ).

2.2.2.Polarisabilité atomique dynamique

Comme on vient de le voir, la force de rappel exercée par les électron sur le noyau est
harmonique en bonne approximation. On peut écrire
2
“Zlel)

Ap€q

fe—zZlelEe_: eq

Le nuage électronique étant environ 2000 fois plus léger que le noyau, le centre de masse de
l'atome sera quasiment confondu avec le noyau, et il sera plus facile de considérer le
mouvement du nuage électronique autour du noyau supposé fixe. Avec la loi d'action-réaction
et le changement de référentiel, les électrons sont soumis a la force de rappel du noyau

(Z|e|)?
f;l(req) = _f—(_req) = - —req = —Zma)grgq
ap€o

1/2
Zlel|?

AogEgm

ou l'on a défini la fréquence propre de vibration atomique @, =

. On peut

remarquer que la force d'interaction est indépendante du référentiel, ce qui est attendu par
I'invariance galiléenne.

L'équation du mouvement du nuage électronique s’écrit

eq

Zm
dr?

2
=—Zmwyr,, —Z|e|E,,

Comme dans le cas statique, on considére un champ local de grande longueur d'onde, mais
oscillant cette fois-ci, de la forme E, . (t) = E, .o exp(—iwt). Dans la limite de réponse linéaire,
on pourra alors écrire r,,(t) = r,, o eXp(—iwt), et linéariser I'équation du mouvement :

2, — 2
—MWT,, = —magr,, —|e|E,. g

. —|el Ejpep
d'ot l'on déduit Fog = ey
2_ 2
m(wg — w?)
o Zle|* —
Le moment induit P =-Zle| Tog = oc

m(wg — @?)
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On en déduit que la polarisabilité atomique dynamique s'écrit

Zle|” wg

meg(@g —02) - >

a(w) =

2.2.3.Polarisabilit¢ de déplacement

Dans les cristaux ioniques, l'application d'un champ extérieur va déplacer les anions et les
cations dans des sens opposés, et par conséquent les liaisons ioniques vont entrer en vibration.
Il va alors apparaitre dans le réseau cristallin une polarisation appelée polarisation de
déplacement. Pour modéliser cet effet on considére une chaine ionique composée d'anions et
cations alternés, de charge +Z|e|, de masses M1 et M2, respectivement (voir figure 2.2).
Comme pour la polarisabilité atomique on considere de petits déplacements des ions par
rapport a leur position d'équilibre, ce qui permet de modéliser les liaisons par une force de
rappel harmonique, avec une constante de raideur K. De plus, on considere la encore un
champ local de grande longueur d'onde, de telle fagcon que tous les ions ressentent un champ
de méme norme et direction au méme moment : m(ﬁ t) = m(t) .

iy K f- K Eioc >

-
1D VAN ANV ANIAA - D
- YV VOV N -

My M,

~
\
J/

Figure 2.2 - Modele de chaine atomique ionique

Le moment induit par le déplacement des ions s'écrit

P=Zlel(i — ) =Zle|W

Les équations du mouvement couplées s'écrivent

dz//‘+ _
. 17 __K(Iu+—,u_)+Z|€|Eloc
d*u_
M_—o= = =K(u_ =) = Zle| By
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On peut regrouper ces deux équations sous la forme

vk L zie— 1
—_— e — R —w e —_— —_—
dr? M, M M, M_~"*
K Z|e]|
=_MW+ M EIOC
Z|e
= —o°w + | lE,DC

Comme précédemment, on linéarise I'équation en considérant des solutions harmoniques en
réponse linéaire :

Zle
—0’w = —@°w + | lEloc
_ Zle]
T M@2-w?)
(Z]el|)
p_Zl |W M(a_)z— 2) loc
_adepSOEloc

D'ou l'on déduit I'expression de la polarisabilité de déplacement

v Zlel?
dep eoM(@? — w?)

@ est la fréquence caractéristique de vibration de la liaison chimique. Dans un solide ces
vibrations, le plus souvent propagatives, sont appelées phonons, et présentent des lois de
dispersion @ = f( k) caractéristiques de chaque matériau.

On peut maintenant discuter la signification physique, ainsi que les ordres de grandeur des
fréquences caractéristiques w, et @. Pour la polarisabilit¢ atomique, les énergies
caractéristiques hw,, sont de l'ordre de grandeur des excitations électroniques atomiques, soit
hwy~ 1 —10eV. Cela correspond a du rayonnement électromagnétique dans le domaine
visible ou UV. Pour la polarisabilité de déplacement, les énergies caractéristiques sont celles
de phonons, soit aim ~ 1072 — 10~!eV, ce qui correspond a l'infrarouge et aux-micro-ondes.

On voit donc que dans un solide cristallin quelconque les vibrations du réseau peuvent étre
excitées par un rayonnement infrarouge, avec pour effet de faire augmenter sensiblement sa

température, comme on l'observe dans la vie quotidienne.
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2.3. Fonction diélectrique d'un isolant ionique

Généralisation de la relation de Clausius-Mossotti

Pour un cristal ionique, on peut faire une approximation grossiere pour la polarisabilité totale :
Qor = (X+ +a_+ adep

Cela revient a considérer qu'une déformation des liaison ioniques s'accompagne d'une

déformation négligeable de la densité électronique de chaque ion, et réciproquement. Cette
approximation est discutable, notamment dans le cas des atomes ayant peu d’électrons.

On réécrit alors la relation de Clausius, en faisant apparaitre explicitement les aspects

dynamiques de la polarisabilité :

gr(w) -1 _ Aot _ a, +a_+ Aep

e(w)+2 3V 3V

Puisqu'a I'échelle microscopique on peut considérer 2 échelles d'énergie distinctes liées aux
deux types de polarisabilité, a l'échelle macroscopique on peut définir deux constantes
diélectriques limites €, et &..

Dans la limites des basses fréquences, ® < @ < @, on définit la constante diélectrique
statique &,, comme
2
eo—1 1 Zlel)

L =— | ay, t Ay + ———
go+2 3V \ 00 egM @2

Dans la limite des fréquences optiques, @ < ® < @y, on définit la constante diélectrique
optique, a haute fréquence, ., comme
g — 1 1

£+ 2 Y (a0, + . )

On peut alors réécrire la relation de Clausius en termes de ¢, et € :

e(a))—l_soo—l_'_ 1 go0—1 e,—-1
e +2  e,+2 1= (2)2 |e0+2  €n+2

ce qui donne

ot l'on a défini la fréquence  w? =@
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On ¢tablira dans le chapitre suivant la signification physique de cette fréquence.

La fonction diélectrique du modele de solide ionique que nous venons d'établir est représentée
en figure 2.3 . On peut remarquer qu’elle diverge pour w = w;, et s'annule pour une
fréquence particuliere @ = @; qui sera discutée dans le chapitre suivant.

Remarque : On définit l'indice optique généralisé n(w) comme n(w) = 4/€(w).

La dépendance en fréquence (et donc en longueur d'onde) de l'indice optique est une
caractéristique attendue : cela s'observe par exemple dans la décomposition d'un faisceau
blanc par un prisme. De plus, dans la gamme de fréquences w; < ® < w;, on peut voir que
e <0, et par conséquent l'indice optique n'est pas défini ! Cette bande de fréquences est une
bande optique interdite : aucune onde électromagnétique dans cette bande de fréquences ne
peut se propager dans le solide. Cette particularité est mise a profit en optique pour fabriquer
des filtres avec des fréquences de coupure bien définies.

e(w) 4

\ 4

O1,

\ Bande interdite &(®)<0

Figure 2.3 - Modeéle de fonction diélectrique d’un solide ionique.

3. Equations de Maxwell dans les milieux continus

divE=v.E=PD)

)
divB =divH =0

N - 0B
rot E=VAE=——

ot
Tof B <7+ o + oF +_t’1\7f) o TFofH=]+ oD
ro = En— e ro ro = _—
Ho\J T&0 5 T 75, Y
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PROPRIETES OPTIQUES DES SOLIDES

Dans les deux chapitres précédents nous avons étudié dans des modeles classiques la réponse
des métaux et des diélectriques a des champs électriques. Nous allons maintenant établir de
fagon plus générale les propriétés optiques des matériaux .

1. Equation de propagation des champs électromagnétiques dans un
milieu continu

On considére un matériau polarisable et pouvant étre parcouru par des courants électriques.
. e g , .
Les équations de Maxwell pour les champs E et B s’écrivent :

VAB i+ aE’+ oF
= 8 — JE—
Kol J 0 ot or

Plus spécifiquement on suppose que le matériau est constitué d'une part d'électrons vérifiant la
loi d'Ohm locale 7 = a(a))F , et d'un réseau cristallin polarisable, avec une fonction
diélectrique &,(w).

On peut alors réécrire la premiére équation sous la forme

. — oE
VAB =y, <a(a))E + 808,(01))7)

En combinant ces deux équations, on obtient I'équation de propagation

VAVAE (@) E _elw) 0°F
#o c2  or?

0
ot

On sait par ailleurs que VAV A E = V(V . F) — AE, avec gV - E =p =0 car le métal est
globalement et uniformément neutre.

On obtient finalement I'équation de propagation du champ électromagnétique dans un métal :

AT ( )af N &.(w) °FE
= pyo(W)— + ———
o5 T2 o
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2. Relation de dispersion, fonction diélectrique, indice optique et
réflectivité

De fagon générale, la relation de dispersion d'une onde est la loi @ = f(k) reliant sa fréquence
et sa longueur d'onde. On peut facilement l'obtenir dans le cas d'ondes planes
E = E; expli(kx — wt)], ce qui permet de linéariser I'équation de propagation :

“K?E = — ppo (@)io)E — aﬂ&zﬁf
C

On en déduit alors la relation de dispersion de la lumiére dans le matériau :

K22 = @? <er(a)) +i 6(“’)>
&y

On reconnait une équation de propagation de la forme w =

€k, don T'on déduit

v e(w)

I'expression de la fonction diélectrique du solide :

o(w)

Eyw

ew)=¢(w)+i

et de l'indice optique généralisé n(w) = 1/€(w).

La fonction diélectrique est une grandeur microscopique qui n'est pas mesurable directement.
Expérimentalement on mesure la réflectivité R d'un matériau, qui est le rapport de l'intensité
lumineuse réfléchie sur l'intensité incidente, en fonction de la fréquence de l'onde
électromagnétique incidente :

On peut montrer que cette grandeur s'exprime en fonction de la fonction diélectrique comme

. ‘ 1 —ye(w) > ‘l—n(w) 2
1+ /e 1+ n(w)

Par définition, R=1 correspond a une réflection parfaite de la lumiere, et R=0 correspond a
une transmission totale.

A partir des formes trouvées dans les chapitres précédents, on peut construire un modele de
fonction diéléctrique que nous allons étudier en détails :

e —¢ o

e)=e,+—>—"0 4| be
o \2 ! (1l —iwt)
wr) ~
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3. (Cas des métaux

3.1.Fonction diélectrique, fréquence plasma, relation de dispersion

Afin de simplifier la fonction diélectrique et mettre en lumiere les effets physiques pertinents,
commencons pas ¢évaluer les ordres de grandeur des différents termes de la fonction
diélectrique :

- & et g, sont le plus souvent de I'ordre de I'unité

-y est au maximum de l'ordre de 10'*s~!, Dans le cas de lumiére visible, ® ~ 2.10s7! et le
deuxi¢me terme est négligeable devant e.

Pour évaluer le dernier terme, appelé terme de Drude, on va supposer qu'on a w7 > 1. Cela
signifie que la période d’oscillation du champ électrique est beaucoup plus faible que le temps
de relaxation, et par conséquent les ¢électrons ont une trajectoire principalement dictée par le
champ et peu par les chocs. On a alors

Opc Opc

~

i >
gw(l —iwt) Eyw3T

2
ne? Wy 0
£ym > ?
ne?
On a défini la fréquence plasma non écrantée w,, = 4 [——. Pour beaucoup de bons métaux
’ Em

3 1

la densité volumique d'électrons de conduction n x 10¥m™, et w,o~ 107!, Dans le
domaine visible e et le terme de Drude seront donc du méme ordre de grandeur, et ce

dernier va dominer a mesure qu'on explore les UV et les rayons X mous.

Au final, on peut réécrire sous une forme simplifiée la fonction diélectrique dans le domaine

optique comme
2
1)
P-0

8(60)=€00——2
W

Cette fonction est représentée en figure 3.1. On remarque que celle-ci change de signe pour

une valeur de pulsation w,, appelée fréquence plasma écrantée, donnée par

2
_ wp,o _ 0 _ wp’o
e(a)p)—eoo——z— o w,=

w; \/g

Pour des fréquences o < w,, on a e(w) <0, et I"indice optique n(w) = \/m n'est pas défini.
Par conséquent il n'existe pas de mode propagatif du champ électromagnétique, une onde
incidente sera totalement réfléchie : le métal se comporte comme un miroir. Au contraire pour
o > w,, I'indice optique est réel avec une valeur finie, et le champ électromagnétique peut se

propager dans le métal.
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Il en résulte la regle suivante : un métal se comporte comme un miroir pour les rayonnements
de fréquence inférieure a la fréquence plasma écrantée, et devient transparent au-dela.

On peut alors établir la relation de dispersion des modes du champ électromagnétique dans le
métal. Le calcul est direct et donne

2. _ 2 _ 2.2
W ey =, =k"C

Comme on l'a établi a partir de la fonction diélectrique, la plus petite fréquence possible est
w,,
dispersion tend asymptotiquement vers celle de photons « libres » dans le métal d'indice

optique n = 4 /e, (cf. figure 3.1).

et lorsque la longueur d'onde diminue (et donc l'énergie des photons augmente), la

&(@)y w(k)4
8Qo —————————————————————————————————————
&(®)<0 &(0)>0 ‘
reflection propagation
totale
0

v

Figure 3.1 - A gauche : fonction diélectrique d’un métal dans le domaine optique. A droite : relation
de dispersion des champs électromagnétiques dans un métal.

Quelle est la signification physique de la fréquence plasma ? Pour répondre a cette question,
plagons-nous dans le régime propagatif @ > w, et faisons tendre progressivement la fréquence
de l'onde incidente vers w,. On suppose que l'onde incidente est une onde plane transverse de
vecteur d'onde perpendiculaire a la surface du métal. On écrira dans le métal
E = Ej expli(k -7 —wt)]. La réponse des électrons a ce champ obéit a la relation de
conservation de la charge :

e a
V~j+—/;=0
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Avec la loi d'Ohm locale f = a(a))f et le théoreme de Gauss local V - E = ﬁ, cette relation
€

devient

a)eoe(a))?- E=0

On a alors deux cas possibles :

- kK LE ete() #0. Clest le régime de propagation d'une onde plane transverse que nous
avons vu plus haut.

- %¥-E # 0 et e(w) = 0. Cette condition n'est vérifiée que pour la fréquence plasma écrantée
que p q p

a)p.

La relation de dispersion calculée plus haut montre que le seul mode existant a la fréquence
plasma est le mode k =0, c'est-a-dire un champ électrique homogene dans le métal

E = f(; exp(—iwt). Dans ce cas 1l est évident qu'on a également VAE=KAE=0,ce qui

signifie que KI/E :le mode a w = w, est un mode d’oscillation longitudinal.

On peut ensuite calculer la réponse du gaz d'électrons a cette excitation : la loi d'Ohm locale

donne
- —_— nezT h— .
j=0()E rm— E\ exp(—iw,t)
P

= a)psoeoof(; expl—i(w,t — 7/2)]

On voit donc que pour une excitation a la fréquence plasma il apparait un mode d'oscillation
longitudinale collective des électrons, a la méme fréquence et déphasé de z/2. Ce mode
résonant s'appelle un plasmon. Il s'agit d'un mode naturel d'oscillation d'un gaz d'électrons,
que l'on rencontre dans tous les milieux continus chargés, métaux comme plasmas, d'ou il tire
son nom.

3.2 . Réflectivité et couleur des métaux

La figure 3.2 présente la réfléctivité des métaux nobles (Ag, Au et Cu) en fonction de la
longueur d'onde de la lumiére incidente.

On voit clairement qu'a grande longueur d'onde (donc a basse fréquence) la réflectivité tend
vers 1, ce qui signifie que ces métaux sont de bons miroirs pour ces longueurs d'onde. En
diminuant la longueur d'onde, la réflectivité chute rapidement lorsque la fréquence plasma est
atteinte (celle-ci est indiquée par les fleches sur la figure).

A partir de ce graphique on peut déduire la couleur des métaux, telle que nous la percevons :
le Cu réfléchit principalement les longueurs d'onde dans le jaune et le rouge, ce qui lui donne
sa couleur rosée. L' Ag réfléchit quasiment tout le spectre visible et laisse passer les UV, ce qui
lui donne sa couleur gris clair assez mat. L' Au réfléchit un peu plus de vert et de bleu que le
Cu, ce qui lui donne sa couleur jaune. A noter que l'indigo et les UV proches ont une
réfléctivité non négligeable, ce qui contribue a donner a I'Au un certain éclat.
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2000 5000 8000
A=2nc/o [A]

Figure 3.2 - Réflectivité des métaux nobles en fonction de la longueur d’onde du rayonnement
incident.

3.3.Comportement a basse fréquence - Effet de peau

On vient de voir qu'au-dela de la fréquence plasma un métal devient transparent et laisse se
propager un champ électromagnétique, mais reste opaque pour des fréquences plus faibles
que la fréquence plasma. Cependant, dans la limite des basses fréquences ( o <w, ), la
conductivité de Drude est maximale, ce qui signifie que le champ électromagnétique pénetre
au coeur du conducteur. On va maintenant étudier comment on passe d'une excellente
conductivité a une quasi-opacité, en considérant en détails la répartition spatiale du champ
dans le conducteur.

Dans la limite ® < oy < w, et ¢ > 1, la relation de dispersion d'une onde plane incidente

s'écrit
O,
. Opc -
kKc*miow— ou k ~\[igywopc
€0

S .
En se rappelant que /i = , on obtient le vecteur d'onde complexe

(]
kz(1+i),/%=ko+i/5

Et le champ électrique dans le conducteur devient

E = E, expli(kyx — wt)]exp(=x/5)

30



UGA M1 PFN 2018-2019 Cours de Physique du Solide et Magnétisme

La solution des équations de Maxwell est donc une onde évanescente, avec une longueur
d'atténuation & , appelée épaisseur de peau :

2

0= |—
Howopc

L'épaisseur de peau est infinie a fréquence nulle, ce qui signifie que le champ électrique
pénétre totalement dans le métal. Lorsque la fréquence augmente, 1'épaisseur de peau diminue
et le champ est de plus en plus localisé a la surface du conducteur : cette localisation est
appelée effet de peau, et doit étre souvent prise en compte dans le transport du signal a haute
fréquence (cables ethernet, ADSL, etc...).

Pour le Cu, de résistivité typique p ~ 2.1078Q.cm, on aura les épaisseurs de peau suivantes :

- aw =50 Hz, § ~# 0.25 m. Dans un fil cylindrique de quelques mm de diametre le champ
peut étre considéré comme constant sur toute la section du fil.

- aw =5 GHz, 6 = 25um. Cette forte localisation du courant au voisinage de la surface du
conducteur rend le signal tres sensible aux perturbations extérieures, et pour éviter cela les
cables haute fréquence sont en général entourés d'un blindage électromagnétique.

4. (as des diélectriques 1oniques
4.1.Fonction diélectrique - Relation de Lydane-Sachs-Teller

Dans le cas d'un diélectrique 1onique, la conductivité électrique est négligeable, et la fonction
diélectrique tient compte des polarisabilités atomique et de déplacement, comme on 1'a établi
au chapitre précédent :

e —€
0
e(w)=¢ey,+ = 2r
@
or) 1
2__2800+2
avec w5 =0 ———
€r0+2

La fonction diélectrique du mode¢le de solide ionique est a nouveau représentée en figure 3.3.
La fonction diélectrique diverge pour @ = wy, et s'annule pour une fréquence particuliere
o = w;. Pour w; < @ < w;, on a une bande interdite ou n < 0.

Pour comprendre la signification physique de @, et w;, on peut se rappeler

- qu'il n'y a pas de charges libres dans le diélectrique, ce qui se traduit par I'équation
V-D=0&¢ge@V-E=0

- qu'on s'est placé dans 'approximation des grandes longueurs d'onde, ce qui se traduit par
VAE=QO.

- que la polarisation des ions est P = gle(w) — l]f.
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() A

y

Figure 3.3

1,

\ Bande interdite &(w)<0

Comme on l'a fait pour les modes plasmons, en introduisant des solutions propagatives du

type E = f(; expli(k -7 — wt)], ces relations deviennent

808(0))? " E=0
KAE~O0
P = gle(w) — l]f

Il découle de ces relations que

pour un mode transverse quelconque, k L E et k L P, ce qui correspond a &(w) > 0. Dans
ce cas on a propagation simultanée du champ et d'une onde de polarisation transverse.

pour @ = @y, on a € - . Cela correspond toujours a un mode transverse, mais pour
vérifier les trois relations ci-dessus et conserver une polarisation transverse finie, on doit
avoir E = 0. Physiquement on a donc uniquement propagation d'une onde de polarisation
transverse. Le champ électrique a excité un mode propre de vibration transverse des ions de
fréquence wy; : on dira que w; est la fréquence des modes de phonons optiques transverses
de grande longueur d'onde (d'ou l'indice "T"...).

pour un mode longitudinal du champ on aura KIE, ce qui n'est possible que si e(w) = 0,
ce qui correspond au cas w = w;. Dans ce cas P=- 8OF et KIIP également. Le champ et
la polarisation sont longitudinaux. La fréquence w; est donc la fréquence propre de
vibration longitudinale des ions : on dira que w,; est la fréquence des modes de phonons
optiques longitudinaux de grande longueur d'onde (d'ou l'indice "L"...).

On peut montrer que ces deux fréquences propres sont reliées aux valeurs limites de la

fonction diélectrique.

En effet, on a

€0 ~ &0

() -
T

e(w)=0=¢,+

d'ou 'on tire la relation de Lydane-Sachs-Teller (LST) :

2
oy, _ €0
T €
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4.2 Relations de dispersion - Polaritons

La relation de dispersion pour le solide diatomique ionique est

qui peut se réécrire sous la forme

Wl = &,007 + k*c? Ll de wik*c?
2¢e B (&,0wF + k2c?)?

Cette relation de dispersion est représentée en figure 3.4. Il existe deux branches dispersives
séparées par la bande interdite que nous avons décrite précédemment.

® A
ck
w =
/ ck
Branche de photon ey~ i
o Cr
Branche de
phonon longitudinale
Mode mixte phonon-photon = polariton
oL
Bande interdite
(0
T
Branche de
phonon transverse
/" <— Branche de photon
0 >

o~

Figure 3.4 : dispersions des modes couplés du champ et du réseau de grande longueur d’onde. Les
parties linéaires correspondent a la propagation d'une onde électromagnétique (photon), et la partie
non dispersive correspond a la propagation d'une onde de polarisation transverse du réseau (i.e. un
phonon optique). La zone ou les dispersions sont courbées correspond a la propagation de modes
hybrides photon-phonon, appelés polaritons.
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THEORIE SEMI-CLASSIQUE DES METAUX :
MODELE DE SOMMERFELD

Bien que le mode¢le de Drude permette d'expliquer avec un certain succes les propriétés
¢lectromagnétiques des métaux simples, il se révele incapable de reproduire les propriétés
thermodynamiques de ces métaux. Citons entre autres la loi de Wiedemann-Franz, le pouvoir
thermoélectrique 100 fois plus élevé que dans les mesures expérimentales, et surtout le
comportement linéaire en T de la chaleur spécifique a basse température, alors que la théorie

classique prédit une constante.

Dans la théorie cinétique des gaz, les particules sont discernables, position et impulsion de
chaque particule sont parfaitement définies, et par conséquent le micro-état d'un gaz de N
particules est un point unique ( 7y, py ) dans l'espace des phases. Il en résulte que la
distribution en énergie des particules obéit a la lo1 de Maxwell-Boltzmann.

La description de Sommerfeld conserve I'hypothése d'un gaz d'électrons libres, mais applique

les principes de base de la mécanique quantique :

- les électrons sont des particules indiscernables : un micro-état donné reste identique par
permutation de deux électrons.

- le principe de Pauli interdit la double occupation d'un état quantique

- en raison du principe de Heisenberg AFAp > f, un micro-état a N particules occupe un
volume #3"N de I'espace des phases.

1. Propriétés d'un gaz d'électrons libres a température nulle

Dans tout ce qui suit on négligera le potentiel cristallin périodique, et on le remplacera par
une constante : V(7) =V, que l'on peut choisir comme nulle par commodité. On va alors
traiter les électrons comme un gaz de particules libres.

1.1.Etats propres et énergies du gaz d'électrons libres

On recherche les fonctions d'ondes ®(7) et les énergies E du gaz d'électrons.

Avec les hypotheses introduites ci-dessus, I'équation de Schrodinger s'écrit

2

h
—AD=FED
m

et les états propres solutions sont des ondes planes dont la fonction d'onde s'écrit

1 —.
(I)(?): ezk.r

\/‘—/
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ou V est le volume du métal. Pour un systeme de taille finie, et a fortior: périodique comme un
cristal, on peut utiliser les conditions aux limites périodiques de Born et Von-Karman : si on
appelle L, la longueur du cristal dans la direction 7; (7; = x,y, z), on a

= ei(kiri+kil‘i) — eikiri
= eiki'Li =1
27n;

i I

4

ou n; est un nombre entier. L'état quantique d'un électron sera donc donné par le triplet

(n,n,,n,). Si on néglige le spin, le principe de Pauli impose un seul électron par valeur du
triplet n;. Il en résulte que dans l'espace des vecteurs d'onde, un état quantique a un électron
27)*

L.LL

xbylte

occupe un volume 7z = (voir figure 4.1).

Z
k Figure 4.1 : des ph d
qure 4.1 : espace des phases pour un gaz de
——
—— Sl ad fermions libres obéissant aux conditions de Born-
Von Karman. Chaque état quantique de vecteur
*\ > | d’onde (kx,ky,kz) occupe un volume fini t.

X

/ B (27'(')3

- L.L,L,

L'énergie des états propres s'écrit

n’k>  w?
E= = —(kZ+k?+k?
2m 2m(x Y 2

Pour obtenir I'énergie du systéme a N électrons, on remplit les états k; a énergie croissante,

avec 2 électrons par triplet (k k.;) en tenant compte du spin. Le vecteur d'onde de 'état

X0 yz’ zi
occupé de plus haute énergie est appelé vecteur d'onde de Fermi, et est noté k. L'énergie

correspondante est appelée énergie de Fermi (ou niveau de Fermi), Ep.

Le vecteur d'onde de Fermi peut s'exprimer en fonction du nombre de particules en tenant
compte de la conservation de la mati¢re : on doit placer N particules a raison de 2 particules
par volume 7 dans l'espace des phases (cf figure 4.2) :

kyp kyF k p

PADNPY <LLL>_3=N

~kx,F —ky,F ~kz,F
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: ol n?
et I'énergie de Fermi s'écrit E = %(kff + ky2’F +k2p).

Pour la suite on prendra L, = L, = L, = L. Pour un syst¢éme macroscopique on a L > 1, et par

conséquent k peut étre traité comme une variable continue : Z Z Z - J]]d%.
k

-3 2w\ 3
) =N:,2m (5) k=N
états occupés © L

Figure 4.2 : surface isoénergétique du gaz d’électrons
isotrope. On voit que dans la limite L — oo

le volume de chaque état devient infinitésimal et les
surfaces isoénergétiques deviennent des spheres.

3
Le facteur <2—> dans la derniere intégrale est par définition le nombre d’états k possibles par
T

unité de volume de I'espace réciproque, appelé densité d’états en vecteur d’onde, et sera
noté g (k).

On peut donc écrire que le le nombre d N d’états possibles dans un volume d>k est
dN = g(k)d*k

et la conservation du nombre d’ électrons pourra s’écrire comme

N = 2J” g(k)d*k
k<kp

Pour un gaz d'électrons libres isotropes, les surfaces isoénergétiques sont des spheres de rayon

2mE

= PER Il est alors commode d'exprimer 1'élément de volume d*k en coordonnées

sphériques : d*k = 4zk>dk, et la conservation de la matiére s'écrit (avec L3 = V le volume du
gaz d'électrons) :

Fo2m\3 14
2J (55) 4nkak =N & k=N

o VL 3r2
N
= k= (3027) " = o)
h? n?
= E.= —k:=—@x*n)*3
F=om™F Zm( )
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La surface définie par k = kp ou E = Ej est appelée surface de Ferma. Dans le cas du gaz
d'électrons libres, la surface de Fermi est donc une sphére de rayon k = k. La figure 4.3
présente les surfaces de Fermi calculées pour les éléments chimiques métalliques a 1'état
naturel. On peut remarquer que les alcalins (la colonne du Li) et les métaux nobles (Cu, Ag,
Au) ont une surface de Fermi quasiment sphérique, ce qui signifie que les électrons de valence
sont presque libres. Pour les autres métaux l'influence du potentiel cristallin est non
négligeable et les surfaces de Fermi ont une forme beaucoup plus complexe.

Li Be

‘-4
=

&
>

Figure 4.3 : Surfaces de Fermi calculées pour les éléments métalliques. Pour plus d’informations,

consultez le site http://[www.phys.ufl.edu/fermisurface
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La vitesse des ¢électrons s'obtient en appliquant l'opérateur quantit¢ de mouvement

p=—ihV surles états propres ® définis précédemment, dans la limite non relativiste :
. p —ih = hk
fd="d=——Vo=—
m m m
. hk
>V =—
m
Ak

On appelle vitesse de Ferma v la vitesse des électrons au niveau de Fermi : vy =

Remarque : quand on prend en compte I'interaction des électrons avec le potentiel cristallin,
les relations de dispersion E(k) ne sont plus paraboliques. Cependant on pourrait facilement

montrer que dans le cas général (non relativiste) la vitesse des électrons a énergie et vecteur

1 —

d'onde donnés s'exprime comme |V’ = r V. E.

On exprime habituellement les distances enA, les énergies en ¢V et les vitesses en cm/s, qui
sont les échelles spatiales et d'énergie les plus adaptées a I'étude des solides. Pour un métal de
maille cristalline cubique de c6té a, avec Z électrons par maille, les grandeurs de Fermi

s'écrivent (sachant que n = N/V = Z/a%):

k 2,2 hk
d EF = n kF VF = —=
2m m
a7\ 13 17,8 x Z*3 3,57.10% x Z1/3
5 a a? a

Prenons comme exemple le cuivre : la structure cristalline est cubique a faces centrées, de
parametre a = 3.6A. Il y a donc 4 atomes par maille, et le cuivre étant monovalent, on a Z=4

¢lectrons par maille. On obtient alors les valeurs suivantes pour les parametres de Fermi :

ky =136A""
Ep=343eV
Ve =2,48.108cm .s7! ~ ¢/100

Ces valeurs sont typiques pour la plupart des métaux. Il est intéressant de remarquer que les
¢lectrons les plus énergétiques ont une vitesse non négligeable, de l'ordre de 1% de la vitesse
de la lumiere, alors méme qu'on s'est placé a température nulle ' Dans 'hypothése de Drude d'un gaz

. . . , . kgT .
parfait classique, la vitesse électronique moyenne est de l'ordre de grandeur de 1/—2—, soit
m

environ 7.108cm .s™! ~ v;/100 & T= 300 K et une vitesse nulle & T=0 ! C'est bien le principe
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de Pauli qui joue un réle majeur dans les propriétés physiques des solides (et de la maticre
condensée en général), en imposant que les électrons soient distribués sur une gamme

d'énergie bien plus grande que 1l'énergie thermique moyenne, contrairement aux hypotheses
de Drude.

On peut également tester la pertinence de I'hypothése de Drude selon laquelle les électrons
subissent des collisions sur les ions (supposés fixes) du réseau. On peut estimer le libre parcours
moyen ¢lectronique / a partir de la vitesse de Fermi et du temps de relaxation comme
[ =vpr ~ 108107 % 10%¢cm = 100A. Cette valeur est bien plus grande que le pas du
réseau cristallin (quelques A), ce qui permet d'invalider I'hypothése de Drude.

On montrera par la suite que les défauts du cristal dont I'échelle typique est du méme ordre de
grandeur que le libre parcours moyen électronique ne sont pas des défauts statiques mais des
défauts "dynamiques" résultant des vibrations du réseau. En mécanique quantique ces
vibrations sont quantifiées sous forme de phonons, et l'interaction électron-phonon est en
grande partie responsable de la résistivité des métaux.

1.2. Limite semi-classique et densité d'états

On vient de voir que pour un cristal macroscopique, les nombres quantiques et les énergies
peuvent étre considérés comme des variables continues. Mais peut-on pour autant traiter les

¢lectrons comme un gaz parfait classique ?

E
On définit la température de Fermi par : T, = k_F ~ 30000 K.
b

Cette température donne l'ordre de grandeur de l'énergie thermique a apporter au gaz
d'électrons pour que I'équipartition de I'énergie surpasse le principe de Pauli dans I'occupation
des niveaux électroniques. Il en résulte que tant qu'on a T > T le gaz d'électrons doit étre
traité¢ de facon quantique. Pour un métal standard a T<300 K cela sera toujours le cas.

Cependant, pour un cristal de dimension L et de distance interatomique a, I'écart entre deux

. , . a . 0 _
niveaux d'énergie est AE = T Les ordres de grandeur typiques sont a ~ 1A et L ~ 107 m,

ce qui donne :
AE e , . .
= ~ 107’ pour un échantillon macroscopique.

: . . AE
Si on compare a l'énergie thermique: ————— ~ 107,

kv T300 K
On s'apercoit que le pas de quantification est 1000 fois plus petit que I'énergie thermique, et
ne jouera pas de role dans les propriétés physiques. Cela justifie de considérer % et E comme
des variables continues sur toute la gamme des températures, sauf au voisinage du 0 absolu :

AE
en effet a 3K, ~ 1072,
kyTy K
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Pour pouvoir observer les effets de la quantification, il faudra donc se trouver a tres basse
température et/ou considérer un systeme microscopique. Cher étudiant qui lit ce cours,
réjouis-tol : Grenoble possede précisément des laboratoires de rang mondial dans le domaine
des basses températures et de la nanophysique (Institut Néel et CEA). O joie !

La dégénérésecence du spectre en énergie du gaz d'électron va apparaitre via la densité
d'états, 1.e. le nombre d'états par unité d'énergie (ou par atome, ou par unité de volume...).
Cette densité est notée g(E).

Le nombre d'états d N compris entre E et E+ dE s’écrit : dN = g(E)dE,

et comme E = E(k) on peut réécrire cette équation a I’aide de la densité états en vecteur

d’onde : dN =2 dPk = gp(k)dPk

2JZD

L
ou D est la dimensionnalité du systeme.

Par exemple, pour un gaz d'électrons libres isotrope en 3D:

L\3
dN:2<—> 4’k
2r

2V
= = dnk®dk
83
V.
=~ 2dk = g(E)dE
2
hk? 2mE n’k
Or E = 2= 22 ot dE = —dk.
m 2 m
. V 2mE h?
On obtient finalement g(E)dE = — mem dE
r2 h? h?2\ 2mE

3
V [(2m\2
g(E)_ﬁ<ﬁ> \/E

En généralisant a toutes les dimensionnalités, on obtient le tableau suivant:

Dimensionnalité D 1D - D=1 2D -D=2 3D -D=3
. L L2 L3
gp(k) avec spin 7 X — 2><—=i 2><—=L
27 4r?  2m? 8n3  4n3
dPk 2xdk 2rkdk drk’dk
g(E) L [2m 1 mL? 13 /om\ 2 y:
7\ 7 \JE nh? 2 \m) VE
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Les densités d'état gp(E) sont représentées dans la figure 4.4.

g(E) 1
1D
o(®) -
2D
Figure 4.4 : Densité d'états d'un gaz d’électrons libres
B en fonction de sa dimensionnalité.
«®)f
3D

E

Les grandeurs physiques a T = 0 K peuvent toutes s'exprimer a partir de la densité d’états. Par
exemple le nombre de particules :

Ep
N = J g(EYE

0
V [(2m % Ep

-5 (3) | vEar
2

=§EFg(EF)

et ’énergie totale du gaz a T=0:

0
E
= l <2_m> J FEB/ZdE
272 \ h? 0
3
= <N

On peut remarquer que les grandeurs physiques a T=0 peuvent toutes s’exprimer en fonction

des parametres microscopiques au niveau de Fermi, ce qui restera le cas a température finie,
comme nous allons le voir maintenant.
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2. Propriétés du gaz d'électrons libres a température non nulle

2.1.Occupation d'états fermioniques - distribution statistique de Fermi-Dirac

A température nulle, tous les états d'énergie E < Ej sont occupés, et les autres sont vides. Le
principe de Pauli impose d'avoir au maximum [ seul électron par état quantique. On peut
donc définir une fonction d'occupation d'un état fermionique, f{E,T) telle que

1, E<E;

f@T:m:LL E>E,

A température finie, la physique statistique permet de montrer que la probabilité d'occuper un
état quantique d'énergie E a température non nulle pour un fermion est donnée par la
distribution de Fermi-Dirac (cf figure 4.5) :

-1
FET) = [exp (Ek;T” ) ¥ 1] = [exp (pE ) +1]

Ou pu est le potentiel chimique du gaz d'électron. A T=0 on a E =pu. Les propriétés
remarquables de cette distribution sont :

1
- f(.u’T):E

- JE-u.T)=1-f(u—-ET)

A
1
T=0
T Figure 4.5 : Distribution de Fermi-Dirac
f(E) a différentes températures.
0.5
T — oo
0 >
H E

Cette fonction de distribution intervient dans le calcul de grandeurs physiques a T>0 . Par
exemple, la valeur moyenne de I’énergie totale du gaz a T>0:

(e ]

(E(T)) =J Eg(E)f(E,T)dE
0

En général ces intégrales n'ont pas de solution analytique et doivent étre résolues

numériquement. Cependant, 1l existe un développement de ces intégrales qui permet de faire

kgT
des prédictions analytiques dans la limite —— << 1 : c'est le développement de Sommerfeld.
F

42



UGA M1 PFN 2018-2019 Cours de Physique du Solide et Magnétisme

2.2.Développement de Sommerfeld

o]

On cherche des intégrales du type: (A) = J AE)f(E)E
0

Pour cela on définit une fonction K(E) telle que :

Camy =%

OF
- K(0)=0
- K<E"Vn

On modifie alors l'intégrale :

W= | Srar
- [Kf];o - J%K(E)dE
Or
KO=0 10~ Wi o
Donc
(Ay = — J%K(E)dE

Or, on peut voir sur le graphique 4.6 que la dérivée de f est non nulle uniquement au
voisinage du potentiel chimique, et constitue méme une distribution é de Dirac pour T=0.

A i of
— #(B) ) a5~ 15E

of

f(E) — 3E

Figure 4.6 : Fonctions dérivées de la distribution de Fermi-Dirac intervenant dans le développement
de Sommerfeld..
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Il est donc justifié de faire un développement autour de E = u:

K(E) =K(pw) + (E — K'(n) +

(E-w?* _,
> K"(p)

On réécrit alors:

I ol — - . Jwﬂa_f
(A)—L aEdE+K(/4)L (E y)aEdE+K(,u)O R

En remarquant que
- par définition le premier terme vaut 1 (cf. distribution 6 de Dirac)

- le deuxi¢me terme est nul (cf figure 4.6),

on obtient finalement:

— 17 * (E - ,u)z ﬁeE_ﬂ
(A) = K(pw) + K" () L 2 (ePE-W 4 1)2

On effectue le changement de variable: x = #(E — ), dx = fdE et on reporte:

(Ay =K(w +

KH(,U) JOO x26x KH(,U) JOO x2€x

252 _/,ﬂ(ex+1)2dx:K(”)Jr 2 | e

[+3] 2 ,x 2 K" 2
Or J de - (intégrale tabulée) et on obtient (A) = K(u) + (#) r
—eo (¥ +1)2 3 22 3

D'ot il
ou, pour — <1
U

JZ 2
(A) = J AEYE + = A'(0)kyT ?
0

Ce résultat constitue le développement de Sommerfeld des observables d’un gaz de Fermions. 1l reste
valable tant que la gamme d’énergie sur laquelle la distribution de Fermi f(E, T) est modifiée
par la température (de l'ordre de kgT) est faible devant le potentiel chimique (de I'ordre de
kgTg). Par exemple pour le Cu a 300K, T/T, ~ 300/30000 = 0,01 et le développement est
encore valable.

On va maintenant appliquer ce résultat a 1'étude des propriétés thermodynamiques et de

transport des métaux simples.
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2.3.Propriétés thermodynamiques
2.3.1.Potentiel chimique

On a vu plus haut que :

&) U 2
N = J g(E)f(E)E = J g(E)dE + %g/(u)(kBT )2
0 0
Ef 7 2
= J g(E)dE + J g(E)dE + —g'(u)(kgT )?
0 Ef 6
2

= N+ (= Ep)g(Ep) + =8 (Ep) kT

: Ep — AR
Pour le deuxi¢me terme on a supposé que lFE—ﬂl < 1 et développé I'intégrale au ler ordre.
F

De cette équation on tire directement I’expression du potentiel chimique :

2 o 2 ’ 2
W) =g, -8 ED 4 1o g [1 _ 7 Erg'(Ep) (kBT) ]

6 g(Er) 6 g(Ep) \ Er

Il apparait que le potentiel chimique dépend de la température du gaz d’électrons. Le sens de
variation va dépendre du signe de g'(Er), comme 1l est résumé dans le tableau ci-dessous dans
le cas des électrons libres :

Dimensionnalité g(E) g'(E) a_:“
oT
1D x E172 <0 >0
2D =cte =0 =0
3D x E'2 >0 <0
, . ST N |EF _ﬂl e e e,
Vérifions a posterion si ’hypothése ———— << 1 était justifiée.
F
3/2
V (2m 8(E)
En 3D Ey=—|— E=>gE)=——
n 3D on ag(E) 2n2<h2> VE = g'(E) E
Al |Ep—pu|  n° Epg'(Ep) [ksT\> 72 (keT\* #° ( T >2 <l
ors =— = (L) ==
EF 6 g(EF) EF 12 EF 12 TF

On voit donc que pour les métaux dont ’énergie de Fermi est de 'ordre de quelques eV, on
peut faire 'approximation y = Ej a toute température entre 0 et 300 K.
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2.3.2.Energie moyenne et chaleur spécifique

On a vu plus haut que (E) = J Eg(E)f(E)dE
0

En utilisant le développement de Sommerfeld:

Ep " 2
(E) = J Eg(E)dE + j Eg(E)dE + %(EFg’(EF) +8(Ep))
0 Ep
2 2

= Er_o+ (4 — EDEpg(Ep) + %EFg'(EF)UcBT)2 + %g(EFXkBT)2

71.2

D’apres le paragraphe précédent, on a (u — Ep)Epg(Ep) + ?E,;g’(EF)(kBT)2 =0

et on obtient

2
b1 14
(B} = Er_g+ =g (Ep)T Y = Er_o + ST

La chaleur spécifique électronique vaut alors

d{E) 72 5
Cp = 7 = ?g(EF)kBT = 7/T

y est appelé coefficient de Sommerfeld. On voit donc que la chaleur spécifique électronique
est directement proportionnelle a la densité d’états au niveau de Fermi !

La figure 4.7 ci-dessous présente la mesure de la chaleur spécifique d'un échantillon ultra-pur
de Cu. La ligne continue est un ajustement par une loi de type

C
— =y +pT?
T=rH
ou le premier terme est le coefficient de Sommerfeld, et le deuxieme terme est la contribution

de phonons du réseau cristallin, qui sera traitée en détails au chapitre 5.

C/T(n.umolp-x*)

1 | 1 )| 1 1 | i L
0 25 50 75 10,0 1285 150 ITS5 200 2285 250

T2(K?)

Figure 4.7 : Chaleur spécifique du cuivre a basse température. D’apres D.W. Bloom, Review
of Scientific Instruments 41, 690 (1970)
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En pratique la mesure du coefficient de Sommerfeld est un outil puissant permettant de
mesurer la densité d’états au niveau de Fermi, qui elle-méme détermine de nombreuses

propriétés physiques des métaux.

Remarque : on peut faire apparaitre de fagon formelle le caractere d’électrons libres du gaz de

2
. , . , . T\3
Fermions, en écrivant I’énergie sous la forme (E) = E;_, + (% F) EN kgT.
F

2.4.Propriétés de transport
2.4.1.Conductivit¢ DC

Pour des électrons libres soumis a un champs E constant, I'équation du mouvement s'écrit:
dv mv —
m— =————|e|E

dt

Dans la limite quantique non-relativiste, I'impulsion p’=mV =#hk et I’équation du
mouvement peut se réécrire sous la forme
dk _ nk -
h— =————|e|E

dt T

La solution de cette équation est bien connue

T = 1eIET (—1> ~1
h xp T

La sphere de Fermi (surface de Fermi) se déplace dans l'espace des k. Un état stationnaire

sera atteint au bout d'un temps typique comparable au temps de relaxation 7z, et la sphere de
Fermi sera alors décalée de l'origine par un vecteur d'onde

le| E.t

Sk -

eq —

(cf figure 4.8)

Figure 4.8 : Illustration du décalage de la sphere de Fermi

dans l’espace des phases.

>
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L'état stationnaire est alors hors équilibre thermodynamique. La fonction de distribution

change donc; f(E) # f(E), mais en général k—eq < let la variation de la fonction de
F

distribution peut étre traitée comme une perturbation. On peut alors écrire:

i of
f(E)=f(E)+TE
_ gy 4o L OE K
=/ "OE ok ot

—|e|E
mf(e)—rﬁ(E—u)hv( 7 >

Si le champ est appliqué selon l'axe Ox, le courant j, s’écrit : j, = — |e|(nv,), ou l'on fait
apparaitre explicitement la valeur moyenne thermodynamique () des observables. En termes
de densité d’états, cela devient

Jr=—le |J g(EW(E)f(E)IE
0

=—|e|J g(E)vx(E)f(E)dE—rleIJ g(EWAE)S(E — wdE
0 0

Attention ! Ici g(E) est exprimée par unité de volume pour garder la cohérence des unités.

[o0]

On peut remarquer que J gEW(E)(EYIE = (v,), la composante moyenne de la vitesse
0

¢lectronique selon 'axe Ox a I’équilibre thermodynamique. Or par définition de I’équilibre
thermodynamique (v,) = 0.

Donc:

Je=lePTE g (vi(u)
= |e|2TEXg(EF)v12¢,x car yu = Ep

. 1
Pour un systéme isotrope en 3 D, vz = v%,x + vfw’y + v%’z, et j, = 3 le |2TExg(EF)v1% = opcE,

Dans le modele de Sommerfeld, il apparait donc que la conductivité électrique est
proportionnelle a la densité d’états et a la vitesse quadratique au niveau de Fermi.

. . . . 3n 2Ep )
Remarque n°l : En 3 dimensions isotrope, on peut écrire g(Ep) = —— et vy = ——, ce qui
2EF m
o L nlel’s : :
permet d’écrire la conductivité sous la forme oy = ! On retrouve I'expression de
m

Drude, mais cette coincidence est accidentelle : en effet, dans le modeéle de Sommerfeld seuls
les électrons dont I’énergie est comprise dans la gamme AE = Ep *+ kzT sont « actifs » en

raison du principe Pauli, ce qui représente une fraction — =~ 1% de la densité électronique
F

totale a T=300 K. A I'opposé la vitesse de ces électrons (v) = v, avec i ~ 100 a 300 K.
VDrude
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Par rapport aux hypothéeses de Drude, i1l y a donc 100 fois moins d’électrons qui participent a
la conduction, mais leur vitesse est 100 fois plus élevée. Ces deux erreurs se compensent
accidentellement dans le calcul de la conductivité, mais cela ne sera plus le cas pour les
grandeurs thermodynamiques.

Remarque n°2 : On définit la mobilité des charges, u (différente du potentiel chimique), par :

c tle|r

tn|e| B

U= classique)
On peut écrire cette expression sous une forme plus générale (due a Einstein) faisant intervenir
le coefficient de diffusion électronique D :

2

viT
u=le|lD = |€|T

2.4.2.Conductivité thermique-Loi de Wiedemann-Franz

D'apres le modele de Drude, et considérant la relation d’Einstein, on écrit que la conductivité
thermique est un phénomene de diffusion de la chaleur par les électrons :

Kk =c¢,D

Avec ¢, =yT, on obtient

71'2 VZT
= g(Eq)k2T L=
K 3 8(Ep)kg 3

Le nombre de Lorentz devient alors

I = K _JTZ kg 2~2L
_GDCT_?’ e ~ Drude

On récupere le facteur 2 que la théorie de Drude était incapable d’expliquer.

2.4.3.Pouvoir thermoélectrique

3nle|’

En remplagant par les expressions des différentes grandeurs en 3 D isotrope, on trouve:

On a vu au chapitre 1 que la forme générale du pouvoir thermoélectrique s’écrit: Q =

2
3 S(Ep)kzT _ 7’ kg KT
2Epg(Ep)|el 6 le| Ep
2 2
P2 kyT & T .
=5 Oonuac g, = 5 Qornac 107 prae A T=300K
F F

L’ordre de grandeur du pouvoir thermoélectrique est conforme aux valeurs expérimentales.
On a ici une illustration tres claire du fait que la nature fermionique des électrons ne peut pas
étre négligée pour expliquer et prédire les propriétés des excitations de basse énergie des

solides : le principe de Pauli joue un role majeur.
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RESEAU CRISTALLIN ET STRUCTURE DE BANDES

1. Elements de structure cristalline et de cristallographie

1.1.Définitions : réseau cristallin, maille et motif

Un cristal est un réseau atomique qui se répete par translation dans plusieurs directions de
l'espace. La "brique" de base du cristal est la maille éléementaire, chaque maille étant
associ¢e a un noeud du réseau. Une maille contient un motif atomique (voir figure ci-
dessous). Si la répétition de la maille cristalline permet d'occuper tout l'espace sans laisser
d'espace vide entre les mailles, on parle alors de réseau de Bravais.

—

Chaque noeud du réseau est défini par sa position R dans la base du réseau de Bravais :
R=) g,
i
Le volume de la maille définie par les vecteurs du réseau de Bravais est donnée par:
V=|d,.(a,Aas)]
La position des atomes du motif dans la maille élémentaire 7; s'écrit en fonction des vecteurs

J
- _ —
rj— xijai
i

—
a’; comme

ou 0<x;<1. Par exemple dans la figure 5.1 ci-dessous, dans la base (@), @), on a
7= (1/3,3/4) et 7, = (2/3,1/3).

Noeuds du réseau Motif

Figure 5.1 : Représentation schématique d'un cristal en 2D. Chaque maille du réseau de
Bravais contient un motif atomique qui se répete et permet de paver totalement le plan.
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Une maille primitive est une maille ne contenant qu'un seul noeud du réseau. La maille
primitive contenant tous les points les plus proches d'un noeud et non d'un autre est appelée
maillelcellule de Wigner-Seitz.

En pratique on construit la cellule de Wigner-Seitz en tracant les bissectrices des segments
reliant le noeud du réseau considéré a ses voisins. On peut voir sur la figure 5.2 ci-dessous que
la cellule de Wigner-Seitz du réseau 2D présenté auparavant est un hexagone centré sur un

noeud.

Figure 5.2 : Représentation du réseau 2D de la figure 5.1 a partir de la cellule de Wigner-Seitz.

Dans certains cas il est plus simple de travailler dans une maille non primitive : c'est le cas par
exemple de la structure cubique a face centrées (CFC) qui contient 4 atomes, alors que la

maille primitive de ce réseau est rhomboédrique.

1.2.Réseaux de Bravaisen 3 D

Comme on l'a dit auparavant, un réseau de Bravais est un réseau dont la répétition de la
maille primitive par translation dans les 3 directions de I’espace permet de remplir totalement
I’espace.

En trois dimensions I'ensemble des symétries laissant un réseau invariant permet de définir 7

groupes d'espace. En y ajoutant les mailles conventionnelles a 2 ou 4 atomes, on obtient 14
réseaux de Bravais, qui sont listés dans le tableau ci-dessous.
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Groupe d’espace

Cubique simple

Cubique centré

Cubique a faces
centrées

Tetragonal
Tetragonal centré

Rhomboédrique

Hexagonal

Orthorhombique
simple
Ortho. centré
Ortho. a base
centrée
Ortho. a faces
centrées

Monoclinique
Monoclinique a
base centrée

Triclinique

Géométrie et symétries

a=b=c
P T
a = = = —
2
Axes (3) et (4)
+ plans miroirs
a=b#c
P, T
a = = = —
=3

1 axe (4)

+ plans miroirs

b
p
3 axes (3)
+plans miroirs

a
a

SN I

a=b#c

4 2r

a:ﬂ:—’y:—

2 3
1 axes (6)

+plans miroirs

a#b#c

V.4
a=p=y=2
3 plans miroirs

1 plan miroir

a#b+#c
aFpFy

Fv

Mailles cristallines

(€]
5) @
a a @ a
a a a
a a a
a#c a#c
(&) c
a a a a
a=f=y # 90°
a
a
a
a#c
"'C
azb=zc azb=zc azb=zc azb=zc
c 9] c c e “|c
£ R < E 55
f =900 p =90°
wy =90° f oy = 90° 1€
. * . *
{ A { ® /\
B o s ¢ B
a P “:(1_‘ a b ':(I_“
~— a4 ] ~—t——C8 |
/ '.“b | Y »
1 1
o,B,y # 90°
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1.3. Le réseau réciproque

Dans un cristal, la densité électronique est périodique. Elle peut donc étre décomposée en
série de Fourier:

—lel(w@ Iy F)=pF) =) pgexp(iG.7)
G

. . g , ..
La symétrie par translation d'un vecteur quelconque L du réseau de Bravais impose:

p(F+1L)=p(F)

Y oz expliG. (L +7)] = Y oz expli(G . 7)]
G G

eiaz: =" 5.Z=2ﬂn

ou n est un entier relatif. Ona L = Z L;a;, ou les L; sont par définition des entiers relatifs.
=123

On peut par ailleurs définir une base b; sur laquelle on décompose les vecteurs
G = Glbl'
i=1.23

On a alors

]

- . .
Les vecteurs b ; définissent le réseau réciproque si et seulement si:

@ .b; =215,

ctalors G. L = 27:2 G;L; = 2zn. Comme n et les L; sont des entiers relatifs, il résulte de cette
i

égalité que les G; doivent également étre des entiers relatifs, et que le réseau réciproque défini
R

par les vecteurs b; est également un réseau de Bravais. En général on exprime les vecteurs du

réseau réciproque dans la méme base que ceux du réseau réel.

En 3 dimensions, on peut construire le réseau réciproque comme

A N aiyo

|a; . (@) AT iy0) |

b. =2n

—
l
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Un exemple simple de construction de réseau réciproque est donné en figure 5.3. Le réseau
. —_— a —_— ’ o
réel est défini par 2 vecteurs a; = < 01 ) et a, = <£2) et le réseau réciproque par 2 vecteurs

— b — b
b, = ( 11>et b, = < 21) dans la forme la plus générale.
by, by,

Les relations définissant les vecteurs du réseau réciproque sont :

; 2

a EI:Z” ajby =2m b11—a—1

) 51’172=0 ajb;; =0 - bj, =0

a; E’zzﬂ a,by, =2m bzz—ﬁ

k72>-z1’=0 ayb,; =0 , a%
21 =

2z 0
et par conséquent les vecteurs du réseau réciproque sont b = <01 >et b, = ( 2z >
0 )

Réseau réel (ou réseau direct) Réseau réciproque

r--———"">"">""">"">"7"77 B T

| | |

| | |

| | |

| I |

I | I

| | |

| | |

| | |

| | |

| | |

| |

| |

| |

| |

| |

|

| | }

| | | 2

| | ‘ Bl =22

: ; 7 = =

AT T —
—_ N
a4

b,

Figure 5.3 : Un exemple (4 I'échelle) d'un réseau réel et de son réseau réciproque.
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1.4.Les Zones de Brillouin du réseau réciproque :

Par définition une zone de Brillouin correspond a une cellule de Wigner-seitz du réseau
réciproque. La premiére zone de Brillouin est celle qui se rapporte au plus petit noeud du
réseau réciproque (contenant donc l'origine du réseau réciproque, appelé point I').

a) c)

\. . \0//

\ /\ \//°/
7

PaN < 7S

° § =3 lere ZB
\\ // [ 2éme ZB

[ 3eéme ZB

TRAN

Figure 5.4 :Construction des zones de Brillouin d'un réseau carré 2D. On trace les droites médianes
aux directions vers les: a) premiers voisins, b) seconds voisins, c) troisiemes voisins. d) On a tracé les
droites médianes jusqu’aux cinquiemes voisins, et les 3 premieres zones de Brillouin sont mises en
évidence. On remarquera que chaque zone a la méme aire totale.

La méthode générale de construction des zones de Brillouin est illustrée en figure 5.4. Elle
consiste a tracer successivement les droites médiatrices dans les directions des noeuds nemes
voisins de I'espace réciproque. On peut facilement montrer que sur ces plans les vecteurs
d’onde vérifient la relation

- - G
k.G =—
2
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qui n’est autre que la condition de Bragg pour la diffraction. Les plans délimitant les zones de
Brillouin seront donc appelés plans de Bragg. Pour déterminer dans quelle zone de Brillouin

un vecteur d’onde se trouve, on pourra appliquer la régle suivante :

En se déplacant dans l'espace réciproque a partir du point I', on entre dans la zone
de Brillouin n+1 lorsqu’on traverse le plan de Bragg n.

Dans la figure 5.4 par exemple, il faut traverser 2 plans de Bragg pour entrer dans la troisiéme

zone de Brillouin.

En trois dimensions les zones de Brillouin sont construites de la méme manicre. Les cas des
réseaux cubique centré et cubique faces centrées sont illustrés en figure 5.5. Un élément
remarquable est le fait que la premieére zone de Brillouin du réseau cubique centré (body-
centered cubic, bee, en anglais) a la méme forme que la cellule de Wigner-Seitz du réseau

cubique a faces centrées (face-centered cubic, fcc ,en anglais), et réciproquement.

Lattice Real Space Lattice K-space

k4
W=

bee \’VS cell

o o

Bce BZ (fece lattice in K-space)

®
e @
N\ ;//Hi“ /,’
VA sk

TSR

fcc BZ (bec lattice in K-space)

fec WS cel

Figure 5.5 : représentation des cellules de Wigner-Seitz et des premieres zones de Brillouin pour les
structures cubique centrée et cubique a faces centrées. On peut remarquer la correspondance espace
réellespace réciproque entre les deux structures.

1.5. Visualisation du réseau réel et du réseau réciproque

On n’entrera pas ici dans les détails des techniques expérimentales permettant d’étudier la
structure cristalline des matériaux. Ces techniques sont de deux types :

- les techniques d’imagerie de lespace réciproque (diffraction de RX, d’électrons, de
neutrons). Cf cours de cristallographie et condition de Bragg et de Laue pour la diffraction.

- les techniques d’imagerie dans I’espace réel (microscopie a effet tunnel (STM), microscopie

¢lectronique a balayage (SEM) et a transmission (TEM).
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2. Effet de la périodicité sur les propriétés électroniques

Théoreme de Bloch : dans un potentiel périodique, les fonctions d'ondes décrivant les états

- .
électroniques de vecteur d'onde & s’écrivent :

yr(F) = up(Fe’’

Ce type d'onde est appelé onde de Bloch. On va montrer que les fonctions u(7) ont la

méme périodicité que le réseau, ainsi que la densité électronique associée a ces fonctions

d’onde.

. - \ . /
Pour une translation d’un vecteur L correspondant a un nombre entiers de pas du réseau, on
a

l//?(? + f) = u;»(? + T)eik'(?+L)

it N — R
:e’k'Lu?(r+ L)etk.r

On peut aussi écrire que la fonction d’onde w4 (¥ + 7;) est égale a la fonction d’onde y—(7)

translatée du vecteur d’onde L :

|
=l

G+ L) =Ly ()

Py
ik.r

~|
=~

=e'" up (e

On en déduit que la fonction u(7) posséde la méme périodicité que le réseau, ainsi que la

densité électronique
pG+ L) = || |wg@ + Dk + Lid’r
= u (7 + f)u%(y + z’)eik.(?+L)e—ik.(7+L)d3r

= |u?(?+f)|2d3r

= lu(F) > d3r

J

=p(7)

La forme mathématique des fonctions de Bloch implique que celles-ci sont également
périodiques dans espace réciproque. En effet, les fonctions u- étant périodiques dans espace

réel, on peut les décomposer en série de Fourier sur les vecteurs du réseau réciproque :

up@) =Y a(k + G)e'S”

G
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—
Pour un vecteur G, quelconque, on aura alors

> ST+ G+ GeiGT
up g () = X a(k + Gy + G)e
G

G ZGg+C
— ”7(7 )e—iGOAF

et par conséquent
WG () = ug, g (e 7

—ié’.?ei(?+5).7

uz(r)e
ik

= up(r)e

=y (F)

Si on applique le Hamiltonien du cristal sur les états |y) et |y, &), on obtient les deux

énergies
Hlyz) = Exlyg)
Hlyp,g) = Epglviig)

Or comme |y7) = |y7, &), il en résulte que H| W) = H| w1, g) et par conséquent

E(K)=E(k +G)

Il s’agit la d’un des résultats les plus importants de la physique du solide : dans un potentiel
periodique, les énergies des états électroniques sont périodiques par translation
d’un vecteur quelconque du réseau réciproque.

Conséquence pratique: on peut se limiter a la premiere zone de Brillouin pour décrire les
propriétés physiques d'un cristal. Mais pour ne pas oublier les états de vecteur d’onde situés
dans la néme zone de Brillouin, on doit « replier » (« backfold » en anglais), ou plus précisément
translater, les dispersions électroniques vers la premicre zone de Brillouin, comme indiqué
dans la figure 5.6. On passe d’une description ou l'on a 1 dispersion étendue sur N zones de
Brillouin a une description ou 'on a N branches de dispersion repliées dans 1 zone de
Brillouin. Chaque branche de dispersion définit une bande d’énergie  pour les états
¢lectroniques possibles. On parlera alors de la structure de bandes d’un solide pour décrire
ses propriétés électroniques.
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\/

SRR

SHE N

Iy Iy

Figure 5.6 : différentes facons de représenter les dispersions électroniques d'un solide périodique. a)
Schéma de zone étendue. On ne représente que la dispersion centrée en k=0. c) Schéma de zones
répétée. On représente les dispersions centrées sur les différents noeuds du réseau réciproque. c)
Schéma de zone réduite : on ne considere que la premiére zone de Brillouin, en y faisant figurer
toutes les dispersions issues des zones de Brillouin d’ordre supérieur. En pratique c’est ce schéma qui
est utilisé dans la littérature.

La structure électronique étant périodique, on peut logiquement se demander comment le
vecteur d’onde de Fermi et ’énergie de Fermi vont étre définis. Pour cela, considérons un
cristal tridimensionnel, orthorhombique, de parameétres de maille ¢; (avec 1=x,y,z). Ce cristal
est composé de M ~ 10% cellules unités, et ses dimensions L,, L, L. peuvent s’écrire en nombre

[ B4

de mailles comme L; = M,q;, avec HM,- = M. La périodicité des fonctions de Bloch impose
i

alors que les vecteurs d’onde k; soient quantifiés comme

2nn;

" Ma.

[
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On retrouve une condition de Born-Von Karman, mais cette fois la périodicité du cristal est
explicite. Cette condition de quantification a plusieurs conséquences :

- comme M;a; > 1, les k; peuvent la encore étre considérés comme des variable continues.

- par définition la premicre zone de Brillouin correspond aux vecteurs d’onde tels que

z r Co N i M; . Ry
—— < k; £ —, ce qui équivaut a -5 <n; < 5 i1l y a donc M, valeurs indépendantes

a; i

de la composante k; du vecteur d’onde comprises dans la premiere zone de Brillouin

On en déduit la propriété importante suivante :

Pour un cristal de M mailles, la premaéere zone de Brillouin contient M valeurs
indépendantes de vecteur d’onde.

Chaque état x pouvant accueillir 2 électrons (de spin up ou down), on en déduit également
que :

Chaque bande d’énergie dans la premiere zone de Brillouin peut accueillir 2
électrons par maille cristalline.

Lorsque le nombre d’électrons par cellule unité augmente, on peut arriver au cas ou kz tombe
dans la néme zone de Brillouin. Par périodicité, dans ce cas k; tombera dans la néme bande de la

premiere zone de Brillouin.

Ilustrons cela dans le cas 1D. Le tableau et la figure 5.7 ci-dessous donnent la position de kg et
Ep pour différentes densités linéiques d’électrons.

Nombre M d’électrons par maille 1 2 3 4
kr de Sommerfeld x r 3z 2z
2a a 2a
kp dans la lére ZB x r _T 0
2a a 2a

Figure 5.7 : valeur du vecteur d’onde et de I’énergie de Fermi dans le cas 1D, en fonction du nombre
d’électron par maille.
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Le principe de construction de la surface de Fermi d’un systeme 2D est présenté en figure 5.8.
II suffit de dessiner les surfaces de Fermi centrées sur tous les noeuds du réseau réciproque. La
surface de Fermi sera constituée de toutes les portions de surface de Fermi « repliées » dans la
premiere zone de Brillouin. On voit bien dans la figure 5.8 que la surface de Fermi, bien que
composée d’arcs de cercle, n’a plus du tout une forme circulaire.

Surfaces de Fermi

centrées Surface de Fermi dans la

sur chaque noeud N premiere zone de Brillouin
du réseau f601£)roque M X M
Er(k+G)
Premiére zone
de Brillouin
M X M

Noeuds du réseau
réciproque

Figure 5.8 : Construction de la surface de Fermi d'un cristal en deux dimensions.

On a I’habitude de nommer les points de haute symétrie de la zone de Brillouin par des
lettres. Dans notre cas, le centre de zone, de coordonnées (0,0) est appelé I', les coins de la

) T ) i
zone, de coordonnées (x—,+ —), sont appelés les points M, et les centres de faces, de
a_ a

coordonnées (0, = z) et (iz,O), sont appelés les points X. Il faut bien remarquer que dans
a a

notre cas isotrope les 4 points X sont équivalents, ainsi que les 4 point M. Pour représenter la
surface de Fermi de ce systeme, on peut donc se limiter au quadrant (k, > 0,k, > 0) et dessiner

le reste par symétrie.

Etudions maintenant la structure de bandes de ce cristal 2D. Contrairement au cas 1D, 1l
existe ici une infinité de directions dans lesquelles on pourrait calculer les dispersions
¢lectroniques. En pratique, on calcule les dispersions en suivant un chemin dans l’espace

réciproque reliant les différents points de haute symétrie.

Nous allons tracer les dispersions électroniques en suivant un chemin M —I" — X — M, et en se
limitant aux bandes issues des noeuds plus proches voisins de I' dans le quadrant défini ci-

dessus. Dans les calculs on ne considére donc que 4 noeuds du réseau réciproque

2 2 2 2
(G, G,) = (0.0); (0,2); (.01 (22,25,
a a a a

Dans notre cas isotrope les énergies électroniques s’écrivent
hZ
E(k k.G G = 5~ [(kx — G+ (k, - Gy)z]
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Dans une direction I'X une des 2 composantes du vecteur d’onde est nulle. Prenons ky, = 0 et

appelons k, = kry. Les 4 bandes auront alors comme relations de dispersion :

-

2r
E(kry) = E(er’(),?,o)

2r
Ez(er) = E(kr)p(),(),;)

2r 2w

E3(kFX) = E(kFX909_9 _)
a a

L

hZ

= —— (krx)’

Dans la direction 'M on a k, = k, = kpy,

-

Eo(krar) = E(kpy» krp,0,0)

2r
E\(kpy) = E(kpygs ks 7,0)

2
Ey(kryy) = E(kry, krM’O,j)

2rn 2w
E3(krM) = E(kFM, krM, 7, 7)

.

=2m

2
) }
2 2
(kFM - _> + (kFM)
a
[ 2 2 2]
(kFM) + \ kry — > = E(kry)
[ 2r 2 2 2
kryy—— ) + ke ——
a a

Dans cette direction deux bandes sont dégénérées.

o T
Enfin, dans la direction XM on a k, = — et k, = kyy,.

-

T
Ey(kxy) = E (Z’ kx1,0,0)

27

T
El(kXM) = E(—, kXM’ —’O)
a a

b4 2r
EZ(kXM) = E(_’ kXMaO, )
a a

T 2 2m
E3(kXM) = E(_’ kXM’ s )
a a a

S

a

n [

T 2m

Dans cette direction on a 2 bandes 2 fois dégénérées.

On peut maintenant tracer la structure de bandes du cristal, qui est représentée en figure 5.9.
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8 B (X)
Figure 5.9 : Structure de bandes d’électrons libres
5 Eg®) du cristal carré en deux dimensions. Les énergies
FEX) so?fzt exprimées en fonction de l'énergie la plus
faible au point X.

\\ ‘.“‘ / S g’ 00 52 (ﬂ,)g

M r X M

Une fois cette structure de bandes établie, on peut chercher la position de I’énergie de Fermi
pour un certain nombre M d’électrons par maille et tracer la surface de Fermi
correspondante. Le systeme étant isotrope, le calcul de & et Ey est facile :

2n [M 1’ <n>22M 2M

kr = — > FE,=— —=—FX
F a 2r F™ om b3 T oX)

a

La figure 5.10 ci-dessous présente les structure de bandes et les surfaces de Fermi obtenues
pour différents remplissages des bandes.

M=1 M=2 M=3 M =4

Figure 5.10 : Evolution de la position du niveau de Fermi et de la surface de Fermi du cristal carré
2D en fonction du nombre M d’électrons par maille.
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La méme méthode s’applique dans le cas d’un cristal tridimensionnel. On pourra trouver de
nombreux exemples dans le livre de Ashcroft et Mermin, ou celui de Kittel, ou de tres
nombreux cours de physique du solide disponibles en ligne.

Nous venons de voir que le premier effet de la périodicité du potentiel cristallin est de replier
les dispersions électroniques dans la premiere zone de Brillouin et de donner naissance a une
structure de bandes. On va maintenant s’intéresser plus en détails a Ieffet quantitatif du
potentiel périodique sur les énergies des bandes. Pour cela nous allons considérer un modele
simple de potentiel périodique en une dimension, le modele de Kronig-Penney.

2.1.Mode¢le de Kronig-Penney

On considére un modele ou les fonction d'onde sont soumises a des potentiels rectangulaires
ayant une valeur V,, de largeur b, et espacés d'une distance a (cf. figure 5.11).

V)

Vo

II I I1I

\

-a-b b 0 a atb 2a+b X

Figure 5.11 : Potentiel périodique du modele de Kronig-Penney

Les fonctions d'ondes dans les zones I, II et III sont des superpositions d'ondes planes:
d)] - Aein + Be—in
¢1[ = CeQx + De_Qx

b = dye h(atb)

2mE n*Q? : N
Ou K = %, Vo—E = Z—Q, et ot la phase e™*@*?) rappelle que ¢;;; est similaire a ¢;; par
m

translation de a+b.
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On prend comme conditions aux limites les continuités des fonctions d’onde et de leur

gradient :
¢1(0) = ¢;,(0) = A+B-C-D=0
$1(0) = ¢,(0) = ik(A-B)-Q(C-D)=0
b1(@) = Pyy(a) = ¢y (—b)e @D = Ae'K4 4 Be K4 — (Ce™2 + De@P)e'* D) = (
b)) = ¢jy(@) — iK(AeKe — Be=iKay _ 0(CeCb — DeQb)eikath) — ()

On définit les parametres

o = eika aa=pp =1
a=a* a+a=2cos(Ka)
B=e?  avecles propriétés suivantes : @ — & = 2i sin(Ka)
f=e 0 p + f =2 cosh(Qb)
y = eikath) B — B =2sinh(Qb)

Le probléme a une solution non triviale si le déterminant du systeme est nul:

1 1 -1 -1
iK —-iK -0 O
a a —pyr -Pr

—iKa -iKa —-Qfy Qpy
Le calcul est assez long mais sans difficulté. On obtient finalement:

_ _ 1
(@ = @) (B~ p)Q* —K*) = 2iKQ(f + f)a + @) = — 4iKQ(y + ;)
~
QZ_KZ

KO sinh(Q b)sin(K a) + cosh(Qb)cos(Kb) = cos(k(a + b))

Cette équation relie le vecteur d’onde k de la fonction d’onde globale du potentiel périodique
aux paramectres K et O qui font intervenir I’énergie et le potentiel. C’est donc bien une
équation de dispersion des états électroniques du type E = f(k). Cette équation peut-étre
résolue numériquement dans le cas général, mais on peut la résoudre « a la main » moyennant
certaines approximations.
Dans la limite b - 0, V;— o0 avec QO > K et Qb <1 (le potentiel devient un peigne de
Dirac), la relation de dispersion devient
Q%ab sin(Ka)

2 Ka

%Qb sin(Ka) + cos(Ka) = cos(k(a)) = + cos(Ka) = cos(k(a))

2
On définit alors P = Qab

"l'intensité effective" du potentiel, et la dispersion devient
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in(K
p sin(Ka)

+ cos(Ka) = cos(k(a))

Le membre de droite étant un cosinus, la relation de dispersion n’aura de solutions que si
sin(K a)
|P

+ cos(Ka)| < 1.

sin(K a)

La fonction P + cos(Ka) est représentée en figure 5.12 dans le cas P=5. Il existe des

bandes de valeurs de Ka pour lesquelles la relation de dispersion n’a pas de solutions, ce qui
signifie qu’il existe des bandes d’énergies interdites pour lesquelles il n’existe pas de
solutions de I’équation de Schrodinger en termes d’ondes de Bloch.

in (Ka) O T T |
sin (Ka
P o + cos (Ka) sl )
4T P=5 ]
PSin(Ku)—I-COS(Ka)>1 3_ _
§\\
Ka 9 §:§t\ _
Bandes interdites A B
1
0
-1
I I I I I
-15 -10 -5 0 5 10 15

Ka x VE
Figure 5.12 : Solution graphique de la relation de dispersion du modele de Kronig-Penney

On peut remarquer que les bandes interdites apparaissent pour cos(ka) = %+ 1, c’est-a-dire
nm

pour k = —, ce qui correspond aux bords de chaque zone de Brillouin. On a représenté en
a

figure 5.13 les relations de dispersions des 4 premicres bandes dans la premicre zone de
Brillouin, dans le cas d’électrons libres (en pointillés) et pour le modele Kronig-Penney avec
P=5. On voit que Pleffet principal du potentiel est de lever la dégénérescence des bandes
d’électrons libres au voisinage de leur point de croisement, et plus précisément sur les
plans de Bragg tels que définis plus haut. Les bandes interdites étant couramment appelées

« gaps », on pourra résumer I’effet du potentiel cristallin comme suit :

Le potentiel cristallin a comme effet d’ouvrir des « gaps » dans la structure de

bandes au bord de chaque zone de Brillouin.
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Bandes interdites = gaps

M pair
=> EF au sommet d’'une bande  Fj

=>isolant

M impair i

=>métal L

Figure 5.13 : Structure de bandes du modele de Kronig-Penney dans un schéma de zone
réduite. Selon que le niveau de Fermi se trouve dans une bande ou au bord d'un gap, le
systeme sera un métal ou un isolant, respectivement.

2.2.Métaux, isolants et semi-conducteurs

Nous avons établi auparavant qu’on peut mettre 2 électrons par bande et par cellule unité. Les
bandes étant séparées par des gaps, on aura alors différents cas possibles (cf figure 5.13):

- pour un cristal ayant un nombre impair d’électrons de valence par maille, la bande occupée
dans laquelle tombe Ej sera a-demi remplie. Il existera des états inoccupés immédiatement
au-dessus de Ep, et le systeme sera alors métallique.

- pour un cristal ayant un nombre pair d’électrons de valence par maille, le niveau de Fermi
E; va se trouver au sommet de la derni¢re bande occupée. Il faudra alors fournir une
énergie minimale égale a la valeur du gap pour exciter un électron au niveau de Fermi : le
systeme sera isolant ou semi-conducteur.

- dans certains matériaux 2D ou 3D, il peut arriver que I’énergie de Fermi corresponde a une
bande interdite dans une direction particuliere de I’espace réciproque et pas dans les autres.
Le sytéeme sera alors globalement métallique, mais ses propriétés physiques seront fortement
anisotropes entre les directions ou le systeme est métallique et les directions ou le gap partiel
est ouvert. C’est le cas par exemple des métaux nobles, dans lesquels un gap partiel existe
autour des points L de la zone de Brillouin, créant des « trous » dans la surface de Fermi
autour de ces points (voir figure 4.3).
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VIBRATIONS DU RESEAU - PHONONS

1. Description classique des phonons

On suppose que les ions du réseau peuvent osciller sur de petites distance <§>> autour de

leur position d'équilibre R (voir figure 6.1) :

Figure 6.1 : Représentation schématique d’'un réseau cristallin bidimensionnel. Chaque
atome peut vibrer autour de sa position d’équilibre.

Chaque paire d'atomes donne une contribution a I'énergie potenticlle V(7 —7) telle que

I'énergie potentielle totale du réseau d'ions (sans les électrons) s'écrit alors :

U=%%V(7—7’) = Y V(R-F+w(E®) - wE)) =2 2/v(§’_ﬁ"+7—ﬁ)

1.1. Approximation harmonique

On s'intéresse le plus souvent au cas ou u” < R. On peut alors écrire le développement limité
de l'expression du potentiel autour de la position d'équilibre des atomes :

— — — — — — — — — 1 — —>2 — —
V(R—R/+7—u/>=V<R—R/>+<7—u’>.VV(R—R’>+E[(7—u/).V] V(R—R/>

On peut ensuite écrire I'énergie potentielle a I'équilibre:

1 — — 1 N —nN = 1 N —, —12 — -,
U:EWZ?V<R—R)+EZ(u—u).VV+ZFZ:%/[(u—u).V] V(R-R)

—

R.R

Up & I'équilibre —0 a l'équilibre

Le premier terme est I’énergie potentielle a I’équilibre, et le deuxieme est nul par définition.
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Soit, en développant selon les trois directions de I’espace :

a2v
U= U+—E E u; — uj) (u—u)EU+Uarm
0 or;0r; ! 0 "
R.R'i.j=x.y.2

Remarque : en pratique on écrit souvent Uénergie U,,,,.,, sous la forme générique :
1 = — =T
Unarm = 5;* w(R)D(R - RYu'(R")
R, R’

Ol D est une matrice appelée matrice dynamique.

Pour N atomes identiques, de masse M et d'impulsion F(ﬁ) , le Hamiltonien du réseau
s'écrit (en négligeant donc les électrons):

’
Hreseau HO + Z uiDijuj
i,J

On considere un systtme de N atomes, ce qui signifie qu’il y a 3N degrés de liberté de
translation et 3N degrés de liberté de vibration.

1.2.Energie interne

En physique classique, le principe d’équipartition de I’énergie que chaque degré de liberté
associ¢ a un terme quadratique du Hamiltonien contribue pour EkBT de I'énergie par degré

de liberté. Pour le réseau nous avons 6 termes quadratiques par atome : 3 pour I’énergie
cinétique et 3 pour I’énergie potentielle élastique. I’énergie interne du réseau a température T

finie devrait donc s’exprimer comme
1
U= U0+(2><3N)EkBT = Uy + 3kgT
et la chaleur spécifique :
oU
CV
oT

Ce résultat est connu sous le nom de loi de Dulong et Petit. Bien que ce résultat soit

= 3Nk,

approximativement correct pour de nombreux cristaux a température ambiante, a basse
température les mesures expérimentales donnent un comportement du type ¢, = fT°. On
verra par la suite que ce comportement résulte de la quantification de I’énergie des modes de

vibration sous forme de phonons, quasi-particules ayant un comportement bosonique.
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2. Phonons acoustiques et phonons optiques

On a vu dans le chapitre précédent qu'une maille cristalline peut contenir un motif de
plusieurs atomes. On va dans cette partie étudier plus en détails les modes de vibration
propagatifs d’un cristal, en commengant tout d’abord par un modé¢le simple de chaine
monoatomique, puis une chaine diatomique, et les résultats seront étendus a un cristal

tridimensionnel avec plusieurs atomes par maille.
2.1.Modes de vibration d’une chaine monoatomique

On modélise un cristal par une chaine de N atomes identiques de masse M, de parametre de
maille a I’équilibre a. On se place dans I'approximation harmonique, avec une interaction
entre plus proches voisins modélisée par une constante de raideur K. L’atome n, situé a
I’abscisse x =na, peut vibrer autour de sa position d’équilibre avec une amplitude de
vibration u,,, (cf figure 6.2).

(n-1)a na (nt+1)a (n+2)a

\ Ao

ﬁ(n—l)a Una K ﬁ(n—i—l)a M

o (S N AVAYA Y aVAVAVAVEE T ) e

Figure 6.2 : Chaine monoatomique d’atomes de masse M, de parametre de maille a.

Dans ce modele le potentiel harmonique total s'écrit:
1 2
Uharm = EKZ (una - u(n+1)a)
n
L'équation de mouvement pour I’atome 7 s'écrit:
aZu aUharm

na

On cherche des solutions d’ondes planes de la forme: u(na,t) = uoei(k”“‘“’t)

Le systeme étant périodique, cela impose une condition de Born-Von Karman du type
u(0,t) = u(Na,t), ce qui donne
uoe—iwt — uoe—ia)teikNa

Soit:

. 2
ehNe = e g =1
a N
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On retrouve les méme propriétés que pour la structure de bandes électronique au chapitre
précédent (ce qui n’est pas vraiment étonnant). On pourra donc se limiter a Iétude des
relations de dispersion dans la premié¢re Zone de Brillouin.

On linéarise 1'équation de mouvement:
—Mo*u(na,t)=—-K [2u(na, ) —u(ma,t)e™* — y(na, t)e”‘“]

ce qui donne la relation de dispersion:

5 2K 4K ) ka K . ka
W =—[1—cos(ka)]=—s1n — | elo = —sin | |—|
M M 2 M 2

Cette relation de dispersion est représentée en trait plein en figure 6.3. La vitesse.

N n : : . .
Pour les vibrations de grandes longueurs d’onde (k < —), la relation de dispersion devient
a

© =/ K g = v 1k
w (k) = 7 =,

Cette dispersion linéaire est représentée en pointillés en figure 6.3. On remarque dans ce cas

0
que la vitesse de phase de 'onde v, = % et sa vitesse de groupe v, = 0_6;{) sont égales :

0w \ Ka® : . . Lo
= e ouv =4, est la vitesse du son dans la chaine atomique. Ce type de vibration

k

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
™
a

Figure 6.3 : Relation de dispersion d’une chaine monoatomique d’atomes de masse
M, de parametre de maille a.

71



UGA M1 PFN 2018-2019 Cours de Physique du Solide et Magnétisme

Remarque sur la stabilité de la chaine atomique :

St on consideére "interaction avec l'ensemble des voisins m:

1 2
Uharm = E Z Km [”na - M(n+m)a] P

n,m>0

4K k
la relation de dispersion devient alors w*(k) = 2 Mm sin 2 < ’;w>

m>0

LAY 4K, 2azkz_Zk2 )
Pourk<<;.a)(k)~z i m = ZKm(ma)

m>0 m>0

Pour que cette relation sout définie, il faut que Z K, (ma)* converge. Cela conduit @ avoir des constantes de

m>0
raideur K,, qui dépendent de la distance au m-e voisin comme K,, «x m™ ou n>4. Et comme
2
K, «x ———, alors nécessairement le potentiel d’interaction doit décroitre avec la distance comme V « r™", ou
d(ma)?
n>2.

Cela signifie que le potentiel électrostatique d’interaction entre les ions doit décroitre plus rapidement que
le potentiel coulombien : les interactions dowent éire dipolaires ou d’ordre supériews; sinon quot la
chaine atomique est instable. De_fagon trés générale, on dira que le potentiel d’interaction entre les
tons doit étre écranté.

2.2.Modes de vibration d’une chaine diatomique

On a maintenant deux atomes A et B par maille. A I’équilibre, lorsquun atome A est a la
position na, son voisin B est a la position na + d. Pour simplifier le probléme on suppose que
ces atomes possedent une masse identique M et sont reliés entre eux par des ressorts dont les

constantes de raideur sont alternativement K et G (voir figure 6.4).

(n-1)a+d na na+d (nt+1)a (nt+1)a+d X»
GA,’ILCL ﬁB ,na G M K
L 29 R e SVAYAYAVaE L SVIVAViVE T
A B

Figure 6.4 : Modele de chaine diatomique d’atomes de masse M, de parametre de
maille a. On appelle K la constante de raideur intra-maille et G la constante de
raideur inter-maille.

L'expression du potentiel harmonique est alors:

1 2
Uharm = 5 <KZ [A,na - MB,na]z + GZ [MB,na - uA,(n+1)a] )
n n
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Le mouvement des atomes A et B s'écrit alors sous la forme de deux équations couplées:

azuA,na

M or =-K [”A,na - ”B,na] = G |Up o = U (i-1)a
azuB na

M or2 ==K [MB,na - uA,nu] -G [MB,na - MA,(n+1)a]

Pour la résolution, on recherche a nouveau des solutions de type ondes planes:

— i(kna—wt)
uA,na - EAe

_ i(kna—wt)’
uA,na - gBe
N ; ; ) (pA— . .
ou &4 = uge'’A, g5 = uge'?B, de sorte que le rapport = €"A=%B) donne le déphasage relatif
B

entre ’atome A et I’atome B au sein d’une cellule unité du cristal.

On injecte ces solutions dans les équations de mouvement:
2 — —ika
-Mo Up pa = — K [uA,na - uB,na] -G [uA,na — UB na® ]
ika]

_szuB,na =-K [MB,na - uA,na] -G [uB,na — Up g€
[Mw? — (K+G)| ey + (K+ Ge ™) g5 =0
(K+Ge™*) ey + [Mw® = (K+G)| g5 =0

: o . |Mo*-(K+G) K+Ge ke
La relation de dispersion est donnée par I’équation @ = ( . ) ¢ =
K+Ge*  Mw?*—(K+G)

ce qui nous donne finalement:

K+G 1
w2 = i—\/K2+G2+2KG cos(ka)
M M
g4 _ K+ Ge'ka
g - | K + Geika|

es deux relations de dispersion obtenues sont représentées en figure 6.5. On retrouve une
Les d lat de d bt t t fi 6.5. On ret

ustique avec u inéai u u
branche acoustique avec un comportement linéaire pour les grandes longueurs d’onde, et on
peut constater 'existence d’une deuxi¢me branche dispersive, mais dont I’énergie reste finie
pour tout vecteur d’onde. Cette branche est appelée branche optique, pour des raisons que
nous allons détailler.
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| w(k) & |
| Branche optique :
[ [
: 2K +6) | max 2K.
M M-
2K
M’

Branche acoustique

| |
I |
[ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
™ s
a a

Figure 6.5 : Relations de dispersion d’une chaine diatomique. L’existence de deux
atomes non équivalents dans la cellule unité conduit a l'existence de deux branches,

la branche acoustique et la branche optique.

Afin de comprendre la différence entre modes acoustiques et modes optiques, intér

au comportement des dispersions au centre et au bord de la zone de Brillouin.

” ’ . . . .
- pour k < —, I’équation de dispersion devient
a

K+G 1 K+G KG (ka)?
0~ + iﬂ\/(K+G)2—KG(ka)2z + 11(1—&)

€SSO1S-nous

M M 2(K + G)?
£
—~Fl1
€B
. KGa?
Pour la branche acoustique on a donc w ~ 4/ ———— k| =v|k|, le comportement
2M(K + G)

linéaire attendu pour des modes acoustiques, avec ici une vitesse du son dépendant de K et
G. On remarque également que €, ~ €5, ce qui signifie que les mouvements des atomes A
et B sont en phase.

Pour la branche optique on a

2AK+G) __KGa® _,  [AEFG) [, KG__ 2K+ G)
0~ - ~ - a Ry ———
M 2M(K + G) M 8(K+G)? V' M

et 4 & — g5 : les déplacements atomiques de A et B sont déphasés de 7.
»_K+G | |K - G|

T
en bord de zone, k = —, on a w et les deux solutions possibles seront

/2K [2G /2K [2G
® = min < ) pour la branche acoustique et ® = max < > pour la
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branche optique. Les déplacements atomiques de A et B seront donnés par e, = &5 pour le
mode acoustique et &, = — g pour le mode optique. encore une fois le mode acoustique
correspond a des mouvements des atomes A et B en phase, et le mode optique correspond a
des mouvements en opposition de phase.

En se rappelant que le produit ka donne le déphasage des vibrations entre mailles du cristal, et
que &,/ep donne le déphasage entre les atomes de chaque maille, on peut représenter les
déplacements atomiques comme en figure 6.6. Schématiquement on peut dire que les modes
optiques sont dominés par les vibrations de la « molécule » AB dans chaque maille, avec un
faible couplage inter-maille et une faible dispersion, alors que dans les modes acoustiques la

dynamique est donnée par I'interaction entre mailles.

Mode acoustique (> o> (> o> (= o> (= o>
k<<m/a ‘ ‘ ‘
Mode optique (2> <o ‘ (o> <o ‘ (> <o ‘ (o> <o
A B | |
Mode acoustique (5> @ | <) <@ > o> | <o) <@
-
Mode optique (> <o <) > (> <o <o) >

A
A

Figure 6.6 : Représentation schématique des déplacements atomiques pour différents
modes de vibration de la chaine diatomique.

2.3.Modes de vibration dans un cristal a 3 dimensions :

On ne va pas détailler ici le formalisme des vibrations de réseau en 3 dimensions. Le lecteur
désireux d’en savoir plus pourra consulter les ouvrages sur lesquels est basé ce cours,
notamment 'ouvrage de Ashcroft et Mermin. On se contentera de présenter les propriétés
générales d’une « structure de bandes » de phonons dans un composé 3D :

- pour une direction de propagation donnée, 1l existe 3 directions orthogonales sur lesquelles
on peut projeter les déplacements atomiques : une direction longitudinale (que nous venons
de traiter) et deux directions transverses. On utilisera les lettres L et T pour ces 2 types de
polarisations.

- En tenant compte de la polarisation, si le motif de la maille cristalline comporte p atomes, il
existe 3p branches distinctes dont

- 3 modes acoustiques (1 mode LA et 2 modes TA)
- 3p-3 modes optiques (avec 2/3 modes TO et 1/3 modes LO)
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Les cristaux avec un seul atome par maille ne comportent donc que des modes acoustiques et
aucun mode optique.

Pour illuster, prenons 2 exemples concrets : Na et MgN, dont les dispersions de phonons
calculées sont représentées en figure 6.7.

Na cristallise dans la structure cubique centrée, dont la maille usuelle comporte 2 atomes. Il
est important de noter que les deux atomes sont équivalents par symétrie, et qu’il n’y a donc
pas de modes optiques dans ce métal : les dispersions de phonons comprennent uniquement
les 3 modes acoustiques dont nous avons parlé auparavant. Selon la direction de propagation
considérée, 1l peut arriver que deux, voire les trois modes soient dégénérés par symétrie (cf
séance de TD sur les phonons). En regle générale il existera plusieurs « vitesses du son » en
fonction de la direction de propagation et de la dégénérescence des branches acoustiques.

MgN est un matériau avec 2 atomes par maille. Il doit donc y avoir 2*3=6 branches au total,

dont 3 acoustiques et 3 optiques.

On peut remarquer que les matériaux complexes vont rapidement avoir un trés grand
nombres de branches de phonons : le supraconducteur YBasCusO7 par exemple, possede 39
branches, dont 36 optiques ! Et que dire du vanadate SrVsOss ...

T T I T T T LI T T T T T T T T T T
g,0,01 L9,9,9] Lg,9,01 . S
Py <o - » D
7 \ < :
YL T\ . LT -
. )
\
\ =
//
7 /
—+ —+ // T -
L « ' /
/ T -
/Al /
/ T T /7 2
y o
a // T[ -
| I | I It 1 I | 1 | { | L I | 1 ! . . .
02 06 0 08 06 840 0 02 04 Figure 6.7 : Deux exemples de dispersions de
t
aevector gtemia phonons : Na (en haut) et MgN (en bas)
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3. Propriétés thermodynamiques des phonons

On a vu au début de ce chapitre qu'une description classique des vibrations du réseau amenait
a la loi de Dulong et Petit, qui n’est approximativement vérifiée qu’a assez haute température.
Un traitement correct des vibrations du réseau doit étre fait dans le cadre de la mécanique
quantique.

Dans le traitement classique d’un réseau de N ions dans I’approximation harmonique, nous
avons vu que la solution revenait a considérer les 3N modes de vibration indépendants (N
valeurs de k et 3 polarisations s pour chaque ?) comme 3N oscillateurs harmoniques
indépendants de pulsations a)s(?). Or en mécanique quantique I’énergie d’un oscillateur

harmonique de pulsation a)s(?) s’écrit
1 —
E = (n?’s + E) hoy (k)
ou np  =0,1,2,... est le nombre d’excitations du mode (?, s) dans le systeme. Il apparait donc

que ’énergie transportée par un mode de vibration du cristal est quantifiée. Par analogie avec

le rayonnement électromagnétique, on dira que n  est le nombre de phonons présents dans

le mode (k,s). On passe donc d’une description en termes d’ondes de déplacements des
atomes a une description en termes de propagation de quasi-particules avec une certaine
énergie hw,( k) et une certaine impulsion A k .

L’énergie totale du cristal (toujours sans les électrons) sera alors donnée par la somme des
énergies de chaque mode :

1 —
E, = 2 (”Z’,s + 5) ho (k)

&=
ks

L'introduction du concept de « phonon » permet de traiter les excitations du cristal comme les
excitations d’'un gaz de phonons, dont nous allons maintenant définir les propriétés
thermodynamiques.

3.1.Facteur d’occupation, énergie, densité¢ de modes

Par définition, on peut créer autant de phonons que I'on veut dans un mode donné, ce qui
signifie que les phonons se comportent comme des bosons. A température finie,
. . . .

Pénergie thermique va permettre de créer un nombre de phonons moyen (ng ) dans chaque

mode. [’énergie interne du réseau cristallin pourra alors s’écrire
1 —
U=U,+ ) <<n7,5> + 5) ho,(k)
X.s

Les phonons étant des quasi-particules bosoniques, le facteur d’occupation moyen d’un mode
sera donné par la distribution de Bose-Einstein

(np )=
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ho (k)
et Pénergie interne s’écrira U = U,, + Z —ha) (k) + —
T T exp (proy(K)) -
oU 0 fo,(k
La chaleur spécifique s’exprime comme ¢, = — Z — o) _?
I 72T exp (Bheoy(K) ) -

On peut maintenant étudier le comportement asymptotique de la chaleur spécifique. A haute
température, kzT > ha)s(?), le facteur d’occupation
1 kgT
(ngp )~ T
1+ pho k) —1 Ao (k)
hoo (kK YkgT
ha (k)

et la chaleur spécifique devient c, Z T ( > = 3Nkg puisqu’on a 3N modes

(?, s) différents. On retrouve la loi de Dulong et Petit !

A basse température, kzT < hw( k), seuls les modes de basse énergie avec k < z/a sont
p > "B s ’ gl
peuplés significativement. Ces modes sont acoustiques, avec une relation de dispersion

a)s(?) =~ vs(?)lk |. Pour traiter analytiquement ce probléme, on passe a la limite continue,
comme on ’avait fait dans le modeéle de Sommerfeld. On définit alors une densité de modes

L,L,

F(ky ky k) = 87:3 =55 et on remplace la somme dans I’expression de ¢y par une intégrale

0 \% v |k
¢, =— Z [” Vsl | d3k
or p Tezp. 37 exp (ﬁfl"s|k |> -1

Puisque les vecteurs d’onde intervenant dans 'intégrale sont proches du point I" de la zone de

Brillouin, on peut « isotropiser » cette intégrale en écrivant
3 T . : : 11 dQ 1
d’k — | 4nk“dk et en introduisant la vitesse du son moyenne — = — —_—
T 0 v3 4z v}
Avec le changement de variable x = fav |k |, on obtient
0 [ (kgT)* 3V r° x3
C, R — dx
oT \ ()3 22 ), exp(x)—1

4
L’intégrale est tabulée et vaut s La chaleur spécifique des phonons a basse température est

2 kgT .
c, 8 —Vkg| —
5 hv

On retrouve le comportement basse température ¢, = fT° observé expérimentalement ! Notez

alors

bien qu’il ne faut pas confondre ce « # » avec (kzT)~! =  qui apparait dans la distribution de
Bose-Einstein.
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Dans un métal, la chaleur spécifique totale sera la somme de la contribution électronique et de
la contribution phononique :

Crot = Ca t cph = 7T+ﬂT3.
c c
En pratique on représente plutot la grandeur % = f(T?), puisque dans ce cas % =y +pT?

et le graphique est une droite de pente f et d’ordonnée a Iorigine y. On peut en voir un tres

bon exemple en figure 4.7, page 44.

Remarque : on peut estimer la part de chaque contribution a la chaleur spécifique totale. En effet, on a

Ca , 8EDRGT(RY o gE)()

Con kAT K

Avec des valeurs typiques pour des métaux simples (g(Ep) =~ 10m=3,v ~ 10°m .s7!), on obtient T ~ 1K.

Cela signifie qu’il faut atteindre des températures de cet ordre pour pouvoir mesurer le terme linéaire de la chaleur
spécifique. Pour des températures plus élevées la contribution des phonons domine le signal.

Dans le traitement a basse température que nous venons de faire, nous avons utilisé le concept
de densit¢ de modes en vecteur d’onde, comme dans le cas du gaz d’électrons. On peut
logiquement définir une densité de modes en énergie g(w) pour les phonons, par I’équivalence

F(%)d*k = F(w)dw

Une grandeur thermodynamique (A) associée aux phonons par I'intermédiaire d’une
grandeur microscopique A(w) pourra alors étre exprimée en fonction de la densité de modes
et de la fonction de distribution de Bose-Einstein n(w) sous la forme

(A) = J e A(w)F (o)n(w)dw
0

Ce formalisme va maintenant étre appliqué a deux modeles approximant les phonons
acoustiques et les phonons optiques : le modéle de Debye et le modele d’Einstein.

3.2.Phonons acoustiques : modele de Debye

L’approximation de Debye consiste a remplacer les 3 « vraies » branches de phonons
acoustiques par 3 branches isotropes linéaires avec 3 vitesses du son moyennes. Afin d’assurer
la conservation du nombre total de modes, on « coupe » les dispersions a un vecteur d’onde k,
appelé vecteur d’onde de Debye. On peut voir en figure 6.8 [Iillustration de
I'approximation de Debye en deux dimensions : pour une branche, la premicre zone de
Brillouin contient exactement N modes. L’approximation de Debye revient a construire un
disque de rayon kj, tel que la surface du disque est égale a la surface de la premiére zone de
Brillouin.
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Figure 6.8 : Approximation de Debye pour un cristal rectangulaire en 2 dimensions. a)
le vecteur d’onde de Debye est choisi de telle facon que la surface du disque est égale a
la surface de la zone de Brillouin. b) dispersion des modes acoustiques dans 2

directions de I'espace réciproque.

En 3 dimensions, cela se traduit par

kl) ‘/

)

8x3

On définit également

- la fréequence de Debye w;, = vk,

. hawp
- la température de Debye 0), =
B

1/3
N
Ank*dk =N = ky = <6n27>

La fréquence de Debye est une mesure (approximative) de I’énergie maximale des phonons

d’un systeme, et la température de Debye est une mesure (approximative) de la température a

partir de laquelle tous les modes de phonons sont peuplés significativement. A I'inverse pour

T< 6, les modes de plus haute énergie auront une occupation négligeable.

Expérimentalement les ordres de grandeur observés sont v ~ 10°m .57, howp, ~ 30meV et les

températures de Debye 6, = 200 — 300K. Les matériaux tres durs, comme le diamant par

exemple, peuvent avoir 6, ~ 1000K.

Pour une branche dont la vitesse du son est v, la densité de modes tridimensionnels est donnée

par

\%
F(w)dw = ——4nk2dk
8x3

2

V o
=> F(w)vdk = ——dk

272 v2

V w?

= F(0) = — —

272 v3
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Contrairement au cas de ¢électrons, pour les phonons le spectre en énergie est borné, donc la
densité de modes n’est définie que pour @ < @,. La densit¢é d’états pour un mode est

représentée en figure 6.9.

F(w)

Einstei
mstem Figure 6.9 : Densités de modes dans le modele de

Debye et dans le modele d’Einstein.

Debye

wp wWE w

Dans I’approximation de Debye I’énergie interne est alors

U=0, +Zrmhw Var® ! dw
- ~Jy 272} exp (pho) — 1 ’

ou la somme porte sur le trois polarisations possibles. Avec le changement de variable
x = fhw, cette équation devient

Vk.T 4 OpilT 3
U=Uy+ Y, *sT) J = dx
272(hv;)3 ), exp (x) — 1

i
Si le systeme n’est pas trop anisotrope, on peut s’attendre a ce que les vitesse ne soient pas trop
différentes et on peut simplifier I’expression de I’énergie comme
V(kBT)4 rOp/T )C3
272(hv)3 ), exp (x) — 1

U=Uo+3

et la chaleur spécifique

oU  3Vkp o [, (7 o
c(=—=————|T —dx
oT 222 oT | ), expo)—1

0p/T 3 Op/T 3 1 /70.\°
Dans la limite T > 6, x < 1, J. ——dx = J — dx == <_D>
0 exp(x)—1 0 1+x—1 3

On retrouve la loi de Dulong et Petit.
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0p/T 3 o 3 4
Dans la limite T < 0, 6,/T - oo et 'intégrale J —dx ~ J ——dx =—
0 exp(x)—1 o exp(x)—1 15
La chaleur spécifique
3Vkp 127* T\
c, ~ 2B T i —ﬂNkB (—
272(hv)3 15 5 op

On retrouve le terme AT? dont on a parlé auparavant. On voit donc que la mesure de la
chaleur spécifique d’'un matériau a basse température peut donner acceés aux propriétés
microscopiques des phonons, par I'intermédiaire de la température de Debye.

La chaleur spécifique de Debye est dessinée en figure 6.10. Les comportements asymptotiques
que nous venons de décrire sont clairement visibles.

Figure 6.10 : chaleur spécifique des phonons dans l'approximation de Debye et dans
'approximation d’Einstein.

3.3.Phonons optiques : modeéle d’Einstein

L’approximation d’Einstein consiste a remplacer les branches optiques, faiblement dispersives,
par une valeur d’énergie constante @y pour tous les vecteurs d’onde k < kj, (voir figure 6.11).

La densité de modes sera alors une distribution de Dirac : F(w) = N6(w — wg) (voir figure 6.9).
hog

A I'instar du modele de Debye, on définit la température d’Einstein 8; comme 0 =
B
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Dans cette approximation une branche optique donnera une contribution a I’énergie interne
°° ho
U=sN| ——— 50 — op)do
o exp(fhw)—1
Nhog
exp(fhay) — 1

et la chaleur spécifique totale

oUu

YT (exp(ﬂha)E) - 1)2

9
exp(fhwy) 3k (@>2 exp ( T )
= B
T

La dépendance en température de la chaleur spécifique est présentée en figure 6.10.

A basse température, T < @gla chaleur spécifique suit une loi d’activation typique des systemes
dits « a deux niveaux », pour lesquels le niveau fondamental est séparé du premier état excité

0\’ 0
¢, ® Nkg <?E) exp <—?E>

A haute température on retrouve encore une fois la loi de Dulong et Petit.

par une énergie non nulle :

w(k) 4

| |
| |
| |
| |
| |
! !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
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a a

Figure 6.11 : Modification des dispersions de phonons optiques dans I’approximation
d’Einstein.
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ELEMENTS DE MAGNETISME

1. Grandeurs magnétiques
1.1.Dipole magnétique
Un modele simple de dipdle magnétique est une boucle de courant constituée par une charge

ponctuelle q, de masse m, décrivant une orbite circulaire de rayon R, de surface S, avec une

vitesse V' (figure 7.1).

Figure 7.1 : Modele classique de dipdle
magnétique.

Le moment magnétique u de ce dipdle est défini comme :

=I5k
-2 = RT
27R

Par ailleurs le moment cinétique de la particule L s'écrit

f=ﬁ/\m7=va7,

d'ou I'on déduit la relation liant le moment cinétique orbital au moment magnétique :

—_ 4 _ -
=—L=yL
H=5-L=y

Le facteur y = ZL est appelé rapport gyromagnétique.
m

Cette relation entre le moment orbital et le moment magnétique reste applicable dans le cadre
de la mécanique quantique (si on peut négliger le couplage spin-orbite), mais n'est plus valable
dans la limite relativiste v % c.

A l'instar du dipdle électrostatique, le champ magnétique créé a grande distance s'écrit :
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Ho 2ucos0
B.(r,0) = ———
Ar.0) dr 13
Ho Hcos0
B,(r,0) = —
o(r.0) dr 13
que l'on peut condenser en B = Ho [37,(7- w,) - ﬁ']
4zr3
L'énergie potentielle sous champ est | E, = — - E:m et le couple T=uA ?ex,.

On définit 1a aussi I'aimantation M comme le moment magnétique total moyen par unité de
volume :

Y
M==
1%

(#)

1.2.Dynamique d’'un moment magnétique sous champ : précession de Larmor

On vient de voir qu'un moment magnétique minimise son énergie lorsqu’il est aligné sur le
champ magnétique appliqué. On va décrire dans ce paragraphe la dynamique d’un moment
magnétique sous l'effet d'un champ magnétique. Le systeme est constitué d’un unique dipdle
magnétique rigide, isolé, et placé dans un champ d’induction ?(; faisant un angle 6 avec le

moment magnétique @ = yf(voir figure 7.2). Le moment sous champ est soumis a un couple
T=%AB,=yLAB,

d’ou 'on déduit I’expression du théoréme du moment cinétique

L T AE o GayB =-OAT
dr 4 0 dr HNY By = H
De cette équation on peut extraire les propriétés suivantes pour le moment magnétique :
duw  _, .
e 1y par construction
d(p”. p) dy
- ——————=2U.— =0 ||Z|| =cte
P v (7
deo
- —=0
dt

Le moment magnétique décrit donc un coéne de révolution d’angle constant § autour du
- . /4 14 i /’
champ B,. Ce mouvement gyroscopique est appelé précession de Larmor. La fréquence de
précession ,appelée fréquence de Larmor, s’écrit
le]

On peut justifier le mouvement de précession par différents arguments : tout d’abord on a
considéré un moment isolé, et on sait que les forces magnétiques ne fournissent aucun travail.

L’énergie d’un dipdle isolé sous champ magnétique reste donc constante :

—NZ N Byllcos O = cte = |7 || = cte,0 = cte
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dp A B A=
- 0 BO
dt 1

Figure 7.2 : Précession d’un moment magnétique.

a) Moment isolé, b) Précession amortie.

a) b)

En termes de symétries fondamentales, le moment cinétique est associé a 'invariance par
rotation. En présence du champ magnétique, I'invariance par rotation sphérique est brisée et
le systeme possede une symétrie de révolution autour de l'axe du champ, symétrie qui
correspond effectivement au mouvement de précession. Pour une assemblée de moments en

: : o . do » -
interaction, la précession est amortie et a’_ < 0, de sorte que le moment magnétique décrit
t

une spirale autour de ’axe du champ et finit par lui étre colinéaire (cf figure 7.2 b)).

1.3. Susceptibilité magnétique - Définition des grandeurs magnétiques (M, B, H, A)

Dans un milieu présentant une aimantation non nulle, le champ d'induction B est la

somme du champ magnétique H tet de l'arzmantation M:

et B=Toi(A).B s'exprime en Tesla T, M et Hen A.m™!.

Comme pour les milieux diélectriques, on peut écrire pour l'aimantation et le champ
magnétique

]\_/i:)(H

ou y est la susceptibilit¢é magnétique du systeme.

oy . L o e . . oM
Dans la littérature on distingue généralement la susceptibilité statique y,,,, = lim — et la
H—
R oM
susceptibilité généralisée y = — .
oH
Les milieux magnétiques sont des milieux dont les constituants microscopiques portent des

moments magnétique permanents. On distingue principalement deux cas selon le

comportement de I'aimantation macroscopique :

- les milieux dans lesquels les moments individuels sont orientés aléatoirement en I'absence

de champ, mais auront tendance a s'aligner sous l'effet d'un champ extérieur. On parle de
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systtmes paramagnétiques. L'aimantation de matériaux paramagnétiques est donc nulle
en l'absence de champ et prend une valeur finie sous champ. La susceptibilité

paramagnétique est positive, et on montrera par la suite qu'elle suit souvent une loi de

Curie pour des champs appliqués faibles. Un gaz d'atomes magnétiques

Xpara =
indépendants présente ce comportement par exemple.

- les milieux présentant une aimantation spontanée lorsque leur température est inférieure a
une température critique 7,. La susceptibilité est positive et peut prendre des valeurs tres
élevées ( ~ 10° pour des ferromagnétiques doux). Suivant le type d'ordre microscopique pris
par les moments magnétiques, on parlera de ferromagnétiques, d’
antiferromagnétiques, de ferrimagnétiques, etc. Pour T > T, le comportement est en
général paramagnétique. Un exemple tres courant de ferromagnétique : la magnétite
Fe;0,.

Par ailleurs, en vertu de la loi de Lenz les électrons d'un atome, une molécule ou un solide
soumis a l'application d'un champ magnétique vont réagir de facon a s'opposer a ce champ.
Macroscopiquement 1l en résulte une contribution négative a la susceptibilité magnétique,
appelée contribution diamagnétique. La susceptibilité diamagnétique est en général plus
faible que la susceptibilité paramagnétique de plusieurs ordres de grandeur, ce qui souvent
masque ses effets. On peut cependant noter des exceptions remarquables : le graphite
(Wagia ® — 107 et les supraconducteurs (y ~—1, en raison de la répulsion du champ
magnétique connue sous le nom d'effet Meissner). Pour des supraconducteurs de type I, on
parle de "diamagnétisme parfait". Dans ces deux cas, la forte valeur de la susceptibilité
diamagnétique permet de mettre en évidence un phénomene spectaculaire : la lévitation
magnétique.

1.4.Le champ démagnétisant

La relation M = yH est une relation locale, au sens ou elle s'applique a une échelle de longueur
ou les variations rapides de I'aimantation liées a la structure microscopique de la matiére sont
moyennées, et ou les grandeurs physiques ont une variation lisse (typiquement l'échelle
mésoscopique & lum).

En pratique on cherche a mesurer M a Uintériewr d'un échantillon en fonction du champ
appliqué Fg. Il est donc nécessaire de trouver une relation entre le champ H dans la matiére
et le champ appliqué E;.

—

. - - _ B = s Y
Le champ magnétique dans le matériau H,; = — — M est en général oppos¢ a M. On
Ho
introduit alors le champ démagnétisant E; tel que FA; = ﬁ& + H,.

L'effet démagnétisant est caractérisé par les coeflicients de champ démagnétisant [N ] tels que

H, =-NM
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N est un tenseur 3 X 3, avec Tr(N) = 1, qui dépend de la géométrie de 1'échantillon.

Dans le cas dun ellipsoide de révolution (cas idéal mais évidemment peu fréquent en

pratique), on peut montrer que le tenseur [N] est diagonal : N,,+ N, +N,, = 1. Pour une

1
N -

sphere, l'isotropie impose N,, = N,, =N, = 3

On a alors M=xﬁ=x(ﬁ+m)=g(m—Nﬁ)

X —

1+ Ny

La grandeur est appelée susceptibilité externe.

On a donc en général une pente plus faible qu'attendue lorsqu'on trace I'aimantation d'une
substance paramagnétique en fonction du champ externe appliqué (voirfigure (ref)). Il faut
noter que la susceptibilité externe fait intervenir les coefficients de champ démagnétisant, qui
dépendent de la forme de I'échantillon et de la direction du champ appliqué ! A titre
d'exemple, on peut citer le cas des supraconducteurs a haute température critique. Ces
matériaux ont pour la plupart une structure lamellaire trés anisotrope, et la détermination de
leurs propriétés magnétiques (champs critiques) nécessite de calculer numériquement les
coeticients démagnétisants.

2. Aspects thermodynamiques

2.1.Energie magnétique

Dans une zone de l'espace ou régne un champ d'induction B(#), on peut définir une densité
B(F)
20

d'énergie magnétique wy(7) =

Dans le cas de N systémes en interaction, chacun créant un champ B;(7), on a
1 — —
2) — 2 .. B.
wy(P) = 2ﬂ0< Zi B2+ ) B Bj>.

Le deuxiéme terme constitue la densité d'énergie magnétique mutuelle.
2.2.Interaction entre un systeme magnétique et un champ extérieur

. , . s , . . - . N
Soit un échantillon magnétique de volume V, possédant une aimantation M, et soumis a un
- . ,1 . N . . . e . .
champ H. Le travail élémentaire a fournir pour faire varier de dM son aimantation est
appelé travail d'aimantation et s'écrit

Wy =poH - dMV .
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En pratique si on veut mesurer ce travail on est la encore confronté au probléeme du champ
démagnétisant.

Prenons le cas d'un échantillon ellipsoide placé dans un champ externe H, contrélé par
l'opérateur. Appelons 6 W, le travail externe fourni pour faire varier I'aimantation. On a

On a pu enlever les vecteurs car le tenseur démagnétisant est diagonal pour un ellipsoide. 11
apparait dans cette équation que le travail fourni par I'opérateur extérieur se répartit entre une
contribution d'aimantation 6 W, et une contribution démagnétisante § W,.

En intégrant ces expressions, on obtient pour un matériau d'aimantation M et de volume V :
M

. . 1
I'énergie démagnétisante W, = ,uOVJ NMdM = EﬂONMZV

0
M

. l'énergie d'aimantation W), = yOVJ HdM
0

AR Mo poV (M UiV
Pour un matériau linéaire et isotrope H = — etil vient Wy, = — | MdM = E_M
X Jo X

[lustrons ce résultat avec le cas d'un matériau a forte susceptibilit¢ y > 1 (matériau

~ — et la courbe

ferromagnétique par exemple). Dans ce cas la susceptibilité externe N
+ Ny

d'aimantation M(H,) présente une pente 1/N a l'origine avant de saturer pour des forts
champs. Pour une susceptibilité infinie, on aurait M maximale et indépendante de H,, H ou
N, et le travail d'aimantation serait nul ! Graphiquement le travail total est donc obtenu
comme l'aire comprise entre la courbe d'aimantation idéale et la courbe expérimentale. Dans
les équations ci-dessus, on voit également que dans ce cas W, > W, : comme y > 1, un tres
faible champ magnétique suffit a aimanter le matériau. La plus grande partie de 1'énergie

fournie par I'opérateur extérieur sert a lutter contre les effets démagnétisants.

2.3.Fonctions thermodynamiques

Pour alléger la notation, les potentiels thermodynamiques sont exprimés par unité de volume.

Potentiel Différentielle Dérivées Relations de Maxwell

UGS, M) dU = TdS + pgHdM 7 _, U, ,_ 19U o, G
”OaslM’ uoaMls aM|S ”OaslM

F(T,M) dF = —=SdT+ puoHdM Sz_a_F| H:La_F| £| — ﬁ|
or M> pooM' T oM 'T Oor M

H(S, H) dH =TdS —puMdH ¢ _°% . _1oH ol _ oM,
oS M o OH'S  oH 'S 09s 'H

G(T,H) dG = —SdT—pyMdH ¢__9%, ,__19, o8 _ oM
’ o7 b ol o= Hogr
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2.4. Application : refroidissement par désaimantation adiabatique

Au voisinage du zéro absolu les propriétés quantiques de la matiere peuvent étre plus
facilement mises en évidence, car I'énergie thermique devient négligeable devant 1'énergie des
premiers ¢états excités d'un systeme. Citons quelques applications : cryogénie spatiale
(observation du fond diftfus cosmologique dans la mission Planck), systémes a fermions lourds,
magnétisme et supraconductivité, etc...

En pratique des températures de l'ordre de 1 K peuvent étre obtenues de différentes
manieres :

- PHe* a une température d'ébullition de 4.2 K a pression atmosphérique. En pompant sur le
liquide la température d'équilibre descend a 1.2 K environ

- 1'He3 pompé permet d'atteindre des températures de I'ordre de 300 mK

- pour descendre encore la température, on utilise principalement deux technologies : la
dilution He* — He?, dont on ne parlera pas ici, et la désaimantation adiabatique de sels
paramagnétiques. A l'aide de ces deux techniques, ou en les couplant, on peut obtenir des
températures de quelques mK.

On peut comprendre le principe de la désaimantation adiabatique a partir des relations de
Maxwell présentées dans le tableau du paragraphe précédent :

oT oM oM  oT T oM

om ° = Mg I = TGl gg ln = T o

ou Cy est la chaleur spécifique du sel paramagnétique a champ magnétique constant. Le sel

paramagnétique obéit a une loi de Curie M = 7H , ou G est une constante et T la

température, d'ou I'on peut déduire

aT T oM
oH Cy oT
__ T -CH_ CH_,

On voit donc que la température du systeme paramagnétique varie dans le méme sens que le
champ appliqué. En pratique on procede souvent de la fagon suivante : les sels
paramagnétiques sont placés dans un bain d'He* sous champ nul, puis sont aimantés par un
fort champ magnétique (de l'ordre de 1T). On isole ensuite les sels du bain d'He puis on
diminue lentement le champ appliqué, ce qui entraine une diminution de température des

sels. De cette manicre on peut efficacement atteindre des températures de I'ordre de 10 mK.
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MAGNETISME DES MOMENTS LOCALISES

Dans ce chapitre nous allons nous intéresser aux propriétés magnétiques d’assemblées de
moments magnétiques portés par des fonctions d’onde localisées dans I'espace. Ce sera le cas
par exemple dans les systemes isolants magnétiques ou les ions du réseau portent les moments
magnétiques responsables des propriétés observées.

1. Magnétisme classique
1.1.Paramagnétisme de Langevin

Dans le mode¢le de Langevin, on considére des moments magnétiques classiques, c’est-a-dire
dont la projection sur ’axe du champ magnétique est une variable continue (il n’y a pas de
quantification du moment cinétique). Ces N moments, occupant un volume V, sont supposés
indépendants et sont placés dans un champ d’induction B constant (voir figure 8.1).

N

/' Figure 8.1 : Modeéle du paramagnétisme de
Langevin

Les moments étant indépendants, le comportement moyen d’un seul sera équivalent au

comportement moyen des N moments, a un facteur N pres. L'énergie de 'assemblée de
moments s’écrit

N
E0)=- Zﬁ’ B = — NuB{cos 0)
i=1

= _NB</’lz>

ou la notation (...) signifie qu'on prend la moyenne thermodynamique de la grandeur entre
crochets. Le probleme revient donc a calculer la projection moyenne (thermodynamique) d’un
moment magnétique sur le champ. En travaillant en coordonnées sphériques, cette moyenne
est par définition
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__ WBcos O
[ cosbe BT d*Q
_uBcosd
[[e *8T d2Q
HBcos §
fg,ucosee kT sin@do

uBcos 0
V3 - .
Io e *BT sin@do

B kgT
=,u[coth(” > B ]
kB ﬂB
B
kBT

1
On a défini la fonction de Langevin £ (x) = [Coth (x) — —] , qui est représentée en figure
X

(uy) = pcos 8) =

8.5.

B 1 ’B
Dans la limite champ faible,'u— < 1, coth(x) ~ X ¢ Zetil Sensuit que {u,) ~ a
kBT 3 X 3kBT

_C
=

On en déduit 'aimantation du systeme de N moments et la susceptibilité magnétique :

N pop®
V 3ksT

N B
M= 7<ﬂz> x,H = zp— > =

Cette susceptibilité varie comme 77!, ce qui constitue la loi de Curie : une assemblée de
moments magnétiques dont les interactions mutuelles sont négligeables a une susceptibilité
magnétique variant comme 77!

1.2.Diamagnétisme de Langevin

On considére un atome classique similaire a celui présenté en figure 7.1, sur lequel on
applique un champ magnétique B colinéaire a L. L’application du champ magnétique n’est
pas instantanée : on suppose que le champ passe de 0 a sa valeur maximale B en un temps Az.

Puisque le champ varie dans le temps, I’électron est soumis a un champ électromoteur

- —IIOA—II() B AT
ind = 1509 T oy 2

Notez que cette expression du potentiel vecteur correspond a la jauge de Coulomb

V.A=0.

orthoradial

R
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Le théoréeme du moment cinétique s’écrit

-~ -  _ drL
dt
dont la norme vaut
dL d dr dv
—=—mvr)=mv—+mr—
dt dt dt dt

Par ailleurs I’équation fondamentale de la dynamique donne :

dv 0A le] 0B or le] dB dr
m—=l|e|—=——|r—+B—|~r—|r—+B—
dt ot 2 ot ot 2 dt dt

On a fait ’'approximation que le champ B a une variation spatiale négligeable a ’échelle de
I’atome (ce qui est justifié) et ne dépend que du temps : B(#,1) ~ B(t). Il résulte naturellement
de cette approximation que le rayon de l'orbite électronique ne dépend lui aussi que du
temps : r(ﬁ, 1) =r(1).

On remplace alors le deuxieme terme dans I’expression du moment cinétique :

dL dr |e|lr| dB dr
—=mv— + r—+B—
dt dt 2 dt dt
dr |e|Br le|r* dB
=m—|v + R
dt 2m 2 dt
On exprime ensuite le moment de la force électromotrice :
dL lelr | dB dr
—=I= r—+B—
dt 2 dt dt
dr |e|Br |e|r* dB
=m— + —_—
dt 2m 2 dt

, dL . .
Les 2 expressions de —, due nous venons de trouver doivent étre égales, ce qui amene a la
t

conclusion que
dr dr
mv—=0&—=0
dt dt

Le rayon de I'orbite reste constant !

Il apparait donc qu’une augmentation dB du champ pendant un temps d¢ conduit a une
augmentation du moment cinétique d L donnée par
dL le|r? dB le|r?
— - : j—

— = dB
dt 2 dt
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La variation correspondante du moment magnétique s’écrit

|e|2r2

dB

d,u=——ﬁ©d,u=—
m

On en déduit que ’établissement du champ B induit 'apparition d’'un moment magnétique
le)*r? —

dm

ﬁ:i:—

Ce moment est opposé au champ appliqué : il s’agit d’'une réponse diamagnétique de
latome a I’établissement du champ. Le moment induit est proportionnel a la surface de la
projection de l'orbite sur le plan perpendiculaire au champ. Illustrons cela dans le cas plus
général d’'un atome a symétrie sphérique, de rayon R, avec une orientation quelconque de T
par rapport a B (lui-méme définissant 'axe Oz d’un repére cartésien. On aura en moyenne
(voir figure 8.2)

r*=R}+R}etR* =R} +R; + R

Par la symétrie sphérique les trois directions x, y et z sont équivalentes et r? = ERZ en

moyenne.
le|?R? —
B

6m

Le moment magnétique induit est alors u; = —

Pour un ensemble de N atomes a 7 électrons, ’aimantation est alors

d’ou 'on déduit I’expression de la susceptibilité diamagnétique

N e|*R?
_ N molel"R”

Xa = %4 6m

Figure 8.2 : Modele d’atome classique sphérique. La
projection de l'orbite de rayon R sur le plan
I perpendiculaire au champ détermine l'amplitude de
la réponse diamagnétique de I'atome.
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Remarque : On voit d’apres ces équations que Uétablissement du champ a pour effet d’induire une réponse
diamagnétique, ce qui west autre que la loi de Lenz ! 11 est intéressant de remarquer également que la variation
temporelle du moment induit est proportionnelle a celle du champ appliqué, ce qui signifie que la valeur du

moment induit une fois le champ B atteint ne dépend pas de la vitesse d’établissement du champ (et donc du
temps At) I On a ict un phénomene stationnaire, ce qui semble incompatible avec un effet d’induction. . . Cette
apparente incompatibilité provient du fait que dans notre modele d'atome il n’y a pas de dissipation
(contrairement a Ueffet Joule dans le cas classique d’induction dans un circuit), et la trajectorre est stationnaire.
St on établit le champ deux fois plus lentement, la force d’induction sera deux fois plus faible, mais elle
travaillera deux fois plus longtemps, et Uénergie cinétique gagnée par Uélectron sera exactement la méme ! Le
dipéle total induit par un champ d’induction B sur un atome décrit par des orbites stationnaires ne dépend donc
que de la valeur finale du champ. Comme en mécamique quantique les états propres de I’Hamultonien sont
stationnaires, celte propriété s’appliquera également.

1.3.Susceptibilité totale - Théoréme de Bohr - Van Leuwen

Un résultat extrémement important de la physique du XX¢me est la preuve formelle que
I’existence d’une réponse de la matiere a un champ magnétique statique est incompatible avec
les lois de la physique classique. Ce résultat constitue le théoréeme de Bohr-Van Leuwen. On
en présente ici une démonstration effective en montrant que la susceptibilité magnétique
totale d’une assemblée d’atomes classiques que nous venons d’étudier est identiquement nulle.

La susceptibilité paramagnétique est

o= Nt Ny i lel b
P VT 3kgT T V' 3kgT 4m2

ou l'on a utilisé la relation y = yL = y1/2/3Rp.

La susceptibilité diamagnétique s’écrit
=Nl R?
d Vv 6m

et la susceptibilité totale

N_uolel’R* [ p?
R _1
Kiot =Xp T Xa % om 2mkgT

On introduit alors le principe d'équipartition de I’énergie afin de relier I’énergie cinétique
moyenne d’un électron a la température :
2
Py

2 2
p Px 1
—)Y=(—)+{(—) =2 X =kpT
<2m> <2m> <2m> 2B

Il en résulte que la susceptibilité totale s’annule : y,,, = 0, et par conséquent tout modele
classique de la matiére ne peut pas rendre compte de lexistence d’effets magnétiques
thermodynamiques. Afin de surmonter ces difficultés conceptuelles, i est nécessaire
d’introduire les éléments clés de la mécanique quantique : le spin de I’électron, sa nature

fermionique, ainsi que la quantification du moment cinétique.
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2. Magnétisme quantique
2.1.Moments cinétiques d’un atome

En mécanique quantique, dans un atome il y a 3 moments cinétiques mis en jeu : le moment
cinétique orbital L, le moment de spin S et le moment total J = L + S.

Le moment cinétique orbital est caractéris¢ par 3 opérateurs L,, L, L, relaufs aux 3

- . . , 2 . . . .
composantes de L, ainsi que par sa norme au carré L?. En raison du principe de Heisenberg,

- L, et I? (ce qui signifie qu’on ne peut

pas mesurer ces 4 grandeurs simultanément). Cependant, 1l existe une base d’états propres

il n’existe pas de base d’états propres communs a L,, L

|n,1,m) commune a L? et L, avec les valeurs propres
L2 n,l,m)y = WL+ )| n, 1, m)
I:Z|n,l,ml) = hmy|n,l, m)
Pour le spin on peut définir de méme une base d’états propres |, m,) des opérateurs $2 et S, :
82|18, m)y = h*S(S + 1)| S, m,)
SzlS, mg)y = hmg| S, my)

PO | 1 3 1
St =)= 2R]S )
. . B 2’72 T 4 2
Pour un électron seul, le spin vaut S = —etona
2 A1 1 h 1 1
Zl_’i_>=i_|_’i_>
2 2 22 2

Dans la limite faiblement relativiste, la fonction d’onde totale |¥) d’un état est le produit de la
fonction d’onde d’espace |n, [, m;) par la fonction d’onde de spin de I’électron, |S, m,) :

|‘P> = |n’l’ml>® |S’m.v>

D’apres les regles de composition des moments cinétiques en mécanique quantique, le
moment cinétique total J peut prendre les valeurs suivantes :

IL-S|<J<L+S

et J varie par pas de 1 dans cette gamme de valeurs possibles.

1
2
possibles : J = L etJ = % Un ¢tat avec L=3 et S=2 aura 1 < J <5, soit 5 valeurs possibles

J=1,2,3,4 ou 5.

3 .
Prenons quelques exemples : un état avec L=1 et S=1/2 aura — <J < > soit 2 valeurs

J2\L,S,J,m;y = h2J(J + 1)|L, S, J,m,)

Les états propres de J sont les états |L, S, J, m;), avec .
leL,S,J,mJ> = hmJlL,S,J,mJ>

La encore on a —J < m; < +J, et par conséquent la dégénérescence des niveaux ayant une
valeur de J donnée est (2J + 1).
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2.2.Couplage spin-orbite, effet Zeeman, facteur de Landé

Etudions maintenant le cas d’'un atome H. On va inclure dans notre étude, par ordre
d’importance: I'interaction électrostatique électron-noyau, un effet relativiste appelé couplage
spin-orbite, et enfin les termes para- et dia-magnétiques qu’on a présentés auparavant. Dans
cette approximation le Hamiltonien de l'atome va s’écrire

52
. Hy = 5— + V(r) ne dépend pas du spin. Dans ce cas le moment cinétique orbital et le
m

moment cinétique de spin sont des constantes du mouvement : Hy, L%, I:Z,S 2 et S’Z ont des
états propres communs |¥) = |n,l,m) @ | S, m,) définis précédemment.
Ona:

Hy|'¥) = E,|'P)

L2|®) = W21+ 1) | P)

L1¥) = nm|¥)

) 3
Szl‘P)=Zh2|‘P)

N n
S.1%)=x=|¥)

Les états propres d’espace sont les orbitales atomiques |n, [, m;), définies par 3 nombres
quantiques :

- 1 estle nombre quantique principal

- lest le nombre quantique orbital, tel que 0 <1 <n — 1. On appelle états s les orbitales
telles que s=0, états p les orbitales avec 1=1, états d pour 1=2, états f pour 1=3, etc.

- my est le nombre quantique azimutal, tel que =1 <m; < +1

L’énergie d’un état |n,l,m;) ne dépend que de n. Par conséquent tous les états
V) = |n,l,m) ® |S, m) avec la méme valeur de 1 et de S ont la méme énergie. Ces états
sont au nombre de mym, = (2] + 1)(2s + 1). Par exemple pour un état p on a I=1, et la

1
dégénérescence de ce niveau est (2Xx 1+ 1)(2X 5 +1)=6. Pour un état d la

dégénérescence sera 10, et 14 pour un état f.

. Hy, = AL .S est ’Hamiltonien de couplage spin-orbite.

Ce terme couple le moment orbital et le moment de spin, et les états |¥) définis
précédemment ne sont plus des états propres de Hy + Hg,. On peut par contre montrer
que le moment cinétique total J=TL+S est une grandeur conservée, et par
conséquent on peut définir une base commune d’états pour H, + Hy, et T Appelons ces
états |L, S, J, my).
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IR JZ _ L2 _ S2
En réalisant que L . § = — —onaura

. n?
(Ho+ Hso) | L, S, J,my) = E, + A— VU + 1) =L@ +1) =SS+ D]IL,S,J,my)

J2\L,S,J,m;)y = h*J(J + D|L,S,J,m,)
L, S, J,m;y = hm,|L, S, J, m;)

On voit que le couplage spin-orbite a pour effet de lever la dégénérescence entre états de
J différents : on parle alors de multiplet pour dénommer ’ensemble des états de méme
J. La dégénérescence d’un multiplet J est (2J + 1).

Exemple : le niveau 2p de I'atome H a une dégénérescence de 6 lorsqu’on ne considere
que Peffet de H,. Avec le couplage spin-orbite, 2 valeurs de J sont permises : J = 1/2,
avec une dégénérescence 2 (m; =+1/2), et J=3/2 avec une dégénérescence 4
(m; = £3/2, % 1/2). La structure électronique du niveau 2p de 'atome H est représentée
en figure 8.3. Pour un niveau 3d (dégénérescence 10), on aura les multiplets J = 3/2
(dégénérescence 4) et J = 5/2 (dégénérescnce 6).

R el /= =\ —  |e*’B¥? , o .
. Hmangp+Hd=—(L +2S>.B+—ou le premier terme décrit la reponse
2m 8m

paramagnétique et le deuxie¢me, la réponse diamagnétique.

Le terme diamagnétique donnera lieu a une susceptibilité faible et négative, qui s’écrira
2
N _ polel

comme dans le cas classique y,; = _VZ 6—(r2), ou (r?) est calculée dans I’état
m

fondamental de l'atome. Ce terme sera en général occult¢ par la contribution
paramagnétique, sauf dans le cas des atomes ou des ions « a couche pleine » , c’est-a-
dire ceux dont le nombre d’électrons dans le dernier niveau occupé est égal a la

dégénérescence de ce niveau. Le tableau 8.1 donne les susceptibilités molaires

Imot = — N Ay X de quelques atomes et 1ons diamagnétiques.
He -1,9 Li+ -0,7
F- -94 Ne -7,2 Nat+ -6,1
Cl- 24,2 Ar -194 K+ -146
Br- -34,5 Kr -28 Rb+ -22,0
- -50,6 Xe -43 Cs+ -35,1

Tableau 8.1 : susceptibilité molaire des atomes de gaz rares et des ions halogénures et alcalins, en
unités de 106 cm3/mol. On wvoit clairement que les plus gros atomes ou ions sont les plus
diamagnétiques.
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Le terme paramagnétique est appelé Hamiltonien Zeeman. Il inclut le spin, avec un

facteur g, = 2 (en fait 2,0023, cf. Feynman), car on peut montrer dans le cadre relativiste

" . , e ) e e
que le facteur gyromagnétique du spin de ’électrons n’est pas 5, mais gy — r—.
m m m

Quand le couplage spin-orbite domine le terme paramagnétique (ce qui est souvent le
cas), on doit utiliser les états |L,S,J,m;) et « projeter » 'Hamiltonien Zeeman sur
I'espace de J. On peut montrer que, dans un multiplet donné, on peut écrire

L+25 =g ]T, ou g; est appelé facteur de Landé.
On peut calculer ce facteur facilement en écrivant :
g)2=(L+28).T=02+S.T=0+S*+L.5§
1
=T 4oL =5+ S

1
=J? +E(J2 —L*+5%)

On en déduit g;, en Pexprimant en termes des valeurs propres des opérateurs :

+J(J+l)+S(S+1)—L(L +1)
2J(J+1)

g =1

. . , . A~ e —_— —
Le Hamiltonien Zeeman s’écrit alors H, = |2—| g;J . B
m

. . =g . ;. .
Par convention on applique le champ B selon I'axe Oz, ce qui permet de réécrire le
terme Zeeman en fonction de J_ :

N le]
Hp = m gJJsz

Les valeurs propres de ce terme sont données par

N el s _leln
leL,S,J,mJ> -_ _gJJZleL,S,J,mJ> - —ngJleL,S,J,mJ>
2m 2m

leln

On définit le magnéton de Bohr gz = =9,274.1072* J/T comme unité fondamentale

de moment magnétique. La variation d’énergie d’un état sous l'effet Zeeman pourra alors
s’exprimer comme

AE = g;pupm; B,

L’effet du terme paramagnétique Zeeman va donc étre de lever la dégénérescence d’un
multiplet J selon les valeurs de m; (voir figure 8.3). I’état de m; le plus faible sera favorisé : cela
correspond bien a I’état dont le moment cinétique est le plus antiparalléle au champ, donc

celui dont le moment magnétique est le plus « aligné » sur la direction du champ magnétique.
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2 .-
P3/2 %A e ¢

J = 3/2 5?:::13:::‘_ ¢ 93/21BB:

N T
A S
2
2p ittt Bt
n =2 X6

—AR?
2]71/2\‘*——1:::\ g1/21BB.

J=1/2 X2

ﬁO -H0+ﬁ50 HO+ﬁSO+ﬁZeeman

Figure 8.3 : Evolution de la structure électronique
inclut successivement les différentes interactions.

des niveaux 2p de I'atome d’"Hydrogene lorsqu’on

2.3.Moment magnétique des atomes a plusieurs électrons : regles de Hund

Dans un atome a Z électrons, si on peut conserver la hiérarchie : interactions électrostatiques

>> couplage spin-orbite >> paramagnétisme,

et que les interactions électron-électron

peuvent étre traitées comme un effet moyen sur chaque électron, on peut utiliser toutes les
conclusions du paragraphe précédent, a condition de faire intervenir dans les équations le

moment orbital total L = Z fi, le spin total S = Z ?i et de construire ensuite le moment

e

e

cinétique total comme J=T+5. Cette approximation fonctionne bien pour la plupart de
atomes avec Z < 50. On définit alors les 3 regles de Hund pour déterminer J dans ’état

fondamental, qui sont :

1. Dans ’état fondamental, le spin total S doit étre maximum

2. Dans I’é¢tat fondamental, le moment orbital L. doit étre maximum,
compte-tenu de la regle 1.

3. Silorbitale est moins qu’a-demi remplie, alors J = |L — §|. Dans le cas
contraire J =L + §
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Prenons 3 exemples (voir figure 8.4) :

1. Le Vanadium V (Z=23). Sa structure électronique est 15*2s22p%3s23p%4523d°, que
I'on synthétise en [A rl4s23d3. On doit donc étudier Porbitale 3d, pour déterminer
Iétat fondamental. Pour une orbitale d, le moment orbital L=2 : on va donc
dessiner 5 « cases » correspondant aux 5 valeurs possible de mr. Il y a 3 électrons a
placer, en maximisant S et L : ces deux conditions sont réalisées en placant un
électron dans chaque case mp=2,1,0. On calcule alors S =3x1/2=3/2, et
L=2+14+0=3. Comme la couche est moins qu’a-moiti¢ remplie, on a
J=13-3/2]=3/2. On en déduit qu'un atome de V isolé¢ est paramagnétique
puisque J > 0.

2. Le Fer Fe (Z=26), de structure [Ar]4s23d®. Il y a 6 spins a placer dans 5 « cases » :
on va placer deux spins « up et down » dans la « case » mp=2. On a alors
S=5x1/2-112=2,L =2%X2+140-1-2=2ctJ=2+2=4.

3. L’argon Ar a une dernié¢re orbitale occupée de type 3p%. Dans ce cas chaque « case »
est occupée par 2 spins, et on a
L=2x2+14+0-1-2)=0,5=5x%x(1/2-1/2) =0, et par conséquent J = 0. Cet
atome n’est pas paramagnétique (dans la limite I:Ip < Hy, définie précédemment),

mais seulement diamagnétique.

L,=2 _ _
z 1 0 1 2 L —3
Vanadium V, Z = 23 S:§
3d° 2 3 3
J=183—-|=-
| 2| 2
L.=2 1 0 -1 -2
L=2
Fer Fe, Z = 26 T l T T T T
S=2
6
3d J=2+4+2|=4
1 0 -1
L=0
Argon Ar, Z =18
. S=0
3p J=0

Figure 8.4 : Etat fondamental de 3 éléments déterminés d’apres les regles de Hund. V et Fe sont
paramagnétiques (J>0), Ar est diamagnétique (J=0).
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3. Magnétisme d’une assemblée de moments localisés : paramagnétisme
de Brillouin

On considére un ensemble de N atomes (ou ions) indépendants, dont ’état fondamental
L2|L,S,J,m)) # 0

|L,S,J,m;) est tel que §2|L,S, J,m;) # 0. Le multiplet fondamental est donc (2]+1) fois
J2\L,S,J,m) #0

dégénéré.

L’énergie Zeeman d’un atome est donnée par E = g;upB.m;. On considere par ailleurs que le

couplage spin-orbite est suffisamment grand pour que le seul le multiplet fondamental soit
excitable thermiquement (voir par exemple figure 8.3).

Pour calculer 'aimantation et la susceptibilit¢é magnétique de ce systtme, on va utiliser les
outils standard de la physique statistique. La fonction de partition du systeme s’écrit

my=+J +J
Z= Z exp(—pg;upm;B,) = Z exp(—Puopigm; H,)
my=—J —-J

ou l'on a défini f = (kgT)7, jiy = g;up. Dans 'hypothése (justifiée) ou y < 1, on peut écrire
B, = uo(1 + y)H, = pyH,, ce qui a été fait dans I’équation ci-dessus.

On peut réécrire cette série en changeant I'indice :

2J+1 2J+1
Z =) exp(—BuotigHKk) . exp (BuosigH,(J + 1)) = exp (BuoisHJ + 1)) | Y. exp(—BuopizH k) — 1
k=1 k=0

La série dans le membre de droite est une série géométrique qui s’évalue directement :

2741 1 —exp (—BuohizH,(2j +2))
Z exp(—puorigH k) = .
=~ 1 —exp (~PuoizH.,)

et la fonction de partition devient
exp (BuofisH.( + 1) (exp(=BuofigH,) — exp (~PuofisH 2] +)) )

7 = _
1 — exp (—BuofizH.)

On peut enfin I’écrire sous une forme plus symétrique:
exp (~BuofisH0 +2)) - exp (~BuofizH0 +2))

Z = ~ HZ ~ HZ
exp <ﬂﬂ0ﬂ37> —exp <—ﬁﬂ0M37>
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L’énergie libre s’exprime a partir de la fonction de partition comme F = —kgT InZ, et

> . N . )y Lo N OoF
I’aimantation a partir de I’énergie libre comme M = — ——

|;. Le calcul ne comporte
/"OV aHz

aucune difficulté et ameéne a
M N J+1 th | BuoizH. J+1 ! th ( g ;1
=— — ] co — ——cCo —
VﬂB > HoHpil, > ) HoHp )

2z s N
On I’écrit le plus souvent sous la forme M = VgJuBJBJ(ﬂ,uOgJ,uBJHZ),

. . . . 2J+1 2J+1 1 1
ou l'on a défini la fonction de Brillouin B,;(x) = coth x)——coth| —x).
2J 2J 2J 2J

On appelle armantation a saturation, M,

wat » 12 valeur prise par I'aimantation lorsque tous

les moments sont alignés sur le champ magnétique appliqué. Cela correspond par définition
au cas ou la projection du moment cinétique sur la direction du champ est minimale :

m;=—J , ce qui permet de définir un moment magnétique u; = g;Jup et le moment a
. N N
saturation M, = ng,uBJ = V,uj.

L’aimantation peut alors s’écrire sous la forme

M H B
_ BJ Hyhol1; — BJ ;b
M, kgT kgT

Cette fonction est représentée en figure 8.5 pour différentes valeurs de J. Comme on pouvait

s’y attendre 'aimantation augmente de fagcon monotone avec le rapport B/T : le champ tend
a aligner les moments alors que l'agitation thermique tend a les désordonner. Plus subtil :
Iaimantation a de plus en plus de difficulté a saturer a mesure que J augmente. Cela
s’explique par le fait que le nombre de valeurs de m; augmente avec J, et donc ’entropie du
systtme augmente avec J. Dans la limite / — o0 , m; admet une infinité de valeurs, et devient
ainsi une variable quasi-continue : on retrouve le cas du paramagnétisme de Langevin :
lim B;(x) = Z(x).

J—o0

A champ faible (x <1 ou u;B, < kgT), la fonction de Brillouin admet un développement

. J+1 S {/7+1\ JT+1
limité B;(x) & ——x . +
3J 90 J J

. . . J+1 N  (gup)*JUJ+1)
et Paimantation devient M ~ M, ,—— H =— H
V. sat 3] ﬂﬂoﬂj z % Ko 3kBT z

On obtient alors la susceptibilité paramagnétique de Brillouin :
_M _ N (gmp)U+D _C
“H VT T T

Z

Ap
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On retrouve une loi de Curie comme dans le cas du paramagnétisme de Langevin.

M 1.0
Bjy(x) <Ou]\/[sat) 0

0.8

0.6

0.4

0.2

0.0 =

Figure 8.5 : Aimantation d’une assemblée de moments magnétiques localisés en fonction du rapport
B/T. On a représenté les courbes obtenues pour plusieurs valeurs de J. A champ faible, I'aimantation
a un comportement linéaire (droite en pointillés) d’otr I'on tire une susceptibilité magnétique variant
avec une loi de Curie.

Une remarque importante : on a vu que les valeurs propres de Popérateur J2 sont

(L,S,J, JZII:2|L,S, J,J) = 7*J(J +1). On peut donc considérer le produit (g;uz)*J(J + 1)
comme le carré d’un moment effectif

Herr = 81k I + 1)

Avec cette notation la susceptibilité paramagnétique de Brillouin s’écrit

M _E ,“esz
=1, T VIOk,T

On remarquera la similitude de cette équation avec le résultat de Langevin.

Dans certains cristaux, comme par exemple des composés a base de terres rares, les ions de
terre rare peuvent porter des moments magnétiques localisés. La susceptibilité magnétique de
ces composés est le plus souvent représentée sous la forme y~! = £(T'), dont la pente donne
directement acces au moment effectif et donc au multiplet fondamental des ions magnétiques.
Le cas du Praséodyme est présenté en figure 8.6. La susceptibilité¢ correspond en tres bon
accor avec une loi de Curie, dont on peut estimer le moment magnétique p,s = 3,59u5. Sous

sa forme métallique chaque atome de Pr cede 3 électrons a la structure de bandes, et les ions
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Pr** du réseau ont une structure électronique de type 4f2. Les régles de Hund donnent

comme état fondamental L = 5,5 = 1 = J = 4, et le moment effectif calculé vaut
3 1x2-5x%6

ety = 81 J(J+1)MB= E+W 4)(5//!3%3.58/13

Dans ce cas I’accord entre théorie et expérience est excellent !

300
250
200
Hx 150

100

50

50 100 150 200 250
T(K)

Figure 8.6 : Mesure de la susceptibilité magnétique du Pr (cercles) et ajustement par une loi de
Curie.

4. Le ferromagnétisme

4.1.Phénoménologie des matériaux ferromagnétiques

Certains matériaux présentent une transition de phase entre un état haute température,
paramagnétique, et un état basse température ayant un ordre magnétique a longue portée
(voir par exemple la figure 8.7). Cet ordre peut résulter en un alignement des moments
magnétiques et I'apparition d’une aimantation permanente en dessous d’une température
critique T, appelée température de Curie : on parlera alors de ferromagnétisme, ou de
ferrimagnétisme dans les cas ou 1l existe plusieurs types de moments magnétiques non-
équivalents dans le matériau. On peut aussi avoir des ordres de moments anti-alignés : on
parle alors d’état antiferromagnétique et la température de transition est appelée température
de Néel, Ty (Louis Néel prix Nobel 1970 pour ses travaux sur le magnétisme).

Dans cette partie du chapitre on va s’intéresser uniquement au ferromagnétisme, du point de
vue des propriétés magnétiques ainsi que thermodynamiques.
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On sait qu’il existe des aimants permanents ayant des températures critiques ¢levées
(To = 1043K pour le Fe), ce qui signifie que les énergies d’interactions associées au
ferromagnétisme sont de 'ordre de 10-100 meV. On peut montrer que de telles énergies ne
peuvent pas s’expliquer par l'interaction entre dipdles magnétiques (cf page 84). L’étude
rigoureuse du mécanisme physique de couplage entre moments est au-dela de ’objectif de ce
cours; le lecteur désireux d’en savoir plus pourra consulter le paragraphe 4.2 ainsi que le
complément de cours disponible sur le site Moodle de I'UE.

Quelques propriétés remarquables des matériaux ferromagnétiques sont décrites en figure 8.7.
On va dans la suite tenter de décrire I'existence et ’évolution de I’aimantation spontanée du
matériau, ainsi que le saut de chaleur spécifique a la transition. Les propriétés magnétiques
mésoscopiques : cycle d’hystérésis et domaines magnétiques, seront traités dans le cours de

magnétisme au S2.
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Figure 8.7 : Quelques propriétés remarquables des matériaux ferromagnétiques :

a) aimantation

spontanée du Ni en fonction de la température. La courbe en trait plein est un ajustement par un
modele de Curie-Weiss avec spins 1/2 (voir la suite du cours). b) Saut de chaleur spécifique i la
transition du Gd (T.=325K). c) Cycle d’'hystérésis de l'aimantation. d) Image par microscopie
magnétique de domaines magnétiques.
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4.2. Origine du ferromagnétisme : I'interaction d’échange

Ce paragraphe figure dans ce manuscrit dans un but purement informatyf et de culture scientifique. Il traite de
concepls_fondamentaux de la mécanique quantique, qu’il est pas demandé de maitriser dans lévaluation finale
de PUE. Le lecteur ne souhaitant pas approfondir la question pourra donc sans probleme passer au paragraphe
4.3.

La fonction d’onde ¥(1,2,3,......N)d’un systeme composé¢ de N fermions doit présenter une
propriété tres particuliere appelée « antisymétrie par permutation de 2 particules ». Cela
signifie que si on permute deux particules dans la fonction d’onde, celle-ci doit changer de

signe : par exemple |y (1,3,2,....N)) = — | ¥(1,2,3,.....N)).

Dans la limite faiblement relativiste, on peut écrire cette fonction d’onde comme le produit
d’une fonction d’onde d’espace |y (1,2,3,....N)) et d’'une fonction de spin |®(1,2,3,...N)) :
|P(1,2,..N) = |y(1,.2,.N) @ | P(1,2,....N ).

Comme la fonction d’onde |y(1,3,2,.....N)) doit étre antisymétrique par permutation de 2
particules, on aura deux possibilités :

- |w(1,2,..N) est symétrique et |[D(1,2,..N) antisymétrique. Cet état de spin
antisymétrique est appelé singulet, il correspond a un spin total nul et ne donne pas
lieu a des propriétés magnétiques importantes. Pour la suite on notera cet état

W) =ly,) ® D)

- |w(1,2,..N) est antisymétrique et |P(1,2,....N) symétrique. Cet état de spin est appelé
triplet, et correspond a un spin total non nul, et donc des propriétés magnétiques
associées. Appelons cet état |¥Y_,) = |y_) @ |D,)

Les interactions électrostatiques entre particules ne concernent que la partie spatiale de la
fonction d’onde. Sans rentrer dans les détails mathématiques, on peut comprendre que les
valeurs propres de I'énergie électrostatiques vont dépendre de l'interaction de la fonction
d’onde totale avec elle-méme, corrigée de l’interaction avec la fonction d'onde dont les
particules ont été permutées. Cette correction de l'interaction de Coulomb est purement
liée a la nature fermionique des particules; elle est donc d’origine quantique. On Iappelle
interaction d’échange, et 1'énergie associée a cette correction est appelée énergie
d’échange, ou intégrale d’échange, et notée J.

On aura donc une différence d’énergie d’échange entre I’état |¥_,) et I’état |W,_) puisque

ces deux fonctions d’onde n’ont pas la méme symétrie par permutation spatiale de particules.

OnécriraAE =E,_—-FE_,  =2J.

On voit immédiatement que, selon le signe de J, la solution symétrique d’espace ou I'autre sera

plus favorable énergétiquement :

- st J>0, Pétat de plus basse énergie sera |W_,), c’est-a-dire I’état dans lequel les spins

tendent a étre alignés afin d’avoir un spin total non nul.

- s1J<0, I’état de plus basse énergie sera I’état |W_,), dont le spin est nul.
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Lorsque I'interaction Coulombienne entre particules est le terme dominant, on a J>0 et I’état
de plus basse énergie est toujours celui de spin maximum : il s’agit de la premiere regle de
Hund qu’on applique généralement aux atomes a plusieurs électrons.

Dans un cristal, I’énergie d’échange entre les ions du réseau va également pouvoir favoriser les
¢tats dans lesquels les spins voisins ont tendance a s’aligner, ou s’anti-aligner selon le signe de ].

On en arrive a la conclusion extrémement importante que :

Pinteraction d’échange est a Dorigine de D’existence d’ordres magnétiques
permanents dans les solides, comme le ferromagnétisme par exemple.

4.3.Hamiltonien effectif de Heisenberg

L’existence d’états physiques ayant une aimantation permanente a des températures de 'ordre
de 300 K implique qu’il existe spontanément un couplage fort entre moments magnétiques
voisins, en 'absence de champ extérieur. On peut prouver que ce couplage n’est pas un
couplage de type magnétique, mais résulte d’un effet électrostatique présent dans les systemes
de fermions et appelé interaction d’échange. L'énergie associée a cet effet est appelé énergie
d’échange, ou intégrale d’échange, et noté généralement J dans la littérature.

Afin de ne pas confondre ce J avec le moment cinétique 7', dans tout ce qui suit on utilisera le
terme « spin » pour désigner un moment cinétique au sens général, et on notera 'opérateur
associé S.

Par analogie avec l'effet Zeeman, le couplage entre spins peut s’écrire sous la forme dun
Hamiltonien effectif, appelé Hamiltonien de Heisenberg :

Hyp ==Y JyS. 5,
iy

ou J;; est I énergie d’échange entre le spin i et le spin j. On remarque que le signe de J;;
détermine le type de couplage :

- s1J.; > 01’état de plus basse énergie est celul ou les spins 1 et ] sont paralléles : ce
ij P gl P J P

couplage est de type ferromagnétique
- siJ; < 0Tétat de plus basse énergie est celui ou les spins 1 et j sont anti-paralleles : ce
couplage est de type antiferromagnétique.
Dans le cas général on pourra avoir des signes différents pour les différents J;;, selon que 1 et

sont plus proches voisins, second voisins, etc...Cela peut donner lieu a des ordres magnétiques

complexes, dont on peut voir quelques exemples en figure 8.8.

En présence d’'un champ magnétique extérieur, I'effet Zeeman intervient et le Hamiltonien

effectif total s’écrira

ﬁeff =- ZJijSi S = ngﬂBSi - B
i.j i
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Figure 8.8 : Quelques exemples d’ordre magnétiques dans des composés réels. a) l'interaction
d’échange J1 entre atomes de Cu s’effectue via les atomes d’O : on parle de superéchange. On a J;1<0
et un ordre antiferromagnétique. b) J1>0 et [><0 : on a des chaines ferromagnétiques (en diagonale)
couplées antiferromagnétiquement entre elles. On parle de « stripes ». c) Dans cet ordre magnétique
J1>0, ]2<0 et [3<0. L'ordre magnétique peut étre vu comme des doublets de chaines ferromagnétiques
(verticales) couplés antiferromagnétiquement.

4.4.Modele de champ moyen de Curie-Weiss

On considére un solide isotrope composé de N atomes/ions identiques occupant un volume V,
chaque atome/ion portant un moment cinétique localisé S. On néglige totalement les
¢lectrons de valence et on ne s’intéresse qu'aux propriétés magnétiques des atomes/ions. On
considere uniquement le couplage d’échange entre plus proches voisins. En présence dun

champ magnétique extérieur B, le Hamiltonien du systeme s’écrit

eff_ Z iSi - j_zgsﬂB§~§
i

Pour résoudre ce probléme on fait une approximation dite de « champ moyen » : on suppose
que chaque moment est soumis a un champ magnétique interne moyen créé par ’ensemble

des autres moments. On a alors

efj"’ Z USz <S> ngﬂBEIT.?

(5

=- ZgSﬂBEzT' §+2th

== 285/433 . ﬁm

i

On a transformé le Hamiltonien initial en un « simple » Hamiltonien Zeeman avec un champ
. - . . , , .

effectif B,,, historiquement appelé « champ moléculaire ».
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On a déterminé en section 3 la solution de ce probléme : 'aimantation M est donnée par la
fonction de Brillouin sous la forme

8sﬂBSBm> N gsipB + 2, JiS;)

= — SB
kT 8sHp Dg

N
M=— SB S
VgsﬂB N ( % ks T

. . , . N . S
En remarquant que I’aimantation peut s’écrire comme M = <Sj>78S up et Paimantation a

. N . = R .
saturation comme M,,, = § v gsHp, on voit que (S;) = S et on peut réécrire 'aimantation

sat

sous la forme

M
M _sls 8shpB + EJ- Jijms
M § kT

On obtient une équation auto-cohérente de la forme M=f{(M), dont on va chercher les
solutions graphiquement. A une température T' et un champ B donnés, I’aimantation solution
de cette équation sera donnée par I'intersection de la courbe y = By(B, T, x) avec la droite
y = x (voir figure 8.9).

M
Be(B=0 — T) 1.0
S( O Mo’ )

T3 > 1T¢

0.8 -
0.6 -
0.4 —

0.2 H

0.0
M

Msat

Figure 8.9 : Résolution graphique de 1'équation d’auto-cohérence de 'aimantation en champ nul. La
solution est donnée par l'intersection entre la droite d’équation y=x et la fonction de Brillouin. On
peut remarquer qu’il existe une température critique T. au-dela de laquelle les seules solutions
possibles sont M=0.
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Intéressons-nous tout d’abord au cas ou le champ appliqué est nul. On remarque que
I’équation auto-cohérente n’admet de solutions non nulles que pour des températures
inférieures a une température critique Te. On peut calculer cette température critique en
écrivant qu’il existe des solutions non nulles tant que

d M
dM MYat

d M
<— |Bg
voo dM M.,

M—-0

Pour B=0, on peut alors définir la température critique Tc par la relation

1 d
= BS Z Jlj
M amM kBT M, M0

_d |+ VIZ M

dM | 35S @nl VM.,
S@+1)Z
3Mmt kB c

ou on a utilisé le développement limité de Bs a champ faible.

On en déduit lexpression de la température critique en fonction des parametres

microscopiques du systeme :

S@+1)Z
T3 &y

Remarque : ce résultat peut se réécrire sous la forme kg7, = J,-j<$’2)w,, ce qui signifie que la

température critique est la température a laquelle les interactions moyennes entre spins
deviennent égales a I’énergie thermique et un ordre magnétique peut commencer a s’établir.

On peut ensuite réécrire ’équation d’auto-cohérence en fonction de Tc :

M _ gSIuBSB+ 3 TC M S2

M, kgT SS+1) T M,

L’aimantation solution de cette équation est présentée en figure 8.10 en fonction de la
température, pour différentes valeurs du champ appliqué. Pour B=0, ’aimantation est nulle
pour T > T, et augmente lorsque la température baisse dans la gamme 7 < 7T,. On passe donc
d’un état haute température parfaitement isotrope, de symétrie sphérique, a un état dans
lequel les spins s’alignent spontanément dans une direction unique, c’est-a-dire un état de
symétrie cylindrique. On appelle cet effet brisure spontanée de symétrie, qui dans ce cas
donne licu a la transition de phase ferromagnétique. Le concept de brisure spontanée de
symétrie est extrémement important en physique, puisqu’il permet de décrire aussi bien les
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transitions de phase de la mati¢re condensée (ferromagnétisme, supraconductivité, etc), que le
modele standard ou I'existence du boson de Higgs !!!

Lorsque un champ extérieur est appliqué, 'aimantation décroit plus lentement avec la
température et on n’a plus de véritable transition de phase avec une température critique bien

définie.

M 1.0
Msat

0.8

0.6

0.4

0.2

0.0
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Figure 8.10 : Aimantation d'un matériau ferromagnétique isotrope dans la théorie de champ moyen
de Curie-Weiss.

En pratique, pour mesurer la température critique on mesure la susceptibilité magnétique du
matériau ferromagnétique pour des températures T 2 7. et en champ faible. Dans ce cas on
peut utiliser le développement limité de la fonction de Brillouin au premier ordre et on obtient

M S+1 SB 3T, M
- <gsMB " ¢ g2 )

M,  3S kgT SS+ DT M,
S+1 B
o M= Msat S5ty
3 ky(T—T.)

_NSS+1) (gup)°B
TV 3 kg(T-T,)

On en déduit la susceptibilité magnétique d’un ferromagnétique dans 1’état paramagnétique :

N SEHD ey’ _ €
AW= YT (T-T,) T-T

c
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Cette susceptibilité en (T —T,)7! est appelée susceptibilité de Curie-Weiss. A noter que le
numérateur est identique a celui obtenu dans le cadre du paramagnétisme de Brillouin.

Afin d’1llustrer ce qui précede, prenons le cas du Gadolinium, Gd. Cet élément est trivalent,
de sorte que les ions du réseau sont Gd3*, de structure électronique 417. Les régles de Hund et
le facteur de Landé prédisent un moment magnétique par atome de 7,94 pp. La susceptibilité
magnétique du Gd est visible en figure 8.11 en fonction de la température.
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Figure 8.11 : Susceptibilité magnétique du Gd (en unités CGS). La droite en trait plein est un
ajustement des mesures par une loi de Curie Weiss.

On voit clairement que la susceptibilit¢ est en excellent accord avec une loi de type
21« (T-T.), ce qui correspond a la loi de Curie-Weiss. On déduit des mesures un moment
par atome u = 7,93, en accord quasi-parfait avec les regles de Hund !

Par ailleurs, puisque dans I’état ferromagnétique I’aimantation apparait spontanément sans
champ appliqué, la susceptibilité devient par définition infinie. Dans la figure 8.11, T, sera
donc la température pour laquelle y~! = 0, c’est-a-dire 325 K dans ce cas.
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4.5.Théorie de Landau de la transition de phase ferromagnétique

Au voisinage de le température critique, on peut retrouver et étendre les résultats précédents
dans un cadre théorique beaucoup plus large développé par Landau pour I’étude des
transitions de phase au sens général.

4.5.1.Equation d’¢tat d’un ferromagnétique

On va maintenant décrire les propriétés thermodynamiques de la transition de phase
ferromagnétique. Pour cela, on va développer la fonction de Brillouin a I'ordre supérieur, au

voisinage de T, et en champ faible :

xS+1 B /S+1\° S+1
=B v o - +

3 S 90 S S
ou dans notre cas la variable x est définie comme

sstpSB 35 Tc M
X = —
kT S+1) T My,

sat

M |gsHpS B 35 Tcf_ M (N Ho(gskpS)® B L T
M kyT M S+ T| M, \V kT M S+ T

sat sat
sat

Le premier terme est faible devant le deuxiéme et par conséquent on pourra faire

I’approximation
3
5 3 T. M
X7 & —=
S+1 T M,

On peut alors réécrire I’équation définissant I’aimantation sous la forme

3
3k M 9 S+ 12+8% kT3 M
B (T-T.) 9 S+D°+ Blc —B

—_ . +
(S + 1)gs1uB Mvat 10 (S + 1)3 gS/"BT2 Mvat

Cette équation constitue I’équation d’état d’'un matériau ferromagnétique de Curie-Weiss au
voisinage de la transition. On la réécrit souvent sous une forme plus compacte et lisible

ag 3

(T -T )M +bM3 =B

Tc
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4.5.2. Théorie de Landau

La théorie de Landau est basée sur I'idée qu’une transition de phase est caractérisée par
I'existence d'un parametre d’ordre, une grandeur physique caractéristique qui prendra des
valeurs différentes dans I’état ordonné et dans I’état désordonné. Pour un liquide par exemple,
la masse volumique est discontinue entre I’état liquide et I’état solide. Pour un matériau
ferromagnétique, il est facile d’identifier I'aimantation comme le parametre d’ordre pertinent.

Au voisinage de 7, le parametre d’ordre est par définition faible, et par conséquent on peut
développer I’énergie libre en puissances du parametre d’ordre : c’est le développement de
Landau de I’ énergie libre. Dans le cas du ferromagnétisme on écrit I’énergie libre de

Landau sous la forme

F, = 2"_7‘} (T-T.)M*+ %M“ —BM {+A(VM)*}

c

ou a, et b sont tous deux positifs. Les deux premiers termes correspondent aux interactions
internes (interactions d’échange) : ce sont des termes en puissances paires de M puisqu’en
I'absence de champ B, I’énergie libre ne dépend que de la norme de M et non de son
orientation. Le troisieme terme est ’équivalent du terme Zeeman. Le quatrieme terme rend
compte de I'existence des parois de domaine et ne sera pas pris en compte dans notre cas d'un
ferromagnétique homogene. On peut voir en figure 8.12 I’énergie libre en fonction de
I'aimantation pour différents jeux de parametres (7,B). L’aimantation a I’équilibre
thermodynamique est donnée par le minimum de I’énergie libre. On voit bien que pour B=0
il ne peut exister d’aimantation non nulle que st 7 < 7,. Pour B # 0 il existera toujours une
solution avec M # 0.

Fp(M) Fp(M)
T<T,
B=0
My #0 . Lo
. - = Figure 8.12 : énergie libre de
0 M, =0 M | | M .
' Landau en  fonction de
U'aimantation  pour  différents
Fo(M) Fo(M) parametres (T,B).  L’aimantation
d’équilibre est donnée par le
Tt r=te minimum de I'énergie libre.
B#0 B#0
M.y #0 M,y #0
0 ' M 0 : M
|
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Aléquilibre thermodynamique I’énergie libre est minimale :

_ 4o 3_
=0 2(T-T)M+bM* =B
dM T

c

On retrouve I’équation d’état établie au paragraphe 4.5.1.

A partir de cette équation on peut retrouver les propriétés magnétiques du systeme au
voisinage de 7, :

a
- en champ nul, B=0, on a TO(T— TOM +bM? =0 =

c

Avec I'expression de a, et b du paragraphe précédent, on peut tracer I’aimantation de
Landau en fonction de la température (cf figure 8.13). Dans la gamme 0,967, < T < T,
la courbe de Landau différe de moins de 5% de la courbe exacte.

. T-T M
- en champ faible et pour T 2 T,,onaM < 1 et M®> < M = a, T “M =~ B = pu,—.

c

j— TC — C
Ca(T-T,) T-T.

Cc

On en déduit 'expression de la susceptibilité magnétique | y

On retrouve une susceptibilité de Curie-Weiss.

B\ 3
- laimantation a T, vaut M(T,) = <Z>

M(T) exacte

0.4
0.3+
024 M(T) de Landau
0.1
T
O-OT T T T T T T T p—
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 TC

Figure 8.13 : Aimantation d'un ferromagnétique de Curie-Weiss en champ nul au voisinage de T..
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On peut ensuite calculer les propriétés thermodynamiques du systeme au voisinage de 7, :

- pourT ST,onaM(T)=

2 2
e g rem 2GS (G (251

C

T - P
T ) et ’énergie libre s’écrit

On en déduit 'expression de la contribution magnétique a la chaleur spécifique dans
I’état ferromagnétique :

T aZFL _T ag
M or2 | " 2bT2
Vv

- pourT 2T, onaM(T)=0etpar conséquent F; =0= Cy, =0

Il'y a donc une discontinuité ACy, , de la chaleur spécifique a T, (voir figure 8.14):

a5

26T,

Avec les expressions de a, et b du paragraphe 4.5.1, on trouve que le « saut » de chaleur
spécifique a T, s’écrit

SIS +1)

ACy = SNkg————
"M B +1)2+82

Cvar |
S(S+1)
I T T

(S+1)*+5 Figure 814 :  contribution
magnétique a la chaleur spécifique

o au voisinage de la température de

g transition.
o
0

Reprenons le cas du Gd (figure 8.7 b, page 103). A la transition on mesure un saut de chaleur
spécifique ACy & 5 cal .mol™ . K™ % 20,9 J.mol™".K~'. Comme on I’a vu auparavant, les
ions Gd3+ portent un moment cinétique J = 7/2 et le saut de chaleur spécifique molaire
prédit théoriquement vaut
] |
ACy yy = 5N jhg——————=20,1J.mol™" . K™, en bon accord avec 'expérience.
(2+1)2+2
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MAGNETISME DU GAZ D'ELECTRONS

Ce dernier chapitre du cours présente succinctement les propriétés paramagnétiques et
diamagnétiques du gaz d’électrons de Sommerfeld. La description des ordres magnétiques
dans des états étendus de type « ondes de Bloch » nécessitant des connaissances et des outils
de niveau M2, nous n’en parlerons pas du tout.

1. Paramagnétisme de Pauli

On considére un gaz d’électrons libre isotrope, bien décrit par le modeéle de Sommerfeld.

En l'absence de champ magnétique appliqué les densités d’états pour les électrons de spin
« up » et ceux de spin « down » sont identiques, ainsi que le remplissage des états. Si on
appelle Ny (N|) le nombre d’¢lectrons de spin « up » (« down ») par unité de volume, on a

N; = N, et 'aimantation du gaz d’électrons est nulle :

M = pug(N, — N)) = 0 (voir figure 9.1).

g¢(E) gT(E) g¢(E) gT(E)

Figure 9.1 : Effet d’un champ magnétique sur la densité d’états d’un gaz d’électrons libres.

On applique au systeme un champ magnétique constant B, orienté de telle maniere que les
spins « up » ont la plus basse énergie Zeeman. D’apres le chapitre précédent, les énergies pour
les spins « up » et « down » vont varier comme

E\(B)=E(B = 0) — ;B

E,(B) = E(B = 0) + 3B
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Il en résulte que les densités d’états pour les états « up » et « down » vont étre décalées d’une
énergie 2A = 2u,B (voir figure 9.1). Par ailleurs, comme les deux populations de spins sont en
contact, leur potentiel chimique doit étre identique, et donc il y aura plus d’états « up »
occupés que d’états « down » : N; > N|. On aura alors une aimantation non nulle et parall¢le
au champ appliqué :

M = pg(N; —N,)) >0

Il s’agit bien d’une réponse paramagnétique des spins du gaz d’électrons, que 1’on appelle

paramagnétisme de Pauli.

A température finie, 'aimantation peut s’exprimer en fonction des densités d’états :

(e ]

M = Ny~ Ny = 22 [J

g(E+Af(E)E — J
-A

+A

g(E - A)f(E)dE]

Dans la plupart des métaux I’énergie Zeeman est faible par rapport a I’énergie de Fermi :
A < Ep et on peut faire le développement limité g(E £ A) = g(E) = Ag'(E) et changer les
bornes inférieures des intégrales sur I’énergie :

(]

0 0

M ”_23 “ (8(E)+ Ag'(E)) f(E)E — J (e(E) - Ag’(E))f(E)dE]

[ee]

wBAJ ¢'(E)f(E)dE
0

On utilise ensuite le développement de Sommerfeld pour écrire

[ cu(T)~ER )
M~ uiB J §EMIE + =g (Ep) T
0

2 z’ " 2
~ ugB | g(Ep) + ?g (Ep)(kgT) ]

n? g"(Ep)
~ ulBg(Ep) |1+ —2"-L
6 g(Ep)

-

On déduit de cette expression de 'aimantation la susceptibilit¢ paramagnétique du gaz
d’électrons :

M =% g"(Ep)
XPauli = ﬂoE = uop8 (Er) [1 + 3 2(Ep)

(kgT )2]
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. . . ., . 3n
Pour un gaz tridimensionnel isotrope de densité volumique n, on a g(Ep) = 5 et
F
WEp) = 2L de sort
= —, de sorte que
8 F E% q
= o 12g (Ey) L (KT 1o (Ey) N 2
Xpauli = MoMp8 Ly 3 \E, = HoHp8\EF 3 \T;

Dans de nombreux métaux Ty ~ 10*K et (T/Tx)* < 1 méme a 300K. On peut donc en bonne
approximation dire que la susceptibilité de Pauli d'un gaz d’électrons est quasiment
indépendante de la température et vaut

XPauli /"O/"I%g(EF)

La mesure de la susceptibilité magnétique d’un métal normal donne directement acces a la
densité¢ d’états au niveau de Fermi de ce dernier. Avec le coefficient de Sommerfeld de la
chaleur spécifique, cela constitue deux méthodes indépendantes permettant de déterminer

cette grandeur microscopique fondamentale.

2. Diamagnétisme de Landau (partie optionnelle)

Apres avoir étudié les spins électroniques, nous allons maintenant nous intéresser a la réponse
orbitale d’un gaz d’électrons a ’application d’'un champ magnétique.

Le point de départ de cette étude est 'Hamiltonien d’un particule libre sous champ
magnétique :

2m 2m 2m

R
<ﬁ+|e|A> ) > A A7 e 12 A2
A= 7 P +|e] p-2 2P +| |
ou p’ est 'impulsion de la particule et Ale potentiel vecteur.
Pour simplifier le probléme on suppose que le champ magnétique est uniforme et dirigé selon
Paxe cartésien Oz : B = Bu,.

. . —  BAF A "
On choisit le potentiel vecteur de la forme A = 5> ¢e qui lui donne les propriétés

suivantes : V.A =0 et [p,A]l=0& P .A =A.7. Cette jauge est la jauge de Coulomb;
dans ce cas précis on I'appelle également jauge de Landau.

En termes d’opérateurs on peut maintenant expliciter les composantes de p et A:

_Bj}

1 . . .
—| Bz |, et ’'Hamiltonien devient
0

ctA =

>
Il
> ) > :{g)

[

m (fcz + 5/2)

PO 0 Sy |e|B<M 15) + le|B\’
= = X -
2m 2m Py = YPx 2m
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Le terme deuxi¢me terme fait apparaitre la composante Oz du moment cinétique orbital :
(ﬁﬁy ) ﬁx> = iz par définition. Le troisieme terme est un potentiel harmonique dans lequel
|e|B

intervient la pulsation cyclotron @, = .
m

On regroupe maintenant les termes de ’'Hamiltonien par composante :

A2 2 A2 2 A2
[A{==px lm & "2+pi+lm & "2_&1\‘24_&
2m 2 2 2m 2 2 2 2m

Ecrit sous cette forme, 1l est plus facile de discuter les différents termes : classiquement on sait
que I'application d’un champ magnétique sur une particule libre oblige celle-ci a décrire une
orbite cyclotron, circulaire, a vitesse constante dans le plan perpendiculaire au champ
magnétique, et n’a aucun effet dans la direction d’application du champ. Avec la géométrie
choisie 'orbite cyclotron classique correspond a un mouvement harmonique dans le plan xOy,
ce qui génere un moment cinétique dans la direction Oz, et I'apparition d'un moment
magnétique opposé au champ : la réponse orbitale classique est diamagnétique, comme on I’a
déja vu.

Le Hamiltonien quantique que nous venons de dériver décrit exactement la méme situation
physique : les termes en « x » et « y » décrivent l'orbite cyclotron, et les termes en « z »

décrivent le moment cinétique acquis et 'absence d’effet dans la direction Oz.

Le découplage du plan xOy et de la direction Oz permet de diagonaliser séparément les

termes harmoniques et les termes « en z », et ’'on obtient les énergies suivantes :

no+n,—m, 1 h?k? 1 h?k?
E=ho, | ——+— )+ =ho,(n+=)+
2 2 2m 2 2m

n,+n,—m,

2
que n > 0. Pour chaque valeur de n on peut avoir plusieurs triplets (n,, n,, m,), ce qui signifie

On a défini un nombre quantique effectif n = , Ol 71, n,, et m, sont des entiers tels

que la dégénérescence des niveaux a n donné sera supérieure a 1.

Figure 9.2 : Relations de dispersion
d'un gaz d’électrons 3D isotrope
sous champ  magnétique. La
quantification —en  niveaux de
Landau est clairement apparente.
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Le spectre en énergie du systétme devient une série de dispersions paraboliques dans la
direction k, séparées de I’énergie cyclotron Aw, (voir figure 9.2). Les niveaux d’énergie définis
par une valeur de n sont appelés niveaux de Landau.

Le calcul de la susceptibilité diamagnétique a température finie nécessite des outils de
physique statistique que vous ne connaissez pas encore. (C’est pourquoi on va se contenter

d’un calcul presque exact a température nulle, dans le cas d’un gaz d’électrons 3D et isotrope.

Pour cela, on va se servir de la propriété suivante : la densité d’états 3D est la convolution de la
densité d’états 2D et de la densité d’états 1D correspondantes (si, si, vous pouvez le démontrer
a condition d’introduire des fonctions de Heavyside dans le produit de convolution...).

On va évidemment choisir la densité d’états 2D pour traiter le plan xOy et la densité 1D pour
la direction Oz :

- en I’absence de champ, la densité d’états pour un gaz occupant une surface S est
mS

800=75—5 (cf chapitre 3)

- sous champ magnétique, tous les états d’énergie compris dans une gamme AE = Ao,
sont condensés dans le méme niveau de Landau, dont la dégénérescence v est alors
. mS
C 2xh? g
57 . — J— m -
Sécrit gyp g =v ) 8 (E - ha(n +1/2)) = o ha)czn: 8 (E = hw(n +1/2))

n

v ho,. La densité d’états 2D sous champ devient alors un peigne de Dirac et

La densité d’états totale se calcule alors comme

SL (2m\>” © 1 /
gp5E) =8 ®&p = ho Y. | 8(E - hon +1/2)) ———dE

42 \ 2 ~ ], VE-E

_ho, V <2m>3’2 1
2 272 \ h? ~ VE - ho(n+1/2)

Le résultat est présenté en figure 9.3 : la densité d’états initiale (en pointillés) devient une
succession de singularités séparées de fiw,. Lorsque le champ augmente ’écart entre niveaux
de Landau augmente, mais leur dégénérescence également. Lorsque le champ est assez
intense on peut arriver dans une situation ou Aw, = Ep et 'ensemble des électrons du gaz
peuvent étre rassemblés dans un petit nombre de niveaux de Landau, voire dans un seul !
C’est dans ce régime qu’on voit apparaitre 'effet Hall quantique.

En ce qui nous concerne nous nous limitons aux faibles champs : Ao, < Ep : le nombre de
niveaux de Landau occupés est grand et leur dégénérescence est faible. Dans ce cas la densité
d’états est peu perturbée par le champ : on aura en particulier g5, g(Er) * g3po(Ef), €t on peut

montrer que I’énergie totale du gaz d’électrons a T=0 s’écrit

_ 3 (ugB)?
NE = gNEF + BTgw’O(EF)

Le premier terme correspond a I’énergie moyenne calculée dans le chapitre 3, augmentée de
la contribution diamagnétique en B2.
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Figure 9.3 : Densité d’états d'un gaz d’électrons 3D isotrope en ['absence de champ
magnétique (en pointillés) et sous champ magnétique (en traits pleins). La quantification en
niveaux de Landau donne lieu a des singularités dans la densité d’états.

o o oF .
L’aimantation du gaz s’écrit M = — B- 3 H583p.0(Ep)B
I o, 1

et la susceptibilité{y = — 3 HoH5&po(ER) = — 3 Apauli

La susceptibilit¢é magnétique de Landau est donc opposée et du méme ordre de grandeur que
la susceptibilité paramagnétique de Pauli, mais pas égale et opposée comme dans le cas
classique ! Encore une fois c’est le principe de Pauli et I'existence du spin de I’électron qui

permettent d’avoir une réponse magnétique non nulle de la matiere.
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