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nombre de galaxies dans l’univers

2
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Un deuxième axe de complexité conceptuelle….
…….  et de comportements physiques remarquables :

Le nombre de particules

Physique à ~1 corps 
(quantique) Physique à quelques-corps 

(classiques)

1

106

1012

1018

1024

Physique à 
N corps

QUANTIQUES
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C’est quoi un électron…. C’est quoi deux électrons….

deux particules qui se 

repoussent du fait des 

interactions 

électrostatiques….

…. pas forcément

elles peuvent s’attirer !
(dans la matière)

En fait en mécanique quantique 

on ne sait pas exactement… 

particule* de

 masse
 

 charge
   

( + SPIN 1/2) 

m = 9.1 × 10−31kg

e = − 1.6 × 10−19C

* Joseph Thomson 

prix Nobel 1906.

Son fils (George) aura lui 

le prix Nobel en 1937 

pour avoir montré que 

l’électron est une onde…

C’est quoi 1023 électrons….

on ne sait plus du tout !
leur masse peut alors devenir 

très grande ou au contraire 

très faible

…. voire NULLE 

ou même négative (trous)

et leur charge peut doubler 

(paires) mais également se 

fractionaliser (e/3)…



Certains de ces comportements sont parfaitement compris
 [et peuvent - ou pas - donner lieu à des applications…]. 

D’autres ont été identifiés mais ne sont toujours pas compris 
ou ont été prédits mais n’ont pas encore été observés

ou restent à être découverts ! 
car le terrain de jeux est quasi infini…

?

La brique élémentaire est simple
mais la complexité naît du très grand nombre de particules conduisant à un très grand 

nombre de « réalisations » (quantiques)  ⟹ comportements physiques possibles

quasicristaux (pavages de Penrose)cristaux cristaux liquides (Kevlar), verres

structures (arrangements atomiques) et compositions chimiques diverses
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Pour in fine…
comprendre le monde qui nous entoure

pourquoi les miroirs sont-ils réfléchissants, 
pourquoi le cuivre est-il jaune et pas l’aluminium,

pourquoi les aimants collent-ils sur les réfrigérateurs, 
pourquoi certains solides conduisent-ils le courant et pas d’autres,

pourquoi les solides sont-ils solides ?…
 

et répondre à de grandes questions fondamentales
états quantiques critiques (intrication)
supraconductivité non conventionnelle

ordres magnétiques complexes (monopoles) et états topologiques 
fractionalisation des électrons (séparation spin/charge)

particules « exotiques » etc…
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Mais ces questions sont essentiellement QUANTIQUES et
ce cours est une première approche classique 

des différentes propriétés physiques de la matière condensée. 
 (électroniques, optiques, magnétiques et thermodynamiques).

 
Cette approche  est donc « limitée » et sera complétée en master

En M1 : 
Le gaz électronique quantique (modèle de Sommerfeld) et le magnétisme quantique

Réseau cristallin : modes de vibration (phonons) et cohésion des solides 
Structure électronique et instabilités électroniques

et pour ceux qui souhaiteront approfondir :

en M2 (matière quantique) : 
Seconde quantification, corrélations (interactions e/e, liquide de Fermi), réponse linéaire.

Transitions de phases, introduction aux effets topologiques
Supraconductivité (et autres fluides quantiques), ordres magnétiques complexes (fractionalisation), 

Mais elle est essentielle pour poser les bases…



1. Propriétés électromagnétiques (classiques) de la matière
A. Transport (Drude : hypothèses, formulation, temps de diffusion (1) et effet Hall (2) en TD)

B. Effets dépendants du temps : inductance cinétique et courant de polarisation 

C. Equations de Maxwell dans la matière

D. Constante diélectrique (Drude-Lorentz (3) en TD), Plasmons (compléments (4) en TD)

2. Magnétisme et propriétés thermodynamiques de la matière
A. Magnétisme (M,B,H et potentiel vecteur) (cas d’une sphère/  (5) en TD)

B. Réponse linéaire : paramagnétisme/diamagnétisme (calculs (6) en TD). Théorème de Bohr - van Leeuwen 
C. Energie et enthalpie libre.  Application : désaimantation adiabatique

D.  Transition de phases (diagramme H-T (7) en TD). Ferromagnétisme (parois de domaines (8) en TD)

Js

PLAN

les points en noir seront approfondis en master, ceux en rouge sont spécifiques à ce cours



8

Chap.1

Propriétés électromagnétiques (classiques) de la matière



A. Conductivité électrique (modèle de Drude)

La conductivité électrique,  représente la capacité d’un matériau à transporter un 

courant électrique. La densité de courant est alors reliée au champ électrique par    

et la résistance R est elle reliée à la résistivité  par la relation :  

σ

⃗J = σ ⃗E
ρ = 1/σ R = ρl/S

Cette résistivité est 

généralement de l’ordre de  

quelques  à 300K 
mais elle peut néanmoins varier 

d’un facteur 1    à 100    et peut 

même atteindre ρ ~ 1012 𝜇Ωcm 

μΩcm

… dans les semi-conducteurs pour lesquels, la résistivité devient même INFINIE* 

(isolants = diélectriques) lorsque T → 0 alors que pour certains composés la résistivité 

est au contraire parfaitement NULLE* à basse température (supraconducteurs).

* En « pratique » on ne peut ni mesurer l’infini ni zéro mais ~ 50 ordres de grandeurs séparent la 
résistivité de ces deux types de solides !



Le courant (transport de charges) est assuré par les électrons mais on peut distinguer :

Les électrons de coeur qui restent 

confinés sur leur orbitale atomique 

Les électrons de conduction « libres » 

de se déplacer dans tout le solide

Comme il s’agit de décrire un très grand nombre de particules, Paul Drude (1863-1906) 

prend un approche statistique classique comme base de départ au début du XXe siècle : 

théorie cinétique des gaz : 

Les électrons sont alors supposés tous équivalents et à l’équilibre thermique avec le bain 

ambiant, à la température T et  m/s.vinst ∼ kT/m ∼ 3.104

De plus, Drude néglige les interactions e/e et décrit l’interaction e/ions par des chocs : 
il suppose que les électrons subissent des collisions élastiques instantanées sur les ions, et que la 

vitesse est redistribuée aléatoirement après le choc ( )< vinst > = 0

Le temps moyen* entre deux chocs est alors ~ quelques distances inter-atomiques/   

s

* voir TD mais le calcul microscopique de  est loin d’être aisé…. voir cours de transport en M2-MQ

vinst
τ = l /vinst ∼ 10−9/104 ∼ 10−13

τ



Et il faut alors résoudre le PFD
(en omettant la notation  dans la suite)  : v

ou  est donc la vitesse moyenne de 
déplacement = vitesse de dérive [VOIR TD]

⃗v

La probabilité de subir un choc (pendant dt) est  et on peut écrire (voir TD) : dt/τ
p(t + dt) = (p(t) + dp)(1 − dt/τ) + 0(dt/τ) = (p(t) + fext . dt)(1 − dt/τ) = p(t) + fext . dt − mv/τdt . . .

−[m
⃗v

τ
+ e( ⃗E + ⃗v ∧ ⃗B )] = m

d ⃗v
dt

En régime permanent (DC) :  
d ⃗v
dt

= 0⃗

pour un champ B||Oz

et  car le courant ne peut pas 

sortir par les bords latéraux

 donc         

vy = 0

Ex = [−m /eτ] × vx

et il en résulte une force de « frottements »  ⃗f frot = − m ⃗v/τ

11

et         (Effet Hall, voir TD)Ey = [B] × vx
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et le courant traversant une surface S s’écrit :    

car dans l’approche classique de Drude TOUS les électrons de conduction sont 

statistiquement équivalents et participent tous au transport du 

courant avec la même vitesse  soit :  et donc

I =
dQ
dt

= nqS
dx
dt

= − (nev)S = JS

v J = − nev

j = −nev =
ne2τE

m
→ σ0 =

ne2τ

m
m : OK !∼

1029.10−38.10−13

10−30
∼ 10−8Ω

masse effective ~ 0.1-10

Bien que conceptuellement fausse (voir M1) car les électrons doivent être traités 

quantiquement, cette expression donne une (très) bonne approximation de la 

conductivité dans la majorité des métaux :

  σquant = σclass ×
m
m*

Et dans certains cas * et le système devient isolant ou à l’opposé  peut également 

devenir infini dans les supraconducteurs, (voir M2 : la résistance est parfaitement nulle 

= aucune perte pas effet Joule), d’où la formidable disparité de conductivité.

τ → 0 τ

* dans d’autres cas (isolants de bandes, M1) la conduction est nulle car il n’existe pas de porteurs libres ( );

voire même leur charge peut s’annuler (e=0 : isolants « Kondo ») !

n → 0



B. Effets dépendants du temps

 (avec  pour )−iωmv + eE + mv/τ = 0 vy = vz = 0 E | |x

σ(ω) =
σ0

1− iωτ

m
d ⃗v
dt

+ m
⃗v

τ
+ e( ⃗E + ⃗v ∧ ⃗B ) = 0⃗

En régime AC : ,  v = v0e−iωt d ⃗v
dt

= − iω ⃗v

la conductivité est donc complexe

A hautes fréquences ( )  :    

avec   Hz    : fréquence « plasma » (voir plus loin).

ωτ > > 1* ρ(ω) → − iρ0ωτ = − i
m

ne2
ω = − i

ω
ϵ0ω2

p

ωp =
ne2

mϵ0
∼ 1015

La résistivité  augmente avec la fréquence mais(ρ = 1/σ)

*ceci est vrai  à toute fréquence dans le cas des supraconducteurs pour lesquels .  Ceci permet 
notamment la réalisation de capteurs ultrasensibles (KIDs) : observation du fond diffus cosmologique, etc…

τ = ∞

13
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un métal se conduit donc comme une inductance (dite cinétique) 

et non plus comme une résistance 

l’énergie n’est plus dissipée par effet Joule mais stockée sous forme d’énergie cinétique, 

cela aura une incidence sur les propriétés électromagnétiques (voir plus loin…)     

« pic » de Drude 
de largeur 1/τ

UPd2Al3

énergie dissipée (effet Joule)

énergie stockée (énergie cinétique)
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… et les électrons de coeur 

bien qu’elles ne soient pas libres de se déplacer (donc ), ces charges liées aux 
noyaux peuvent « osciller » sous l’effet du champ électrique variable.

σ = 0

Les barycentres des charges + et - ne sont alors plus 
confondus conduisant à l’apparition d’un moment 

dipolaire (induit)  qui va créer à son tour un 
champ électrique induisant une « force de rappel » 
(théorème de Gauss) sur le nuage égale à  

avec  eV  Hz

⃗p = q ⃗r

−mω2
0 ⃗r

ℏω0 ∼ 1 − 10 ≡ 1016

avec   et  αat(ω) = αat(0) ×
ω2

0

ω2
0 − ω2

nαat(0) ∼ ω2
p /ω2

0 ∼ 1

Et pour un champ alternatif :    

donc  et 

md2r/dt2 = − mω2r = − mω2
0r − ZeE

⃗r = − Ze
⃗E

m(ω2
0 − ω2)

⃗p =
(Ze)2

mω2
0ϵ0

×
ω2

0

ω2
0 − ω2

ϵ0
⃗E = αat(ω)ϵ0

⃗E

Remarque 1 : il est possible de tenir compte des effets « visqueux » (frottements 
) comme on l’a vu dans le cadre du modèle de Drude  

= modèle de Drude-Lorentz = voir TD
∝ − (m /τ)(dr/dt)



Si ,   et il peut exister des moments persistants même en l’absence 

de champ appliqué (= « catastrophe » de polarisation)  = Ferroélectriques 

ω → ω0 1 − nαat(0)/3ω ≲ ω0 χe → ∞

avec   ou   Clausius-Mossotti   χe(ω) =
3nαat(ω)

3 − nαat(ω)
=

3nαat(0)
(3 − nαat(0)) − 3ω2/ω2

0

χe

χe + 3
=

nαat

3

Remarque II : Le champ local  n’est pas égal au champ appliqué  (limite dense, 

voir TD) car il tient compte du champ crée par les autres dipôles et on peut montrer  

que   et en notant  la polarisation :

 soit     

⃗Eloc
⃗E

⃗Eloc = ⃗E + ⃗P /3ϵ0
⃗P = n ⃗p

⃗P = nαatϵ0( ⃗E + ⃗P /3ϵ0) ⃗P =
3nαat

3 − nαat
ϵ0

⃗E = χeϵ0
⃗E

Remarque III :  dans les composés ioniques il existe également une polarisation liée au mouvement 

des ions.  La force de rappel est la encore linéaire (voir M1)  où  est cette fois la fréquence 

caractéristique de vibration des ions (appelée phonons) avec  eV  Hz

= − Mω̃2r ω̃
ℏω̃ ∼ 10−1 − 10−2 ≡ 1013

et on obtient une polarisabilité de déplacement  

  et in fine  αdep =
(Ze)2

ϵ0Mω̃2

ω̃2

(ω̃2 − ω2)
αtot = αat + αdep
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Conservation 
du flux de B

Lien flux de E 
<=> charge Induction

Conservation 
de l’énergie

Dans le matière, on doit alors connaître le lien entre J, E et B 

on doit prendre en compte TOUTES les charges en présence

Dans TOUS les cas les équations de Maxwell doivent être vérifiées ! 

MAIS elles ne sont pas auto-suffisantes 

: il faut introduire les caractéristiques du milieu… 

C. Equations de Maxwell dans la matière

par exemple dans le vide J=0 (et ) => loi de propagation d’une onde EM = photonρ = 0

et TOUS les courants…



On a donc déjà vu qu’il existe une densité de courant libre (pour les électrons de conduction) :

 Jl = σ(ω)E

Mais il peut également exister une densité de courant de polarisation (pour les électrons de coeur) :

 ⃗Jp = ∑
i

niqivi = ∑
i

niqi
∂ ⃗ri

∂t
=

∂ ⃗P
∂t

= −iωχe(ω)ϵ0
⃗E = ⃗Jp

Enfin, Il nous reste à noter que les boucles de courant (microscopiques = orbitales atomiques)  
donnent lieu à un champ magnétique interne (Biot et Savart, voir Chapitre 2).

Ce champ appelé AIMANTATION est alors noté  et vient compléter 

le champ magnétique créé par des sources extérieures, noté lui 

μ0
⃗M

μ0
⃗H

On a donc :  ⃗B = μ0( ⃗M + ⃗H)
et ces boucles locales donnent lieu à une densité 

surfacique ⃗Jsm = ⃗M ∧ ⃗n

et, si l’aimantation n’est pas homogène, il apparaît 
également une densité de courant «magnétique» en 

volume :  ⃗Jm = ⃗rot ⃗M

Ces courants n’ont rien de fctif mais à la différence (essentielle) du courant de conduction 

dans les métaux, ils ne peuvent pas être « utilisés » à l’extérieur du matériau.
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Les équations de Maxwell s’écrivent alors :

div ⃗B = 0

div ⃗E =
ρd + ρp

ϵ0

⃗rot ⃗E = −
∂ ⃗B
∂t

⃗rot ⃗B = μ0( ⃗Jl + ⃗Jp + ⃗Jm) +
1
c2

∂ ⃗E
∂t

div ⃗B = 0

div ⃗D = ρd

⃗rot ⃗E = −
∂ ⃗B
∂t

⃗rot ⃗H = ⃗Jl +
∂ ⃗D
∂t

en introduisant

  

= induction

 électrique

⃗D = ϵ0
⃗E + ⃗P

où  correspond à des charges (défauts) pouvant exister dans le solideρd

  

Enfin, notons que la conservation du courant  

montre que le courant de polarisation est alors associé à une densité de charge :

  

« compensée » (le solide reste globalement neutre) par une charge de surface 

Evidemment il n’y a pas de densité de charge magnétique ( )

div ⃗JP + ∂ρP /∂t = 0

ρP = − div ⃗P
σP = ⃗P . ⃗n

div ⃗Jm = div ⃗rot ⃗M = 0
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ϵ

à l’interface entre deux milieux, on peut intégrer les deux premières équations sur 
un volume englobant cette interface 

       et avec (Green-Ostrogradski)  

on trouve (N = normal à la surface), pour  :                      

 

 (GAUSS)
                                                      (densité surfacique de charge)

et en intégrant de même les deux secondes sur un 
contour englobant l’interface,

(avec Stokes  )

on obtient (T = tangent à la surface), pour  :

 

 (AMPERE)
                                                (densité linéique de courant)

∫ div ⃗X dτ = ∮ ⃗X d ⃗S = ΔXN . S

ϵ → 0⃗BN1 = ⃗BN2⃗DN2 − ⃗DN1 = Q /S = σd ⃗n12

∫ ⃗rot ⃗X d ⃗S = ∮ ⃗X d ⃗l = ΔXT . l

ϵ → 0
⃗ET1 = ⃗ET2⃗HT2 − ⃗HT1 = ⃗JlT /l = ⃗Jsl ∧ ⃗n12

Relations de continuité : 

⃗n12 ϵ



* on supposera pour simplifier l’écriture des équations que M=0 mais si non il suffit de remplacer  par 

 [voir chapitre 2]

** Nul si le système est neutre .

μ0
μ0(1 + χm)

(ρ = 0)

D. Constante diélectrique*

Le champ électrique doit respecter les équations de Maxwell, 

rot(rotE) = grad(divE)** − ΔE = − rot(∂B/∂t) = − μ0(∂J/∂t + ∂2D/∂t2)

la spécificité du solide : solide=métal

ΔE = μ0[σ(ω)∂E/∂t + ϵ0(1 + χe(ω))∂2E/∂t2]

polarisabilité du nuage électronique (électrons de coeur)

Et si on en cherche (toujours) une solution de la forme  on a :

 

où  est la constante diélectrique du milieu.

E ∝ ei(kx−ωt)

c2k2 = c2μ0[iωσ(ω) + ω2ϵ0(1 + χe(ω))] = ω2[1 + χe(ω) + iσ(ω)/ϵ0ω] = ω2ϵ(ω)
ϵ(ω) ≠ 1

on (re)trouve l’équation de propagation  

   et la vitesse de propagation de l’onde électromagnétique 

est simplement « renormalisée » par l’indice du milieu 

ΔE = ϵ0μ0(1 + χe)∂2E/∂t2

ϵ(ω) = ϵ∞ = 1 + χe(ω → ∞)
n = ϵ∞

• à haute fréquence :  , on peut négliger  ω0 > ω ≫ ωp iσ(ω)/ϵ0ω

21



 et      peut devenir négatif…σ(ω) ∼ jϵ0
ω2

p

ω
ϵ(ω) = ϵ∞ − ω2

p /ω2

• et dans le domaine optique,  ω ∼ ωp > > 1/τ

Le terme  correspond à l’énergie cinétique des courant induits : ω2
p

ϵem = ℏω ∼ ℏωp/ ϵ∞ + (ℏc2/2ωp ϵ∞)k2

 Ec = p2/2m = (ℏ2/2m*)k2

 l’onde électromagnétique  photon « acquiert une 

masse » lorsqu’elle se couple aux électrons de 

conduction,  

≠

m* = ℏωp ϵ∞ /c2

 : le métal devient parfaitement  réfléchissantϵ < 0
En effet, si une onde électromagnétique vient frapper la surface d’un métal

vide métal

1 × Ex

r × Ex

t × Ex

continuité  de Ex :  et de By :  1 + r = t 1 − r = ϵt

La réflectivité est alors : R = |r |2 R = | (1 − ϵ)/(1 + ϵ) |2

et si  i.e.    ϵ(ω) < 0 ω < ωp / ϵ∞ R = | (1 − jA)/(1 + jA) |2 = 1

Ox



pour l’Argent la fréquence plasma se trouve au delà du spectre du visible : toutes les fréquences 
sont réfléchies, alors que pour le Cuivre vert et seul le jaune et le rouge sont réfléchis !ωp ∼

1 + χe(∞)

bande de réflection

et fréquences visibles  Hz  ⇒ couleur des métauxωp ∼ ∼ 4 − 7.1014

remarque I : on a écrit ici  mais on a vu (voir TD effet Hall) que  est en fait un TENSEUR lorsque 

 et on peut alors montrer que  

σ(ω) ∼ jϵ0
ω2

p

ω
σ

B ≠ 0 [ϵ] ∼ (
1 − ω2

p /ω2 j(ω2
p /ω2) . (ωc /ω)

−j(ω2
p /ω2) . (ωc /ω) 1 − ω2

p /ω2 )
Et si une onde de polarisation rectiligne (||Ox) pénètre dans le matériaux 

( ), son axe de polarisation va tourner (= effet magnéto-optique) avec le 

champ d’un angle appelé angle de Faraday
ω > ωp

ΦF ∼
ω2

p

ω2

zωc

2c
= νzB /mmT pour ν ∼ 1∘ ω ∼ 10ωp

pour  (B||Oz et E||Oxy)ω > > ωc = eB/m



-+

N électrons

N/Z ions

⃗E
(région neutre)

De même, l’équation de continuité  

s’écrit :   ( )                        

−
∂ρ
∂t

= div(J ) = σ(ω)div ⃗E

(iω)ρ =
σ(ω)ρ

ϵ0
= i

σ0ρ
ϵ0ωτ

= (iω2
p /ω)ρ ωτ > > 1

 Elle admet donc admet une solution oscillante (spontanée à k=0) de 

la densité volumique de charges ( ) pour  

appelée plasmon de volume

ρ(t) = ρe−iωt ω = ωp

l’ensemble du nuage électronique oscille « de façon homogène » ⇒ apparition cette fois d’une 

densité surfacique de charge  sur les bords latéraux qui crée un champ oscillant σs E = σs /ϵ0

24

Remarque II :  si l’onde frappe la surface (Oxy) avec un angle non nul,  tel que

   angle de Brewster
il n’y a pas de réflection et les relations de continuité (voir TD) montrent alors que

k1z = k2z /ϵ ≡

l’onde EM se propage parallèlement à la surface. 

On parle alors de plasmon de surface 

qui s’accompagne d’une 

modulation de la densité électronique en surface



* Dans les supraconducteurs, il existe un « épaisseur de peau » statique appelée longueur 
de pénétration de London .    et le champ magnétique s’annule au coeur du matériau 

(au delà de ).  C’est l’effet Meisner = propriété fondamentale des supraconducteurs (en plus de ).

** Et bien sur également le courant.

λ = c/ωp Δ ⃗B = ⃗B /λ2

λ R = 0

• Enfin, à basses fréquences : , ωp ∼ 1015[Hz] ≫ 1/τ ≫ ω*

on a alors :   = équation de diffusionΔE = μ0σ0∂E/∂t

on peut négliger  et prendre  et     ( ) 1 + χe(ω) σ(ω) ∼ σ0 ϵ(ω) = iσ0/ϵ0ω Reϵ = − ω2
pτ2 ≪ Imϵ

 soit    :  le champ électrique (et magnétique**) ne peut pénétrer que sur 

une épaisseur de peau :   ~ 1cm à 50Hz et 2 m à 1GHz pour le cuivre ( )

k2 = iω[μ0σ0] k ∼
1 + i

2
ωμ0σ0

δem =
2

μ0σ0ω
μ ρ ∼ 1μΩcm

25
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Chap.2

Magnétisme et propriétés thermodynamiques



Ces orbites sont des boucles de courant microscopiques

 ⇒ création d’un champ magnétique interne

 (Biot et Savart)⃗B =
μ0I
4π ∫

⃗dl ∧ ⃗PM

| | ⃗PM | |3

A. Magnétisme dans la matière

Les électrons de coeur qui restent 

confinés sur leur orbitale atomique 

Les électrons de conduction « libres » 

de se déplacer dans tout le solide

les électrons libres peuvent 

également être amenés à décrire 

des boucles (notamment dans le 

cas des supraconducteurs) 

,    (en prenant  dans le plan Oxy et la boucle dans le plan Oyz)    

 , 

et  pour   

et en intégrant  entre 0 et  on trouve :

⃗dl = dϕ
0

−Rsinϕ
Rcosϕ

⃗PM =
rcosθ

rsinθ − Rcosϕ
−Rsinϕ

⃗OM

⃗dl ∧ ⃗PM =
R2 − rRsinθcosϕ

rRcosθcosϕ
rRcosθsinϕ

dϕ | | ⃗PM | |2 = r2 + R2 − 2Rrsinθ cos ϕ

1

| | ⃗PM | |3
∼

1
r3

(1 + 3
R
r

sinθ cos ϕ) r > > R

dϕ 2π ⃗B =
μ0[IπR2]

4πr3
[3cosθ (

cosθ
sinθ

0 ) − (
1
0
0)]



et en introduisant le moment magnétique  on a⃗m = I ⃗S = [IπR2](
1
0
0)

⃗B =
μ0

4πr3
[3( ⃗m . ⃗ur) ⃗ur − ⃗m ]

On peut introduire le moment cinétique  et en écrivant 

 on a :   soit

   où  est le rapport gyromagnétique

⃗L = ⃗R ∧ ⃗p

I = dQ /dt = − e/T = − ev/2πR IπR2 =
−e
2me

mevR

⃗m = γ ⃗L γ = − e/2me

Ce moment magnétique est le pendant du moment dipolaire associé à deux charges et (même 

s’ils différent à courte distance) les champs  et ont alors la même forme à longue distance⃗B ⃗E

mais il n’existe PAS de monopole magnétique…
(…dans le vide, mais ils peuvent « artificiellement » exister dans la glace de spins)

⃗m ⃗p



les moments magnétiques découlent donc de l’existence d’un moment 

cinétique.  A ce stade (classique), ce moment cinétique est lié au mouvement 

des électrons (contribution orbitale) mais il existe également un moment 

intrinsèque, purement quantique, appelé SPIN que l’on n’étudiera pas plus 

en détails à ce stade (voir cours de mécanique quantique).

et pour une distribution volumique de moments, on peut alors définir 

l’AIMANTATION : ,  

L’aimantation  est donc le champ magnétique créé par les boucles internes 

et (comme on l’a mentionné) on doit également tenir compte du champ créé 

par les boucles externes (solénoïdes) que l’on note  et on a finalement :

 

⃗M =
d ⃗m
dV

= n ⃗m

⃗M

⃗H

⃗B = μ0( ⃗M + ⃗H)

 est alors (parfois) appelé : INDUCTION magnétique⃗B

29
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La mécanique Lagrangienne (et Hamiltonienne) est basée sur l’existence d’un 

potentiel. Comme pour  qui découle d’un potentiel (scalaire) , l’induction 

découle elle d’un potentiel vecteur  et pour satisfaire les équations de Maxwell 

ces deux potentiels sont reliés par :

⃗E V ⃗B
⃗A

div( ⃗B ) = 0 → ⃗B = ⃗rot ( ⃗A )

⃗rot ( ⃗E ) = −
∂ ⃗B
∂t

→ ⃗E = − ⃗∇ (V ) −
∂ ⃗A
∂t

induction

Ils sont alors définis « à une constante près » (fonction scalaire ) 

qui laisse invariante la physique

   et   

Fixer cette constante, c’est faire un choix de Jauge.

χ

⃗A′￼ = ⃗A + ⃗∇ (χ) V′￼= V −
∂χ
∂t

On peut (par exemple) prendre  : jauge de Lorenz 

 (le potentiel obéit alors à la même équation de Maxwell que les champs)

Et en statique, on a , on parle alors de Jauge de Coulomb.

div ⃗A +
1
c2

∂V
∂t

= 0

div ⃗A = 0
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Un aimant crée un champ  et lorsqu’on le rapproche d’un autre matériau (magnétique)

  et il apparaît une force .  

ou S est la surface de contact. 

Cette force est attractive : l’aimant colle sur le frigo !

 Typiquement si  

et pour un aimant créant un champ  ( ) avec  T

pour  (surface) on trouve  N (1kg !) 

mais plus que 1 N à  (pour )…

Certains aimants peuvent avoir qqT (NdFeB) et pour  on arrive vite à 1 Tonne !

⃗B

M ∼ B/μ0 Fz ∼
1

2μ0
.

∂B2
z

∂z
. V ≈

B2
z S

2μ0

S ∼ 5cm2

Bz ∼ B0(z0/z)α 1 ≤ α ≤ 3 B0 ∼ 0.2

z = z0 Fz ∼ 10

3z0 α = 1
B0 ∼ S ∼ 50cm2

Il existe alors :

• une énergie associée à ces dipôles : 

• un couple :  (« alignement des boussoles »)

• et et un force :  

E = − ⃗m . ⃗B

⃗Γ = ⃗m ∧ ⃗B

⃗F = ( ⃗m . ⃗∇ ) ⃗B
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* bien qu’il s’agisse d’un phénomène d’induction le résultat ne dépend pas du temps !

B. Réponse linéaire, susceptibilité

La force qui s’exerce sur les particules s’écrit  (ici )

et le théorème du moment cinétique s’écrit :  

⃗F = q( ⃗v ∧ ⃗B −
∂ ⃗A
∂t

) V = 0
d ⃗L
dt

= ⃗r ∧ ⃗F

Le terme  correspond à la force contre-électromotrice   (induction).−q ⃗r ∧
∂ ⃗A
∂t

ecem = −
∂ϕ
∂t

Il en résulte (voir TD) une force  et on obtient par intégration :

 ou r est le rayon de la boucle dans le plan perpendiculaire à B (ici ||Oz)

d’où l’apparition d’un moment diamagnétique (de Larmor) moyen :  

où R est maintenant le rayon de l’orbite et :

⃗F cem =
er
2

∂B
∂t

⃗uθ

⃗L =
er2

2
⃗B + ⃗L0

*

mz = −
e2R2B

6me

 Mdia = −
Ne2R2B

6Vme
∼ −

Ne2R2μ0

6Vme
H = χdiaH

en supposant ici que   car  et donc ⃗B ≈ μ0
⃗H χdia ∼ − 10−6 M < < H

(sauf pour les supraconducteurs pour lesquels  ! et pour le graphite   )χdia = − 1 χdia ∼ − 10−4

Réponse linéaire
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Et le terme : 

⟹ précession des moments ( ) autour du champ (voir TD) 

Les moyennes ( ) dans le plan perpendiculaire à  sont nulles et

une analyse statistique (voir TD) permet de montrer qu’il existe une aimantation 

moyenne non nulle ( ) le long de 

(il est préférable d’aligner les moments avec B pour minimiser l’énergie)

  où 

= paramagnétisme de Curie

q ⃗r ∧ ( ⃗v ∧ ⃗B ) = (q/me)( ⃗L ∧ ⃗B )
m = γL

mx, my
⃗B

mz
⃗B

< mz > = mpara = m × ℒ(
mB
kT

) ℒ(x) = coth(x) − 1/x

pour  :  x ≫ 1 ℒ(x) ∼ x /3
Comme pour le diamagnétisme on a donc une 

réponse linéaire  avec  : (M = χparaH)

 χpara ∼
Nμ0e2L2

12m2
e VkT

et  est appelée SUSCEPTIBILITE magnétiqueχm = χpara + χdia



En appliquant la théorie cinétique des gaz

 ⇨    
L2

ℏ2
=

p2R2

ℏ2
=

2mR2

ℏ2
.

p2

2m
=

2mR2kT
ℏ2

et on trouve donc :  , donc  !

Les solides ne possèdent pas de propriété magnétique à l’équilibre thermodynamique

théorème de Bohr (1911) van Leeuwen (1912). 

χpara = − χdia χm = 0

A ce stade, tout est juste et il ne reste(rait) qu’à estimer la valeur de L

En résumé :   M = (
A
T

− A′￼+ A′￼′￼)H = χmH

paramagnétisme des 

électrons localisés (Curie)

contributions des 

électrons libres (Pauli = voir M1)

que l’on néglige icidiamagnétisme des 

électrons localisés (Larmor)

et le démontrera quelques année plus tard la mécanique quantique !

Ce qui est bien évidemment FAUX 
comme le montre l’expérience (le « magnet » colle bien sur le frigo…) 
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En effet,  la mécanique quantique impose une quantification du moment cinétique 

 : la théorie cinétique des gaz ne s’applique pas* !

On conserve (pour les électrons localisés) le fait que :

 (loi de Curie**) pour 

mais avec  et donc  

Lz

ℏ
= entier

χpara = C/T H → 0
C ∼ [1K] χpara > > − χdia

* Car les électrons ne sont pas tous « égaux » (principe d’exclusion de Pauli) et il faut utiliser une statistique quantique, 

** mais on a toujours  pour   où  est la fonction de Brillouin (voir M1)mpara = m × ℬm(
mB
kT

) ≈
A
T

H H → 0 ℬm

Remarque : tout comme on avait écrit  pour le champ 

électrique, on doit en fait écrire  

pour ici tenir compte de la taille finie du solide = effets de bords

⃗P = nαatϵ0( ⃗E + ⃗P /3ϵ0)

⃗M = χpara( ⃗H − [N ] ⃗M)

et [N] est un tenseur 3x3 (dit démagnétisant), diagonal dans le repère des axes principaux 

de l’ellipsoïde avec  (pour une sphère )Nx + Ny + Nz = 1 Nx = Ny = Nz = 1/3

et      (en régime linéaire)M =
χpara

1 + Nχpara
H



C. Densité d’énergie électro-magnétique et enthalpie libre

et l’équation de Maxwell :   s’écrit alors :ϵ0
∂ ⃗E
∂t

+ ⃗J =
⃗rot ⃗B

μ0

    
1
μ0

( ⃗rot ⃗B . ⃗E ) =
1
μ0

( ⃗B . ⃗rot ⃗E − div( ⃗E ∧ ⃗B )) =
1
μ0

(− ⃗B
∂ ⃗B
∂t

− div( ⃗E ∧ ⃗B ))

cette équation est donc une équation de conservation de l’énergie électromagnétique 

    
∂
∂t

(
ϵ0E2

2
+

B2

2μ0
) + div(

⃗E ∧ ⃗B )
μ0

) = − ⃗J . ⃗E

 rayonnée (ou transportée, vecteur de Poynting)

densité énergie électromagnétique
 Pertes (ou source)

dϵem = ϵ0EdE + BdB/μ0

Mais attention, cette densité énergie totale n’est pas uniquement celle du solide car elle 

comprend également la contribution de la source qui a créé le champ extérieur  :

 

H

dϵsources = μ0HdH

et il faut tenir compte de l’énergie associée aux dipôles dϵdip = − MdB

36
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La densité d’énergie totale (du solide) s’écrit alors : 

     

où  est l’entropie/unité de volume, p la pression.

dusol = Tds − pdV/V + μ0HdM**

s

Si on s’intéresse à la matière seule :  dϵmag = BdB/μ0 + (−MdB) − μ0HdH = μ0HdM*

* dans le cas d’un milieu polaire on aurait de façon totalement équivalente un terme supplémentaire : 

** et pour être complet on devrait rajouter  (ou  le potentiel chimique) dans un ensemble grand canonique

*** Un potentiel thermodynamique est une fonction d’état énergétique dont la minimisation indique l’équilibre 
d’un système sous des contraintes données = ici T et H imposés par l’extérieur

−PdE

μdn μ

Contrairement aux gaz « classiques », les variations de volume d’un gaz d’électrons sont 

(généralement) négligeables et  

Le solide va-t-il alors minimiser son énergie interne ? 

Non car les électrons sont couplées à un bain thermique et soumis au champ extérieur. 

 (et le nombre de particules = électrons est constant) : 

l’ensemble est alors dit CANONIQUE.

Et l’énergie n’est PAS le bon potentiel thermodynamique***…

dusol = Tds + μ0HdM



Les variables du problème ne sont donc PAS s et M et mais T et H. 

Et on introduit alors l’enthalpie libre  et :

avec  et 

g = u − Ts − μ0HM
dg(T, H) = − sdT − μ0MdH

μ0M = − (∂g/∂H)T s = − (∂g/∂T )H

 la susceptibilité magnétique est la dérivée seconde de g par rapport à H  :  
et la chaleur spécifique sa dérivée seconde par rapport à T :   .

μ0 χm = − (∂2g/∂H2)T

c/T = − (∂2g/∂T2)H

Et l’état d’équilibre du système est donc celui qui minimise g

(1)   sur un contour (transformation) fermé du plan H-T

(ce n’est pas le cas de la chaleur  notée alors  et non pas  ou le travail noté ) 

donc  et  lors d’un cycle car chaleur et travail sont échangés avec l’extérieur…)  

(2) Les relations de Maxwell (= égalité des dérivées croisées) sont vérifiées. 

dg( = ds = dM) = 0

Tds δQ dQ δW = μ0HdM
δQ δW ≠ 0

  (∂s/∂H)T = (∂(∂g/∂T )H /∂H)T = (∂(∂g/∂H)T /∂T )H = μ0(∂M/∂T )H

Comme g (mais aussi s et M) est un potentiel thermodynamique : 

Par exemple :

38
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Dans un composé paramagnétique 

Soit  et :   

M = AH/T

(∂s/∂H)T = − μ0CH/T2 s = s0(T ) −
μ0AH2

2T2

l’entropie magnétique diminue avec H : alignement des moments
contribution électronique (et ions)

et    à basse température (  est alors négligeable).   ds = (s′￼0(T ) +
μ0AH2

T3
)dT −

μ0AH
T2

dH ∼
μ0AH2

T2
(

dT
T

−
dH
H

) s′￼0(T )

Si on applique un champ  à un composé paramagnétique couplé à un bain thermique T, 

on diminue l’entropie du système en alignant les moments magnétiques. 

Si le système est ensuite isolé (= rendu adiabatique car il ne peut plus échanger de chaleur 

avec l’extérieur) et que l’on décroît le champ, les moments devraient se dés-aligner sous l’effet 

de l’agitation thermique mais ceci est impossible car  donc la température décroît. 

H

ds = 0

Cet effet est appelé refroidissement par 
désaimantation adiabatique.

(ou effet magnétocalorique)

,    

soit :   

ds = 0 → dT/T = dH/H
TF /Ti = HF /Hi
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Remarque 1 : on devrait donc avoir  si le champ est ramené à zéro mais la 
température finale est limitée par les « fuites thermiques » et en partant de la 

température de l’hélium K pour un champ de départ T on peut atteindre 
généralement des températures inférieures au mK en champ nul (record : 100pK !).

TF = 0

∼ 4 ∼ 1

Remarque II : des études actuelles portent sur la recherche de matériaux ayant des 

anomalies magnétiques proche de la température ambiante,

Grand (∂s/∂H)T  s′￼0(T ) → 3nkB /T > > AH2/T3

3nkBΔT ∼ − TΔH(∂S/∂H)T ∼ − TambΔSmag

ds = (3nkB /T )dT + (∂s/∂H)TdH

 On peut (pourrait) ainsi de réaliser 

des  réfrigérateurs à   

sans fluide cryogénique, 

ni pièces en mouvement.

∼ Tamb
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D. Transitions de phases (introduction)

Une transition de phases est une modification des propriétés du système induite par la 

variation d'un paramètre extérieur (par exemple la température). 

Comme on l’a souligné, la nature privilégie la phase de plus basse enthalpie libre
et à la transition 

mais le g n’est pas analytique (une de ces dérivées n-ieme est discontinue). 

g1(Tc) = g2(Tc)

Mais (i) aucune transition au delà du second ordre 

n’a été observée à ce jour 

et (ii) cette classification ne prévoit pas la possible 

divergence (sans discontinuité) de  à la transition, 

qui elle a été observée 

(Superfluidité de l’Hélium, transition dite )

(∂s/∂T )

λ

Ehrenfest (1880-1933) proposa une classification des transitions de phases 

en fonction du degré de non analyticité : une transition est (serait) du n-ieme 

ordre lorsqu'une des dérivées n-ieme est (serait) discontinue. 
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On ne distingue aujourd'hui plus que 2 types de transition (1er ou second ordre) 

en fonction de l'existence ou non d'une chaleur latente ( ).  

(pour les transitions du 1er ordre, il peut également exister un hystérésis (surfusion de la glace))

TΔS

(Généralement) une transition de phase s'accompagne d'une rupture de symétrie. 

Landau introduit alors une variable appelée paramètre d’ordre  

permettant de tenir compte de cette rupture :

Ψ

Par exemple : alliage AB cristallisant en structure cubique centrée. Si  est la 

concentration de A aux sommets des cubes on peut noter . Si tous les 

atomes A sont au centre  et   (alliage ordonné) et si  A et B sont 

réparties aléatoirement (alliage désordonné, ) . Dans certains cas le 

paramètre d’ordre est inconnu ! (on parle d’ordre caché)

C
Ψ = 1 − 2C

C = 0 Ψ = 1
C = 1/2 Ψ = 0

Pour une transition du second ordre le paramètre d’ordre s’annule alors de façon 

continue et Landau proposa d’écrire :  g = f0 − HΨ + a(T )Ψ2 +
b
2

Ψ4

    (si le paramètre d’ordre se couple - ici linéairement - au champ extérieur ).H



En champ nul  à l’équilibre (minimum de g) 

i.e.  pour  et  pour 

et  doit changer de signe à la transition.

∂g
∂Ψ

|Ψ=Ψeq
= 0

Ψeq = −a /b ≠ 0 T < Tc Ψeq = 0 T > Tc

a(T )
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La façon la plus simple est d’écrire a(T ) = a0(T/Tc − 1)

Pour  :   et l’entropie    est bien continue 

mais    chute brutalement à  à la transition (discontinuité de ) soit 

T < Tc geq = f0 − a2(T )/2b s = −
∂g
∂T

= − f′￼0 +
a2

0

bTc
(T/Tc − 1)

C
T

= − f′￼′￼0 +
a2

0

bT2
c

−f′￼′￼0
∂2g
∂T2

Δ(C/T ) ∼ a0(Ψeq(0)/Tc)2

Et le paramètre d’ordre à l’équilibre tend bien continument vers zéro :  Ψeq(T ) =
a0(1 − T /Tc)

b
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Remarque : on peut formaliser les transitions du 1er ordre en rajoutant un terme en . 

Le paramètre d’ordre passe alors brutalement de zéro pour :   

−cΨ3

T = T* = Tc(1 + c2/(2a0b))
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Remarque :  l’orientations des moments n’est pas « définies » : formation de domaines 

(microscopiques) homogènes (domaines de Weiss) séparées par des parois (voir TD)

dont la taille augmente 

avec le champ appliqué. 

Application au ferromagnétisme
Les interactions entre moments peuvent donner lieu à l’existence 

d’un moment magnétique non nul même en l’absence de champ extérieur = AIMANT
= FERRO-magnétisme (équivalent aux FERRO-électriques déjà mentionnés).

On peut alors choisir comme paramètre d’ordre 

cette aimantation spontanée (en l’absence de champ appliquée)

44

Lorsqu’on augmente la température, les moment vont se dés-ordonner : transition FERRO/PARA. 

On peut décrire cette transition et le formalisme de Landau montre alors que cette aimantation 

(spontanée) s’annule à la transition : M(T,0) ∝ 1 − T/Tc



Pour un champ non nul  : 
 ne s’annule plus et il n’y a donc plus de transition 

(les moments s’alignent - en partie - sur le champ)

•  De plus à  (définie donc en champ nul) : 

• Et pour ,   (pour ) donc 

et la susceptibilité :  

En fait on peut montrer que (comme pour le paramagnétisme) : 

• Et pour  on tend 

progressivement vers la solution

 

−H + 2aΨ + 2bΨ3 = 0
Ψeq

Tc Ψeq(Tc, H) = M = (H/2b)1/3

T > Tc bM2 < < a H → 0 Ψeq(T > Tc, H → 0) ≈
H
2a

∂Ψeq

∂H
(T > Tc, H → 0) = χm ∼

1
2a0(T/Tc − 1)

χm =
μ0Nm2

3kBV
1

T − Tc

T → 0

Ψeq(T → 0,H) = M ≈ −a /b
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Classique Quantique

Energie moyenne NON : la théorie cinétique ne s’applique pas 
(niveau de Fermi)

Conductivité               
(des métaux)

OUI : exact pour les électrons libres mais pour 
de mauvaises raisons,  sinon           .  

Inductance cinétique OUI 

Courant de polarisation OUI

Effet Hall OUI en moyenne, plateaux à basse température et 
plusieurs types de porteurs possibles

Aimantation OUI

Théorème de Bohr - 
van Leeuween

NON : les effets paramagnétiques dominent 
(sauf supraconducteurs) et SPIN

Equations de Maxwell 
(dans la matière)

OUI

σ = (ne2τ/m)/(1 − iωτ) m → m*

RH = − 1/ne

⃗B = μ0[ ⃗M + ⃗H ]

En résumé, on a vu…. … est-ce robuste ?

< E > = 3kBT/2

J = [ϵ0 χe]
dE
dt

dJ
dt

= [ϵ0ω2
p]E

χp + χd = 0

⃗rot ⃗H = ⃗Jl +
∂ ⃗D
∂t

, . . .
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Classique Quantique

Effet de peau OUI

Plasmons OUI + particularités liées à la quantification 
+ dépendance en k des plasmons de volume

Fonction diélectrique OUI pour la couleur (et gap) 
mais            : écrantage Thomas-Fermi

Effet Faraday OUI

Enthalpie libre 
(du solide)

OUI

Désaimantation 
adiabatique

OUI (la MQ montre que la contribution électronique à 
la chaleur spécifique est bien négligeable)

Transition de phases OUI (à compléter : fluctuations 
et possibilité de transitions quantiques)

Effets quantiques Pas pris en compte un monde à découvrir ! 

ϵ(ω) = ϵ∞ − ω2
p /ω2

k|| = (ω/c) ϵ/(ϵ + 1))

ΦF = νzB

ϵ(k, ω)

dg(T, H ) = − sdT − μ0MdH

TF /Ti = HF /Hi

Mais encore….

δ2
em = 2/μ0σ0ω

g = f0 − H Ψ + a(T )Ψ2 +
bΨ4
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