M1-Physique 2018-2019, Mécanique Quantique et Physique Atomique

1 feuille manuscrite RV autorisée, 3h

Les parties 1 (10pts) et 2 (10pts) doivent étre rédigées sur des copies séparées

1. Orbitales atomiques & théorie des perturbations

On considére le modéle de 'atome d’Hydrogéne décrivant 1'état spatial d’un électron en
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orbite autour d’un proton, on note : Hy = 2

A. Les niveaux d’énergie de Hy sont : E, = —R22 avec R = 2h2(4§260)2 = 13,6 eV (le
nombre de protons Z = 1 sauf pour la question G). Quelle est la dégénérescence du niveau
d’énergie E,, 7 A quoi est liée : (i) la dégénérescence en [, (ii) la dégénérescence en m (précisez

la grandeur conservée) ?

B. Les premiers états propres de Ho, Y 1m(7T50,0) = Ry (r)Y1,m (0, @) sont :
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olt @ = h%ey/Zmme? est le rayon de Bohr, [ : 0 — n — 1, m : —I — I. De quels (autres)
opérateurs caractéristiques les fonctions Y, sont elles des états propres, quelles en sont les
valeurs propres.

C. L’effet Stark est la levée de dégénérescence des niveaux d’énergie d’'un atome d’Hydro-
géne en présence d'un champ électrique £€. Ce champ doit étre assez fort pour négliger les
effets de structure fine, mais pas trop fort pour ne pas ioniser I’atome. Rappeler ce qu’est la
structure fine de 'atome d’Hydrogéne.

D. Soit H; = ez la modification de ’Hamiltonien Hy en présence de & (selon z). On
traite H; comme une perturbation. Donner la modification d’énergie des niveaux F; (n = 1)
et By (n=2) au premier ordre des perturbations.

On rappelle que : ;" 24(1 — 2/2)e %dx = —36 et [ cos? O'sinfdf = 2/3.



E. On place maintenant I’atome d’hydrogéne dans un champ magnétique By . (constant).
On note M = ’yg le moment magnétique (avec v = gup ol up est le magnéton de Bohr)
et |+, >,|—. > les états propres de la projection S, du spin suivant I’axe z. Montrer que la
présence de B, léve la dégénérescence du niveau E; (n = 1) (effet Zeeman). Quel opérateur
devrait-on considérer pour calculer cet effet pour n > 1.

F. On rajoute un champ magnétique oscillant El dans le plan perpendiculaire & By .
(Biz = Bicos(wt) et By, = Bysin(wt) avec By << By). Donner 'expression de la matrice
2 x 2 représentant Hyip, () dans la base {|+.),|—.)}'. On note Py_(t) la probabilité de tran-
sition vers 'état |—,) & l'instant ¢, sachant qu’a t = 0, il était dans I'état |+,). En traitant
B comme une perturbation, montrer que : P_, ~ (“BihBl)ﬂ fot e™otdt|? (préciser la valeur de
wp). Discuter la possibilité d’une résonance et préciser la dépendance temporelle si wy # 0.

G. On s’intéresse désormais au passage de Z & Z + 1 d’un atome hydrogénoide contenant
Z protons. Exprimez I'Hamiltonien Hy(Z + 1) en fonction de Hy(Z) et d’un terme W que 'on
explicitera. Utilisez la théorie des perturbations au premier ordre pour calculer le changement
d’énergie AEél) de l'état fondamental correspondant au passage de Z & Z + 1 (on suppose
donc ici que W << Hy(Z)). Comparez ce résultat au calcul exact.
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2 : Un ensemble d’atomes de sodium (écrire sur une nouvelle
copie)

Nous allons considérer le cas d'un atome de sodium (Na) qui a une masse de 3.8x1072% kg.
Cet atome peut étre considéré comme un systéme & deux niveaux : un niveau fondamental |g)
et un niveau excité |e). La longueur d’onde d’absorption et d’émission correspondante & cette
transition est de Ay, =589 nm.

Un atome de sodium isolé et au repos représente un profil spectral d’absorption et émission qui
correspond & une distribution Lorentzienne de largeur en fréquence d’environ 10 MHz (FWHM)
(appelé la largeur “naturelle”).

A. A quoi est diie cette largeur non-nulle ?

B. Qualitativement, comment est modifié ce profil (allure et largeur) quand I'atome étudié fait
partie d’'un gaz d’atomes relativement dense mais ultrafroids 7

C. Méme question, mais dans le cas d’une densité tres faible, et a température ambiante ? Esti-
mer la largeur du profil dans ce cas la.

D. Nous souhaitons décrire I’évolution d’un atome de sodium soumis a des collisions au sein de
cet ensemble. Expliquer pourquoi ’approche basée sur une fonction d’onde n’est pas pertinente
ici.

E. Rappeler I’équation d’évolution de I'opérateur densité décrivant I’ensemble des atomes sous
I'effet d’'un Hamiltonien Hj.

F. On note Hy le Hamiltonien d’un systéeme constitué d’un atome de sodium & deux niveaux. En
choisissant ’'origine des énergies a la moyenne des énergies des deux niveaux, et en notant iwn,
leur écart énergétique, écrire explicitement la matrice représentant Hy dans la base (|g); |e)).

G. En déduire les équations d’évolution libre des éléments de la matrice densité pyg, pge, peg €t
Pee-

H. On va maintenant prendre en compte le fait que le systeme, dans I’état excité, peut retomber
dans I'état fondamental sous 'effet de I’émission spontanée, avec une probabilité par unité de
temps I'. Réécrire les équations d’évolution libre des populations et des cohérences en y ajoutant
le terme correspondant a 1’émission spontanée. Vérifier que la trace de la matrice densité est
conservée.

I. A température ambiante, I’énergie thermique des atomes peut-elle exciter les atomes via col-
lisions 7 (donner des arguments quantitatifs). Quelle est 'ordre de grandeur de la température
minimale pour que cela se produise ?

Imaginons que les atomes subissent exclusivement des collisions élastiques. La probabilité pour
un atome de subir une collision par unité de temps est notée ~.

J. Comment se traduit, sur les équations d’évolution des populations, I’hypothese que les colli-
sions sont élastiques ? Quel sera ’effet de ces collisions sur les cohérences ? Ecrire les nouvelles
équations d’évolution completes des cohérences.



La suite de cet exercice repose également fortement sur ce que vous avez vu dans les cours et
TD “interaction atome-lumiere” pour un systeme a deux niveaux, mais vous allez ici ajouter un
troisieme niveau.

Nous allons rajouter un troisiéme niveau, nommé |a) (auxiliaire). De cette maniére, les états
propres du Hamiltonien non-perturbé Hy d’un atome sont |g), |e) et |a). On introduit, pour
mesurer leurs énergies respectives, les pulsations wy, we et wy, telles que Hy|g) = hwy|g), etc.

ho, haw,

FIGURE 1 — Atome a trois niveaux. Nous avons défini : w1 = we — wy et wo = we — Wq.

Tout vecteur d’état [1)(t)) peut étre décomposé sur la base des états stationnaires (|g),le),|a)).
On note a, 3, les coefficients de cette décomposition en “représentation d’interaction”, c’est-
a-dire telle que [1)(t)) = ae™™st|g) + Be™et|e) + ye™@al|a).

On suppose que |g) et |a) ont la méme parité et que la parité de |e) est opposée a la parité
commune de |g) et |a).

K. Indiquer, parmi les six éléments non-diagonaux de 'opérateur d, (dipdle électrique de I’atome
suivant la direction Ox) quels sont les quatre d’entre eux qui sont non-nuls. En déduire qu’il y
a une transition interdite dans ce systéme a trois niveaux (si on ne considere que le couplage
dipolaire électrique entre 'atome et la lumiere).

L. On éclaire 'atome avec de la lumiere polarisée rectilignement suivant ’axe Ox, dans laquelle
le champ électrique est décrit par la fonction E(t). Ecrire le hamiltonien H (Hy plus I'interaction
dipolaire électrique) pour le systéme et Pappliquer sur I'état |1)(t)).

M. Ecrire I’équation de Schrodinger dépendant du temps en utilisant le résultat de la question
précédente et en développant la dérivée temporelle de |1(t)).

N. Projeter cette équation sur respectivement |g), |e) et |a), pour obtenir le systeme d’équations
linéaires qui donne, en fonction de «, 8 et ~, les dérivées par rapport au temps d,B et 4 (uti-
liser le résultat de la question K pour éliminer rapidement les termes nuls). On pourra noter
(gld;|a) = dy et (e|dy|a) = da et supposer ces élément de matrice réels.



