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1. Orbitales atomiques & théorie des perturbations

On considère le modèle de l’atome d’Hydrogène décrivant l’état spatial d’un électron en
orbite autour d’un proton, on note : Ĥ0 =

p̂2
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A. Les niveaux d’énergie de Ĥ0 sont : En = �RZ2

n2 avec R = m
2~2 (
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)2 = 13, 6 eV (le

nombre de protons Z = 1 sauf pour la question G). Quelle est la dégénérescence du niveau
d’énergie En ? A quoi est liée : (i) la dégénérescence en l, (ii) la dégénérescence en m (précisez
la grandeur conservée) ?

B. Les premiers états propres de Ĥ0,  n,l,m(r, ✓,') = Rn,l(r)Yl,m(✓,') sont :
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2 est le rayon de Bohr, l : 0 ! n � 1, m : �l ! l. De quels (autres)
opérateurs caractéristiques les fonctions Yl,m sont elles des états propres, quelles en sont les
valeurs propres.

C. L’effet Stark est la levée de dégénérescence des niveaux d’énergie d’un atome d’Hydro-
gène en présence d’un champ électrique E . Ce champ doit être assez fort pour négliger les
effets de structure fine, mais pas trop fort pour ne pas ioniser l’atome. Rappeler ce qu’est la
structure fine de l’atome d’Hydrogène.

D. Soit Ĥ1 = ezE la modification de l’Hamiltonien Ĥ0 en présence de E (selon z). On
traite Ĥ1 comme une perturbation. Donner la modification d’énergie des niveaux E1 (n = 1)
et E2 (n = 2) au premier ordre des perturbations.
On rappelle que :
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E. On place maintenant l’atome d’hydrogène dans un champ magnétique B0,z (constant).
On note ~M = �~S le moment magnétique (avec � = gµB où µB est le magnéton de Bohr)
et |+z >, |�z > les états propres de la projection Ŝz du spin suivant l’axe z. Montrer que la
présence de Bz lève la dégénérescence du niveau E1 (n = 1) (effet Zeeman). Quel opérateur
devrait-on considérer pour calculer cet effet pour n > 1.

F. On rajoute un champ magnétique oscillant ~B1 dans le plan perpendiculaire à B0,z

(B1x = B1cos(!t) et B1y = B1 sin(!t) avec B1 << B0). Donner l’expression de la matrice
2⇥2 représentant Ĥspin (t) dans la base {|+zi, |�zi} 1. On note P+�(t) la probabilité de tran-
sition vers l’état |�zi à l’instant t, sachant qu’à t = 0, il était dans l’état |+zi. En traitant
~B1 comme une perturbation, montrer que : P�+ ⇡ (µBB1

~ )2|
R t
0 e

i!0tdt|2 (préciser la valeur de
!0). Discuter la possibilité d’une résonance et préciser la dépendance temporelle si !0 6= 0.

G. On s’intéresse désormais au passage de Z à Z + 1 d’un atome hydrogénoide contenant
Z protons. Exprimez l’Hamiltonien Ĥ0(Z+1) en fonction de Ĥ0(Z) et d’un terme W que l’on
explicitera. Utilisez la théorie des perturbations au premier ordre pour calculer le changement
d’énergie �E

(1)
0 de l’état fondamental correspondant au passage de Z à Z + 1 (on suppose

donc ici que W << Ĥ0(Z)). Comparez ce résultat au calcul exact.
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2 : Un ensemble d’atomes de sodium (écrire sur une nouvelle
copie)

Nous allons considérer le cas d’un atome de sodium (Na) qui a une masse de 3.8⇥10�26 kg.
Cet atome peut être considéré comme un système à deux niveaux : un niveau fondamental |gi
et un niveau excité |ei. La longueur d’onde d’absorption et d’émission correspondante à cette
transition est de �Na =589 nm.

Un atome de sodium isolé et au repos représente un profil spectral d’absorption et émission qui
correspond à une distribution Lorentzienne de largeur en fréquence d’environ 10 MHz (FWHM)
(appelé la largeur “naturelle”).

A. A quoi est dûe cette largeur non-nulle ?

B. Qualitativement, comment est modifié ce profil (allure et largeur) quand l’atome étudié fait
partie d’un gaz d’atomes relativement dense mais ultrafroids ?

C. Même question, mais dans le cas d’une densité très faible, et à température ambiante ? Esti-
mer la largeur du profil dans ce cas là.

D. Nous souhaitons décrire l’évolution d’un atome de sodium soumis à des collisions au sein de
cet ensemble. Expliquer pourquoi l’approche basée sur une fonction d’onde n’est pas pertinente
ici.

E. Rappeler l’équation d’évolution de l’opérateur densité décrivant l’ensemble des atomes sous
l’e↵et d’un Hamiltonien H0.

F. On note H0 le Hamiltonien d’un système constitué d’un atome de sodium à deux niveaux. En
choisissant l’origine des énergies à la moyenne des énergies des deux niveaux, et en notant ~!Na

leur écart énergétique, écrire explicitement la matrice représentant H0 dans la base (|gi; |ei).

G. En déduire les équations d’évolution libre des éléments de la matrice densité ⇢gg, ⇢ge, ⇢eg et
⇢ee.

H. On va maintenant prendre en compte le fait que le système, dans l’état excité, peut retomber
dans l’état fondamental sous l’e↵et de l’émission spontanée, avec une probabilité par unité de
temps �. Réécrire les équations d’évolution libre des populations et des cohérences en y ajoutant
le terme correspondant à l’émission spontanée. Vérifier que la trace de la matrice densité est
conservée.

I. A température ambiante, l’énergie thermique des atomes peut-elle exciter les atomes via col-
lisions ? (donner des arguments quantitatifs). Quelle est l’ordre de grandeur de la température
minimale pour que cela se produise ?

Imaginons que les atomes subissent exclusivement des collisions élastiques. La probabilité pour
un atome de subir une collision par unité de temps est notée �.

J. Comment se traduit, sur les équations d’évolution des populations, l’hypothèse que les colli-
sions sont élastiques ? Quel sera l’e↵et de ces collisions sur les cohérences ? Ecrire les nouvelles
équations d’évolution complètes des cohérences.
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La suite de cet exercice repose également fortement sur ce que vous avez vu dans les cours et
TD “interaction atome-lumière” pour un système à deux niveaux, mais vous allez ici ajouter un
troisième niveau.

Nous allons rajouter un troisième niveau, nommé |ai (auxiliaire). De cette manière, les états
propres du Hamiltonien non-perturbé H0 d’un atome sont |gi, |ei et |ai. On introduit, pour
mesurer leurs énergies respectives, les pulsations !g, !e et !a, telles que H0|gi = ~!g|gi, etc.

ω1
ω2

g

e

a

Figure 1 – Atome à trois niveaux. Nous avons défini : !1 = !e � !g et !2 = !e � !a.

Tout vecteur d’état | (t)i peut être décomposé sur la base des états stationnaires (|gi,|ei,|ai).
On note ↵,�, � les coe�cients de cette décomposition en “représentation d’interaction”, c’est-
à-dire telle que | (t)i = ↵e�i!gt|gi+ �e�i!et|ei+ �e�i!at|ai.

On suppose que |gi et |ai ont la même parité et que la parité de |ei est opposée à la parité
commune de |gi et |ai.

K. Indiquer, parmi les six éléments non-diagonaux de l’opérateur dx (dipôle électrique de l’atome
suivant la direction Ox) quels sont les quatre d’entre eux qui sont non-nuls. En déduire qu’il y
a une transition interdite dans ce système à trois niveaux (si on ne considère que le couplage
dipolaire électrique entre l’atome et la lumière).

L. On éclaire l’atome avec de la lumière polarisée rectilignement suivant l’axe Ox, dans laquelle
le champ électrique est décrit par la fonction E(t). Ecrire le hamiltonien H (H0 plus l’interaction
dipolaire électrique) pour le système et l’appliquer sur l’état | (t)i.

M. Ecrire l’équation de Schrödinger dépendant du temps en utilisant le résultat de la question
précédente et en développant la dérivée temporelle de | (t)i.

N. Projeter cette équation sur respectivement |gi, |ei et |ai, pour obtenir le système d’équations
linéaires qui donne, en fonction de ↵,� et �, les dérivées par rapport au temps ↵̇, �̇ et �̇ (uti-
liser le résultat de la question K pour éliminer rapidement les termes nuls). On pourra noter
hg|dx|ai = d1 et he|dx|ai = d2 et supposer ces élément de matrice réels.
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