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Partie 1

A. Précession du spin et de l’impulsion dans un champ magnétique

Dans le cadre de l’équation de Dirac, le facteur gyromagnétique g de l’électron est égal à 2 mais
lorsqu’on calcule l’interaction de l’électron avec le champ électromagnétique quantifié, on trouve
une valeur de g légèrement différente de 2. Le but de cet exercice est d’étudier la mesure de la
grandeur g-2. Dans un champ magnétique B statique, uniforme et dirigé suivant Oz, l’Hamilto-
nien de cet électron est :

H =
(~p− q ~A)2

2m
+ V (r)− ~µ. ~B

où ~A = ( ~B ∧~r)/2 est le potentiel vecteur, et ~µ = γ~S est l’opérateur moment magnétique de spin
avec γ = gγ0 = gq/2m = (1 + a)q/m, où a est appelé ”anomalie de moment magnétique” (m
est la masse de l’électron et q sa charge et ω = qB/m).

1. Montrer que l’Hamiltonien peut se ré-écrire sous la forme :

H =
~p2

2m
+ V (r) +

(qBr)2

8m
− γ0LzB − γSzB

Donner le déplacement du niveau d’énergie fondamental de H0 = p2/2m + V (r) du au terme
(qBr)2/8m en théorie des perturbations du premier ordre. On suppose que

√
< 0|r2|0 > ∼ 2lc

où lc est le rayon de l’orbite cyclotron :
√

~/qB, comparer ce résultat au résultat exact que l’on
obtient en ne considérant que les trois premiers termes de l’Hamiltonien (dans le plan Oxy, on
supposera ici que pz = 0 et on notera n = nx + ny). Tracer le spectre en énergie en précisant la
différence d’énergie entre deux niveaux successifs.

2. Donner la contribution en énergie liée au terme −γ0LzB
1 et retracer le spectre en énergie.

Enfin, dans le cadre de l’équation de Dirac, on prédit donc a = 0, tracer le spectre final prenant
en compte l’ensemble des contributions (on néglige ici les contributions fines et hyperfines).

3. On note ~v = (~p− q ~A)/m. Montrer que 2 [vx, vy] = i~ω/m, [vx, vz] = [vy, vz] = 0. Montrer que
[vx, H] = i~ωvy [on admettra que [vy, H] est alors égal à −i~ωvx] et que [vz, H] = 0.

4. On considère les trois moyennes C1 =< Szvz >, C2 =< Sxvx+Syvy > et C3 =< Sxvy−Syvx >.
Utiliser le théorème d’Ehrenfest 3 pour montrer que C1 est une constante, Ċ2 = −ΩC3 avec Ω =
aω [on admettra que Ċ3 est alors égal à ΩC2] . En déduire que < ~S.~v > (t) = A1 +A2cos(Ωt+φ)

5. Un faisceau monocinétique d’électrons interagit avec le champ B durant l’intervalle [0 ; T]
(on néglige les interactions mutuelles des électrons du faisceau). A l’instant T, on mesure une
quantité proportionnelle à < ~S.~v >. Le résultat de cette mesure est présenté sur la Figure 1 pour

1. on rappelle que < Lz >= n′~ et on admettra que n′ = −n,−n+ 2, ...n− 2, n
2. on rappelle que [x, px] = i~
3. i~ d<A>

dt
=< [A,H] >
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B de 9.4 mT. E déduire une valeur approchée de l’anomalie a. L’électrodynamique quantique
prévoit que a = α/2π (où α = 1/137 est constante de structure fine). Conclusion.
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Fig. 1: Variation de la quantité hŜ · v̂i en fonction du temps T .

1.4. Un faisceau monocinétique d’électrons est préparé dans un état de spin
tel qu’on connaisse C1(0), C2(0) et C3(0) à l’instant initial t = 0. Le faisceau
interagit avec le champ B durant l’intervalle [0, T ]. On néglige les interactions
mutuelles des électrons du faisceau. À l’instant T , on mesure une quantité
proportionnelle à hŜ · v̂i.
Le résultat d’une telle mesure est présenté sur la figure 1 en fonction de T
pour une valeur du champ magnétique B de 9,4 mT. Déduire de cette courbe
une valeur approchée de l’anomalie a.

1.5. La mesure expérimentale est-elle en accord avec la prédiction de l’électro-
dynamique quantique ?

2 Corrigé

1.1. L’hamiltonien de l’électron est Ĥ = mv̂2/2 ° ∞BŜz. On établit sans
di±culté les relations de commutation suivantes

[v̂x, v̂y] = ih̄q B/m2 = ih̄!/m , [v̂x, v̂z] = [v̂y, v̂z] = 0 ,

[v̂x, v̂2
y] = [v̂x, v̂y]v̂y + v̂y[v̂x, v̂y] = 2ih̄! v̂y/m .

Par conséquent

[v̂x, Ĥ] = ih̄! v̂y , [v̂y, Ĥ] = °ih̄! v̂x , [v̂z, Ĥ] = 0 .

1.2. On utilise la relation ih̄(d/dt)hÔi = h[Ô, Ĥ]i valable pour toute obser-
vable (théorème d’Ehrenfest). L’évolution de C1 est simple

[Ŝz v̂z, Ĥ] = 0 ) d

dt
C1 = 0 , C1(t) = A1 ,

Figure 1 – Variation de la quantité < ~S.~v > en fonction du temps T.

B. Interactions entre particules confinées, énergie du condensat

On considère N bosons confinés dans un piège harmonique de pulsation ω. Ces particules
interagissent deux à deux par un potentiel v(r) tel que

∫∫
f(r1)g(r2)v(r1 − r2)d3r1d

3r2 ≈
(4π~2a/m)

∫
f(r)g(r)d3r. La grandeur a, appelée longueur de diffusion, est caractéristique de

l’espèce atomique considérée, elle peut être positive (interaction répulsive) ou négative (interac-
tion attractive). L’hamiltonien du système s’écrit :

H =
N∑
i=1

(
p2
i

2m
+
mω2r2

i

2
) +

N∑
i=1

N∑
j=1,j 6=i

v(ri − rj)
2

1. En l’absence d’interaction l’état propre du fondamental s’écrit :

Φσ(r1, r2, ..., rN ) = φσ(r1)φσ(r2).....φσ(rN )

où φσ(r) = (1/(σ2π)3/4)exp(−r2/(2σ2)) avec σ = a0 =
√

~/(mω) (rayon de Bohr). Justifier
briêvement la forme de Φσ et donner le spectre en énergie (à 3D).∫
|φσ|2d3r = 1 ;

∫
|φσ|4d3r = 1/[(2π)3/2σ3] ;

∫
x2|φσ|2d3r = σ2/2 ;

∫
|∂φσ/∂x|2d3r = 1/[2σ2]

2. Calculer le déplacement du niveau d’énergie fondamental de H du fait des interactions entre
les atomes en utilisant la théorie des perturbations du premier ordre. Commenter le signe de ce
déplacement. A quelles conditions portant sur N cette approche perturbative est-elle valable ?

3. Pour trouver une estimation de l’énergie du niveau fondamental pour N grand on utilise la
méthode variationnelle à partir de la fonction d’essai Φσ(r1, r2, ..., rN ) (σ désormais variable).
Calculer les valeurs moyennes de l’énergie cinétique, de l’énergie potentielle et de l’énergie d’in-
teraction (en fonction de σ).

4. On introduit Ẽ = E(σ)/(N~ω) et σ̃ = σ/a0. Montrer que Ẽ(σ̃) = (3/4)(σ̃2 + 1/σ̃2) + η/σ̃3.
Tracer shématiquement la fonction Ẽ(σ̃) pour a > 0 (interactions répulsives) pour différentes
valeurs de η et montrer que l’énergie du fondamentale est proportionnelle à N2/5 pour les grandes
valeurs de η (suffisamment grandes pour pouvoir négliger la contribution de l’énergie cinétique).
Discuter qualitativement le résultat obtenu pour a < 0 (interactions attractives) aux limites
|η| << 1 et |η| >> 1.
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Partie 2

C. Termes Spectroscopiques

Déterminer les termes spectroscopiques correspondant à l’état fondamental des atomes suivants :
Soufre (16 électrons) ; Calcium (20 électrons) ; Brome (35 électrons) ; Césium (55 électrons). Jus-
tifier votre réponse en vous référant aux règles de Hund.

D. Etude d’un gaz d’atomes de rubidium

Nous allons considérer l’atome de Rubidium en phase gazeuse comme un système à deux niveaux :
un niveau fondamental |g〉 (déterminé au dessus) et un niveau excité |e〉. Nous allons étudier un
gaz de ce type d’atomes en interaction.

1. Expliquer pourquoi l’approche apprise dans la partie mécanique quantique basée sur la fonc-
tion d’onde n’est pas pertinente ici.

2. Rappeler l’équation d’évolution de l’opérateur densité décrivant l’ensemble des atomes sous
l’effet d’un Hamiltonien H0.

3. On note H0 le Hamiltonien d’un système constitué d’un atome de rubidium à deux niveaux. En
choisissant l’origine des énergies à la moyenne des énergies des deux niveaux, et en notant ~ωRb
leur écart énergétique, écrire explicitement la matrice représentant H0 dans la base (|g〉; |e〉).
4. En déduire les équations d’évolution libre des éléments de la matrice densité ρgg, ρge, ρeg et
ρee.

5. On prend désormais en compte le fait que le système, dans l’état excité, peut retomber dans
l’état fondamental sous l’effet de l’émission spontanée, avec une probabilité par unité de temps Γ.
Réécrire les équations d’évolution libre des populations et des cohérences en y ajoutant le terme
correspondant à l’émission spontanée. Vérifier que la trace de la matrice densité est conservée.

La longueur d’onde correspondant à la transition |g〉 → |e〉 (pour |e〉 correspondant au 52P3/2)
vaut λ = 780 nm (la raie D2).

6. A température ambiante, l’énergie thermique des atomes peut-elle exciter les atomes via
collisions ? (donner des arguments quantitatifs). Quelle est l’ordre de grandeur de la température
minimale pour que cela se produise ?

Imaginons que les atomes subissent exclusivement des collisions élastiques. La probabilité pour
un atome de subir une collision par unité de temps est notée γ.

7. Comment se traduit, sur les équations d’évolution des populations, l’hypothèse que les colli-
sions sont élastiques ?

8. Quel sera l’effet de ces collisions sur les cohérences ? Ecrire les nouvelles équations d’évolution
complètes des cohérences.

E. Atome à trois niveaux

Cet exercice repose sur ce que vous avez vu dans les cours pour un système dit “à deux niveaux”,
mais vous allez ici ajouter un troisième niveau. On considère le système à trois niveaux généralisé
sur la figure 2, dans lequel les états propres du hamiltonien non-perturbé H0 d’un atome sont
|a〉, |b〉 et |c〉. On introduit, pour mesurer leurs énergies respectives, les pulsations ωa, ωb et ωc,
telles que H0|a〉 = ~ωa|a〉, etc.
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Figure 2 – Atome à trois niveaux

Tout vecteur d’état |ψ(t)〉 peut être décomposé sur la base des états stationnaires (|a〉,|b〉,|c〉). On
note α, β, γ les coefficients de cette décomposition en “représentation d’interaction”, c’est-à-dire
telle que |ψ(t)〉 = αe−iωat|a〉+ βe−iωbt|b〉+ γe−iωct|c〉.
On suppose que |a〉 et |b〉 ont la même parité et que la parité de |c〉 est opposée à la parité
commune de |a〉 et |b〉.
1. Indiquer, parmi les six éléments non-diagonaux de l’opérateur dx (dipôle électrique de l’atome
suivant la direction Ox) quels sont les quatre d’entre eux qui sont non-nuls. En déduire qu’il y
a une transition interdite dans ce système à trois niveaux (si on ne considère que le couplage
dipolaire électrique entre l’atome et la lumière).

2. On éclaire l’atome avec de la lumière polarisée rectilignement suivant l’axe Ox, dans laquelle
le champ électrique est décrit par la fonction E(t). Ecrire le hamiltonien H (H0 plus l’interaction
dipolaire électrique) pour le système et l’appliquer sur l’état |ψ(t)〉.

3. Ecrire l’équation de Schrödinger dépendant du temps en utilisant le résultat de la question 2
(partie C) et en développant la dérivée temporelle de |ψ(t)〉.
4. Projeter cette équation sur respectivement |a〉, |b〉 et |c〉, pour obtenir le système d’équations
linéaires qui donne, en fonction de α, β et γ, les dérivées par rapport au temps α̇, β̇ et γ̇ (utiliser le
résultat de la question A pour éliminer rapidement les termes nuls). On pourra noter 〈a|dx|c〉 =
d1 et 〈b|dx|c〉 = d2 et supposer ces élément de matrice réels.

5. On suppose le champ excitateur bichromatique : E(t) = E1 cos (ω1t) + E2 cos (ω2t). On sup-
pose aussi que ω1 et ω2 sont des pulsations respectivement proches de ωc − ωa et ωc − ωb (et
que ω1 et ω2 sont très différentes). En admettant que seuls les termes lentement variables des
dérivées temporelles peuvent, par intégration, conduire à des contributions importantes dans les
amplitudes, réécrire les équations précédentes en n’y gardant que les termes dont les facteurs
temporels explicites ont les fréquences les plus basses. On montrera par exemple qu’avec cette
approximation : i~α̇ = −d1E1

2 γei∆at, où ∆a = ω1−ωc+ωa. En posant de même ∆b = ω2−ωc+ωb,
donner l’expression analogue de i~β̇ et, dans la même approximation, celle de i~γ̇.

6. Montrer sur un schéma de niveaux ce que représentent les différences ∆a et ∆b.
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