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seront traités :
Dualité onde-corpuscule et principe d’incertitude, paquets d’ondes,

 équation de Schrodinger, 
puits de potentiel, barrières, oscillateur harmonique, 

formalisme matricielle, bra-ket, 
moment cinétique et spin

ne seront PAS traités : 
méthodes perturbatives et variationnelle, théorie de la diffusion, règle d’or de 

Fermi, décohérence, matrice densité (M1), seconde quantification (M2)



Kelvin 1857 : «la physique a fourni une description cohérente et complète de l’univers»

Maxwell 1871 : «les hommes de sciences passeront leur temps à ajouter quelques 
décimales aux grandes constantes de la physique»

Michelson 1903 : «les lois des sciences sont désormais si fermement établis que la 
possibilité qu’ils soient supplantés un jour est excessivement lointaine»

- 1675 : Théorie corpusculaire de la lumière (Newton) , mais 
Huygens (1677) établie théorie ondulatoire de la lumière

- 1687 : Newton : mécanique -> espace des phases : r, p

- 1865 : Maxwell : électro-magnétisme, semble confirmer 
l’approche d’Huygens (lumière = onde) 

- 1866 : Physique statistique (Boltzmann, théorie cinétique) 
et thermodynamique (entropie,...) 
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XXe siècle : Philipp Lenard :
 effet photoélectrique : 
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il existe une fréquence seuil pour déclencher l'effet mais l'émission est instantanée 

le potentiel d'arrêt est indépendant de l'intensité lumineuse
(théorie ondulatoire intensité = énergie ?)

le nombre d’électrons émis (intensité) proportionnel à l’intensité lumineuse

théorie ondulatoire : l'électron se met à vibrer 
sous l'effet de l'onde EM et lorsqu'il a assez 

d'énergie il s'échappe

MAIS
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Cela permet d’expliquer l’effet Compton (1928)

�� / 1� cos(✓)

Après avoir obtenu la charge élémentaire de 
l'électron (expérience de la goutte d'huile 1910) 

Millikan, persuadé qu'Einstein avait tort, chercha a 
invalider sa proposition mais vérifiera la linéarité du 

potentiel d'arrêt avec la fréquence (1916): 

pente = ~/e

E = ~! p = ~ket

Eistein introduit alors la notion de «quanta de lumière» 

= PHOTON (corpuscule) d’énergie :

énergie des électrons arrachés (seuil) proportionnelle à la fréquence de la lumière
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lumière = onde ET corpuscule

diffraction, interférences discontinuité des échanges d’énergie

mais ceci est également vrai pour les ELECTRONS

les deux reçurent le prix Nobel pour leur découverte

En 1906 J.J.Thomson montre que les rayons cathodiques 
sont constitués de "corpuscules" (les futurs électrons)

et 20 ans plus tard, G.P.Thomson 
montre que les électrons sont diffractés 

par une fente et sont donc des ondes
(nous reviendrons sur ce point)



Rayleigh-Jeans : quantification des modes 
E.M dans une cavité k = nπ/a

⇢(!, T ) =
1

V

dN

d!
kBT =

kBT!2

⇡2c3

dN = 2⇥ 4⇡k2dk/8⇥ (a/⇡)3

Corps Noir

densité spectrale d’énergie : Wien 1896 : 
description phénoménologique à haute fréquence

⇢(!, T ) / !

3

exp(a!/T )

Planck ✏n = n~!✏̄ =
⌃✏ne�✏n/kBT

⌃e�✏n/kBT
=

~!
e~!/kBT � 1

permet de retrouver l’ensemble du spectre 
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Sommerfeld : règle de quantification
(pour tout couple de variables conjuguées de Lagrange E-t,...)

I
pdq = nh

mais valable que pour les systèmes périodiques ?

expérience de Franck et Hertz (1914) : 
quantification du courant d’émission
(= niveau d’énergie des électrons dans atomes) 

Série de Balmer etc...

expérience de Stern et Gerlach (1921) : 
quantification de l’orientation du moment 

magnétique des atomes

Apparition de «discontinuités» à l’échelle microscopique
-> THEORIE DES QUANTA
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De même en matière condensée :
Chaleur Spécifique 

(au delà de la loi de Dulong-Petit)

C / T 3

E / T 4

équivalent à la loi de Stephan 
du rayonnement du corps noir

quantification des modes de vibration du cristal 
= PHONONS

De même pour les électrons de conduction d’un métal C ~ T 
et toutes leurs propriétés relèvent de la mécanique quantique 

(statistique différente de celle des photons, phonons car principe d’exclusion)
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caractère corpusculaire : matière constituée de «briques 
élémentaires» (atomes), découverte de l’électron par Rutherford en 1911,

radioactivité : émission de particules (électron, Hélium) 

-> mécanique ONDULATOIRE
lumière = onde ET corpuscule mais électrons : particule ou onde ?

Caractéristique première d’une onde :
interférences entre ondes 

traversant 2 fentes (d’Young)

I = cos

2(
⇡

�

d

D

x)

D

d
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et en faisant une expérience identique avec des électrons....

De Broglie : généralisation de la dualité 
onde-corpuscule à tout objet microscopique

m, p, Ek, ω E = ~! = h⌫ p = ~k = h/�&
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La notion d’onde de probabilité a été initialement introduite par Bohr sous le 
terme de «champ guidé» (ou Einstein «champ fantôme»)

fonction scalaire des coordonnées de toutes les particules. Le 
mouvement d’une particule est régit par le principe de conservation 

de E et p (et les conditions aux limites) et est maintenu dans les 
limites imposés par le champ «guidé». La probabilité qu’une 

particule suive un chemin particulier est alors donnée par le carré 
du «champ guidé» (crée en quelque sorte par les autres particules)

interprétation PROBABILISTE
on peut définir des amplitudes de probablité de passer par la 

fente 1 (Φ1) ou la fente 2 (Φ2)

P12(x) = |�1(x) + �2(x)|2 = |�1(x)|2 + |�2(x)|2 + �1�
⇤
2 + �⇤

1�2

interférencessi l’électron passait en 1 OU en 2 
le terme d’interférence n’existerait pas (P12 = P1+P2)

l’électron passe en 1 ET en 2
ONDE = densité de probabilité de présence
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|chat>= 1/
p
2(|mort> +|vivant>)

le chat de Schrodinger

est mort ET vivant

Si une particule peut être dans un état Φ1 ou dans un état Φ2 elle peut 
également être dans l’état a1Φ1+a2Φ2 : principe de SUPERPOSITION

la MESURE modifie l’état quantique !
sauf si on ouvre la boite, dans quel cas on pourra voir s’il est mort OU vivant

NON

peut-on «regarder» comment les électrons traverse les fentes ?
de la même façon
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�x⇥�p & ~/2
Principe d’incertitude d’HEISENBERG

on ne peut pas déterminer simultanément la position et l’impulsion avec 
une infinie précision : influence entre l'objet microscopique et 

«l'instrument» de mesure (= lumière) 

de plus, si une particule est alors localisée dans un intervale ~ Δx, le 
«champ guidé» correspondant est crée par la superposition d’ondes planes 

(voir plus loin) distribuées sur une largeur ~ Δk tel que ΔxΔk ~ 1 
OPTIQUE ONDULATOIRE - LA DIFFRACTION

Nous avons déjà traité brièvement de la diffraction pour les vagues sur l’eau et
pour la lumière à travers une ouverture de dimension semblable à sa longueur
d’onde (page 25a-9) ; nous avons vu qu’elle consistait en un étalement ou
une déflexion des ondes aux arêtes d’un corps. Mais il se produit aussi une
figure d’interférence qui consiste en un maximum central, très intense et
d’autres maxima moins intenses (appelés maxima secondaires) sur le côté.
Entre ces maxima, il y a des minima. Avec l’optique géométrique, on ne peut
pas expliquer cette figure d’interférence.

Une ouverture carrée est éclairée par une
onde plane d’un laser He-Ne. En (a), (b) (c)
l’ouverture est grande et l’écran proche : la fi-
gure est compliquée intérieurement, mais sa
forme générale est reconnaissable. On réduit
l’ouverture, la figure s’étale dans les directions
perpendiculaires à ses côtés (d), (e) et en (f)
atteint sa limite, la réduction du trou ne fait
qu’agrandir la figure mais ne change pas sa
forme.

Université de Genève 25b-1 C. Leluc

Par exemple : fente de taile a = Δx alors Δp = pα ~ pd/D taille (d de la tache centrale)

d ⇠ D�p/p ⇠ D~/ap ⇠ D�/a

~ 10 eV pour a ~ 1A

électron dans une boite de taille a = Δx �E ⇠ p�p/m > (�p)2/m ⇠ ~2/ma2

Les énergies des états liés sont QUANTIFIES (discrets) -> stabilité de la matière
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En résumé : les objets microscopiques ont un caractère corpusculaire et 
ondulatoire

l’état physique d’une particule peut alors être défini par une
 «fonction d’onde (de probabilité)»
qui est perturbée par la mesure (!)

Le résultat de cette mesure est probabiliste 
[mais attention la fonction d’onde est elle parfaitement bien connue : 

Φ = exp(ikx) dans le vide] 

Il n’y a aucun lien de causalité entre les états avant et après la mesure

et certaines propriétés sont NON LOCALES (la particule peut être 
simultanément en tout point de l’espace !)

de plus les variables conjuguées (p-x, E-t) 
ne peuvent pas être déterminés simultanément avec une infinie précision 
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P1. La connaissance de l’état quantique (à t0) est complètement contenue dans 
un «vecteur» d’un espace de Hilbert de dimenson (in)finie (= fonction d’onde)

P2. A toute propriété observable (position, énergie,...) est associée un 
opérateur (A) agissant sur les «vecteurs» (sous espace) définis en P1.

P3. Une mesure de la grandeur physique associée à A ne peut donner qu’une 
valeur propre de A

P4. Le résultat de cette mesure est alors probabiliste (et la moyenne de A 
doit respecter le principe d’incertitude)

P5. Après la mesure, l’état du système est projeté dans le sous-espace 
engendré par les vecteurs propres associés à la valeur propre mesurée

P6. L’évolution temporelle du système est totalement déterminée par 
l’équation de Schrodinger

Postulats de la MQ
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P1+P6 semble incompatible avec P5 (et P4)
Comment passe-t-on de 0<P<1  (P3) à P=0 ou 1 (P5)

La MQ décrit parfaitement la réalité mais P5 n’existe pas : en faisant la mesure nous 
ne «voyons» qu’une partie de l’état quantique (bien que la totalité existe dans un 

«multivers») ou certains états disparaissent rapidement mais pas instantanément (lors 
de la mesure ou avant) du fait du couplage avec l’environnement (décohérence)

La MQ ne permet pas décrire totalement la réalité car elle est incomplète (variables 
cachées). Influence de la conscience dans P5 «troublante» (dans quel état était 

l’univers quand il n’y avait personne pour l’observer ?)

Interprétation de Coppenhague  (Bohr) : la MQ n’a pas pour vocation de décrire la 
«réalité» (?) mais de prédire le résultat de tout ce que l’on peut mesurer.

OU
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Chapitre 1

Les postulats de la mécanique quantique

Paquets d’ondes
Principe d’incertitude

Equation de Schrodinger
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�(x) =
X

ak�k(x)

ou en «sommation continue»

Φ(x) = TF de 𝛹(k) = Paquets d’ondes

La largeur de la distribution en x est relié à celle de 𝛹(k) par le 
principe d’incertitude ΔxΔk ~1

⇥
�(x) = 1/

p
2⇡

Z
 (k)�k(x)dk

Postulat 1 : Fonction d’onde : densité de probabilité de 
trouver la particule dans un volume dV :  w(x) = |�(x)|2

Onde plane 

= délocalisée dans tout l’espace (MAIS pas de carrée sommable)

�
k

(x) = e

i(kx�!t)

exemple : paquets 
d’ondes Gaussien

(voir TD)  (k) =
p
2a(1/2⇡a2)1/4e�a2(k�k0)

2

�(x) = (1/
p
2⇡a)1/2e�x

2
/4a2

e

ik0x
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Fonction TF
1        * 

carrée (largeur 1)

triangle (+/-1)

�(k)

sinc(⇡k)

sinc2(⇡k)

exp(�|x|)

�(x) = lim|n!1
sin(nx)

⇡x

* ou la fonction de Dirac est définie par :

eik0x �(k � k0)

1

1 + k2

TF [af(x) + bg(x)] = a⇥ TF [f(x)] + b⇥ TF [g(x)]

TF [ixf(x)] =
dTF [f(x)]

dk

TF [
f(x)

dx

] = �ik ⇥ TF [f(x)]

TF [f(x+ ⇠)] = TF [f(x)]⇥ e

�ik⇠
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Les opérateurs seront LINEAIRES 
A(↵1�1 + ↵2�2) = ↵1A(�1) + ↵2A(�2)

Z
�⇤

1A(�2)dx =

Z
(A�1)

⇤�2dxet hermitique (auto-adjoint)

=> les moyennes sont alors REELLES

On note �a =
p

< A2 > � < A >2

On peut définir un PRODUIT SCALAIRE 
(espace de Hilbert)

et à toute grandeur physique est associée une 
OBSERVABLE (postulat 2) = opérateur A de moyenne : 

< A >=

Z
�(x)⇤A[�(x)]dx

|�|2 =< �,� >=

Z
�⇤(x)�(x)dx

<  ,� >=

Z
 (x)⇤�(x)dx

Soit 
F (x) = (x� < x >)�(x)

|G(p)| = �p

|F (x)| = [

Z
|F (x)|dx]1/2 =

p
< x

2
> � < x >

2 = �x

�x�p � ~/2on (re)trouve alors

et

G(p) = i(p� < p >) (p)
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Si une particule (libre) se déplace à une vitesse v et on cherche 
le temps t auquel elle passe en un point x alors ce temps peut 

être obtenu avec une incertitude Δt=Δx/v
de même son énergie (p2/2m) est définie à ΔE=vΔp donc on 

retrouve bien ici ΔpΔx=ΔEΔt

De même on peut montrer que �E�t � ~/2

-> polémique Bohr - Einstein

La mesure de la grandeur physique donnera une valeur propre de A (postulat 3)
l’ensemble des valeurs propres peut être discret (énergie) ou continu (position)

si Φ est un état propre de A (Φn de valeur propre an)

alors la mesure est parfaitement définie (Δa=0) et sera égale à an (et <A> = an)
et la réciproque est vraie

Résultats possibles d’une mesure

Deux fonctions d’ondes associées à des valeurs propres différentes sont orthogonales

Si plusieurs fonctions d’ondes correspondent à une même valeur propre 
on dit qu’il y a dégénérescence
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alors la mesure donnera an avec la probabilité

                                     (postulat 4)

Si Φ n’est pas un état propre mais

� =
P

cn�n et < A >=
P

an|cn|2

|cn|2 = | < �n,� > |2

22

�(x) =

Z
�(x0)�(x� x0)dx0

= |
Z

�(x)�(x1 � x)dx|2 = |
Z

�
x1(x)�(x)dx|2 = | < �

x1(x),�(x) > |2

w(x1) : densité de probabilité de trouver la particule en x1

w(x1) = |�(x1)|2 = |
Z

�(x0)�(x1 � x0)dx0|2

pour l’opérateur position �
x0(x) = �(x� x0)Remarque 1 : 

-> décomposition de 𝛷 sur les 𝛷x0 (et non pas en ondes planes)



 Juste après la mesure la particule se trouve dans l’état Φn (postulat 5)

Remarque 2 : cn =

Z
�(x)�⇤

n(x)dx

�(x) =
X

(

Z
�(x0)�⇤

n(x
0)dx0)�n(x)

�(x) =

Z
(
X

�n(x)�
⇤
n(x

0))�(x0)dx0

X
�n(x)�

⇤
n(x

0)dx0 = �(x� x

0) Relation de fermeture

Soit 2 opérateurs dont on cherche à déterminer 
les grandeurs associées (a et b)

on peut alors définir le (opérateur) COMMUTATEUR  AB-BA = [A,B]
(et on appelle «reste de commutation» C=-i.[A,B])

[A,B]=0 <=> A et B ont les mêmes vecteurs propres

et ΔaΔb=0 et les grandeurs physiques associées (a et b) peuvent alors être 
déterminées simultanément avec une infinie précision
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inversement, on ne peut PAS connaître simultanément les quantités physiques 
associées à 2 opérateurs ne commutant pas avec une précision infinie
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opérateur p ⇔ ~r
i

< p >= ~
Z
 

⇤(k)k (k)dk =

Z
�⇤(x)

~r
i

[�(x)]dx

on remarque donc que 

[x, p
x

] = i~

�x�p � | < C > |/2

On peut montrer que ceci est un résultat général :

et �
p0(x) = (1/

p
2⇡~)eip0x/~

remarque : pour l’opérateur position �
x0(x) = �(x� x0)

vecteurs propres différentes d’où ΔxΔp non nul 

�a�b � | < C > |/2



Energie totale : HAMILTONIEN=H �~2/2m4+ V

par exemple pour l’état 1s de l’atome d’hydrogène

< T >= � < V > /2 = me4/2~2(4⇡✏0)2

25

Observable Opérateur

position, x x

quantité de mouvement, p

Energie cinétique, T=p2/2m

Moment cinétique, rxp 

~r/i

�i~r ⇥r

Quelques opérateurs

(1/2m)(~r/i)2 = �~2/2m4

! $ E/~ �
k

(x) = e

i(kx�!t) = e

i(px�Et)/~

< �, (i~@/@t)� >= i~
Z

�⇤
@�/@tdx

=

Z
(p2/2m)|�|2dx

=

Z
E|�|2dx

< �, (�~2/2m4)� >
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alors

H�n = En�net si avec�(x, t = 0) =
X

cn(0)�n

�(x, t) =
X

cn(0)e
�iEnt/~�n

Si H ne dépend pas du temps (système conservatif), on peut chercher 𝛷 sous la forme

�(x, t) =  (x)�(t)

H = E �(t) = e�iEt/~ etavec

H� = i~@�/@t Equation de Schrodinger

d < A >

dt
=<

@A

@t
> +

i

~ < [H,A] >
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En mécanique classique (analytique) 

ẋ =
@H

@pṗ = �@H

@x

dF

dt

=
@F

@t

+
@F

@x

ẋ+
@F

@p

ṗ

dF

dt
=

@F

@t
+ {F,H}et d’où

crochet de Poisson

théorème d’Ehrenfest

équivalent aux équations du mouvement de la mécanique 
classique mais sur les VALEURS MOYENNES

d < x >

dt

=<

p

x

m

>=< v

x

>

d < p

x

>

dt

= � <

@V

@x

>=< F

x

>

Remarque : le paquet d’onde de déplace avec la 
vitesse de GROUPE 

qui peut-être différent de la vitesse de PHASE 
de chaque composante 

vg =
1

~
dE

dk
(k0)

v� =
2

~
E

k



@⇢e
@t

+ div(je) = 0

electrodynamique : conservation de la charge
Si la charge varie dans un élement de volume, 
alors un courant s’écoule à travers la surface 

qui entoure cet élément

28

Courant de probabilité ~J =
~

2mi
[�⇤~r�� �~r�⇤]

si alors ~J =
|�0|2~p
m

= |�0|2~v� = �0e
i(px�Et)/~

équation de conservation
@|�|2

@t
+ div ~J = 0

si H ne dépend pas de t, l’énergie est une constante du mouvement

et on vera plus tard que si V ne dépend que de r (potentiel central), le 
moment cinétique (L2) est une constante du mouvement (seconde loi de Kepler) 

si V ne dépend pas de x, px est une constante du mouvement



où les composantes de    (et  ) sont des matrices (de Pauli) et Φ = quadrivecteur
-> théorie quantique des champs
~↵ �

Equation de DIRAC : 1er ordre

i~@�
@t

= i~c(~↵~r)�+mc2��

Quelques remarque sur la mécanique quantique RELATIVISTE

Klein-Gordon ont cherché à formuler une équation permettant de reproduire 
l’équation relativiste 

E2 = p2c2 +m2c4

�~2 @
2�

@t2
= ~2c24�+m2c4�

mais on peut montrer que les solutions de cette équation ne permettent pas 
d’avoir l’équation de conservation de  ! = |�(x)|2

! =
i~
2m

[�
@�⇤

@t
� �⇤ @�

@t
]mais de qui peut être négatif, interprétation ?
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Chapitre 2

Notation de Dirac 
Représentation matricielle

bra-ket
projecteur
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La physique ne doit pas dépendre de la base choisie et certains états 
quantiques (spin par exemple) ne peuvent pas être défini à partir 

d’une fonction 𝛷(x)
-> généralisation de la notation

ondes planes = états propres de T

fonctions de Dirac = états propres de X

états propres de H (ou tout autre opérateur 
formant un base)

fonctions de Block = états propres de 
l’opérateur translation (potentiel périodique)

1/
p
2⇡~

Z
eikx (k)dk

Z
�(x0)�(x� x

0)dx0

X
cn�n

u

k

(x)eikx

Remarque : la fonction d’onde est CONTINUE et (généralement) 
DERIVABLE (sauf potentiel infini)
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espace des «ket» : |n >

un état est alors également être défini par un  
vecteur «colonne» (de dimension (in)finie) 

dont les composantes dépendent de la base (=jeu de ket) choisie

|� >=
X

cn|n > |� >=

0

BBBB@

�1

�2

. . .
�n

...

1

CCCCA

Notation de Dirac

espace des «bra» : 

espace dual : vecteur «ligne» (de même dimension)
X

�n|n >
X

�⇤
n < n|

< �| =
�
�⇤
1,�

⇤
2, . . . ,�

⇤
n, . . .

�

< n|
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par exemple dans l’espace des positions, on a comme précédemment

< �1|�2 >=

Z
�⇤

1�2dx

mais la notation est générale à toute espace (de Hilbert sauf 
pour etats propres non normables) engendré par les vecteurs 

propres d’un opérateur A

produit scalaire 
p

< n|n >

| < n|m > |2 < n|n >< m|m >

norme

inégalité Cauchy-Schwartz

< n|m >=< m|n >⇤

|x0 >$ �(x� x0)

et

< x|p >= 1/
p
2⇡~eipx/~
< p|� >=  (p)< x|� >= �(x)
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A+ = opérateur adjoint de A

(cA)+=c*A+     (AB)+=B+A+     (A+B)+=A++B+

Observable : opérateur hermitique (auto-adjoint) : A+=A,
et les spectres des valeurs propres (réelles) de A et A+ sont identiques

< �1|A|�2 >⇤=< �2|A+|�1 >

A = matrice 

A =

0

BBBB@

A11 A12 . . . A1n ...
A21 A22 . . . A2n ...
. . . . . . . . . . . . . . .
An1 An2 . . . Ann ...
. . . . . . . . . . . . . . .

1

CCCCA

Dans la base  des états propres de A

A =

0

BBBB@

a11 0 ... 0 . . .
0 a22 0 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . ann ...
. . . . . . . . . . . . . . .

1

CCCCA

et Aij+ = Aji*

au ket

moyenne

A|� > < �|A+est associé le bra
< A >=< �|A|� >
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* l’observable A =
X

P↵iai

* la probabilité d’obtenir ai est 

* après la mesure le système est dans l’état

(         si  l’état est non dégénéré)|↵i >

< �|P↵i|� >= | < �|↵i > |2
P↵i|� >

||P↵i|� > ||

(où plus généralement le projecteur dans le sous espace engendré par les vecterus 
propres associés à ai si la valeur propre est dégénérée)

|↵i >< ↵i| est le projecteur sur l’état        (noté P𝛼i)|↵i >

Comme précédemment l’ensemble des ket associée à des valeurs propres distincts 
sont orthogonaux

Si A est un observable, l’ensemble de ces états propres        forme une base et 
vérifie la relation de fermeture

X
|↵i >< ↵i| = 1

|↵i >

(opérateur identité)
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On appele ECOC un jeu d’opérateurs A,B,C,.... qui commutent 2 à 2 s’il existe une 
base d’états propres unique à tous les opérateurs

Toutes les grandeurs physiques associées peuvent alors être 
mesurés indépendamment (et avec précision infinie)

soit

Si |↵n >

i~d|� >

dt
= H|� >

                     Sur la base propre d’un ECOC 

et l’évolution temporelle est donnée par l’équation de Schrodinger

i~@cn
@t

=
X

Hnmcm avec

est un état propre de H :

|�(t) >=
X

cn(t)|↵n >

Hnm =< ↵n|H|↵m >

|�(t) >=
X

e�iEnt/~cn(0)|↵n >
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Sur la base propre de H : 

S =

0

BBBB@

exp(�iE0t/~) 0 . . . 0 . . .

0 exp(�iE1t/~) 0 0 . . .

. . . . . . . . . . . . . . .

0 0 . . . exp(�iEnt/~) ...

. . . . . . . . . . . . . . .

1

CCCCA

|�(r, t) >= S(t)|�(r, 0) >

S = exp(� iHt

~ ) =
X 1

n!
(� iHt

~ )n

matrice S :

est la probabilité de passer de l’état n à l’état 
m au bout du temps t sous l’influence de H

|Snm|2

Snm =< 'n|S|'m >Remarque : En notant  
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Chapitre 3

Quelques exemples simples

Puits de potentiel (fini)
Transmission-Réflexion sur une barrière

Oscillateur harmonique
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� ~2
2m

@

2�

@x

2
+ V0� = E�V = V0 E>V0 

K 0 =
p

2m(E � V0)/~2

� = �0e
±iK

0
x

t =
2k

k +K 0r =
k �K 0

k +K 0

R = |r|2 et T = K0

k |t|2
~Ji + ~Jr = ~Jt

V0

eikx

reikx
teiK'x

E

✓
A
B

◆
= ⌧

✓
C
D

◆

de façon générale

avec ⌧ =

 
k+K0

2k
k�K0

2k
k�K0

2k
k+K0

2k

!

k =
p
2m(E)/~2

�
I

= Aeikx +Be�ikx

�
II

= CeiK
0
x +De�iK

0
x
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et si la discontinuité a lieu en l et non pas en 0
✓
A
B

◆
=

✓
e�ikl 0
0 eikl

◆
⌧

✓
eiK

0l 0
0 e�iK0l

◆✓
C
D

◆

⌧ =

 
k+K0

2K0
K0�k
2K0

K0�k
2K0

k+K0

2K0

!
pour une chute de potentielet

E

x=0

k K1 K2 K3 K4 K5

l1
l2 l3 l4

Xl5

!1

!2 !3

!4 !5

✓
A
B

◆
= ⌧1

✓
e�iK1l1 0

0 eiK1l1

◆
⌧2

✓
e�iK2l2 0

0 eiK2l2

◆
. . . ⌧5

✓
e�iK5l5 0

0 eiK5l5

◆✓
C
D

◆

et si :



E

V0 V0

x=0 x=l

T = 1 pour kl = nπ

Effet Ramsauer-Townsend : diifusion 
d’un électron par un gaz rare 
(potentiel analogue à un puits) 

dans le cas particulier (voir TD) où

T =
4k2K 02

4k2K 02 + (k2 �K 02)2sin2kl

E

V0

x=0 x=l

K’ <-> k

T =
4K 02k2

4K 02k2 + (K 02 � k2)2sin2K 0l
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idem E>V0 avec K’ -> iK

r =
k � iK

k + iK
t =

2k

k + iK

R = |r|2 = 1
mais probabilité non nulle dans la région II sur d ~ 1/K

l’onde «resort» de la région II avec un déphasage φ (r=eiφ)

V0

eikx

reikx

te-Kx

E

E < V0
K =

p
2m(V0 � E)/~2

E
V0

x=0 x=l

T =
4k2K 02

4k2K2 + (K2 + k2)2sh2Kl
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exemple : radioactivité α
loi de Gamov-Condon-Gurney

lnT = a+B/
p
E

si Kl >> 1   

de façon générale pour V(x) i.e. K(x) T / e�2
R

x2
x1

K(x)dx

T / e�2Kl

T est NON NULLE (quelle que soit l et V0) 
= effet tunnel
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«boite» quantique à 3D = hétérostructure semiconductrice 
<=> atome mais 100x plus grand 

pyramide InAs sur (dans) GaAs

ajustement des raies spectrales 
=> diode laser, LEDs

E

Conditions de continuité de 
!  et ! ’ en x=a et x=-a

(attention changement ordonnées)

K = ktan(ka) K = �k/tan(ka)ou
(!  paire) (!  impaire)

k et donc E sont discrets (quantification)
Il existe au moins une solution (état fondamentale) (voir TD pour puits infini)

La première solution est paire puis les suivantes sont 
alternativement impaires et paires

x=ax=-a



Oscillateur Harmonique (voir aussi TD) H =
p2

2m
+

m!2x2

2

- mode collectif de vibration dans les solides (phonons)
- mouvement d’un électron dans un champ (niveau de Landau ω=qB/m)
- distribution du champ dans un supraconducteur (type II) .....

� =
m!

~ y = �x

2 =
E

~!

Equation différentielle de KUMMER (hypergéométriques confluentes)

y
d2'

dy2
+ (

1

2
� y)

d'

dy
+ (



2
� 1

4
)' = 0

 (y) = e�y/2'(y)

(voir TD)� 1

2
= n

43

avec ⇠ =
p
�x

@Hn

@⇠
= 2nHn�1 Hn+1 = 2⇠Hn � 2nHn�1Propriétés : et, @nHn

@⇠n
= 2nn!

H0 = 1, H1 = 2⇠, H2 = 4⇠2 � 2, H3 = 8⇠3 � 12⇠,. . . .

-> Polynômes d’Hermite H
n

(x) = (�1)nex
2 dne�x

2

dxn
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Probabilité de présence | n|2 !cl =
1

⇡a

1p
1� (x/a)2

Energie de «point zéro» : E0 = ~!/2 Heisenberg

et a+a| n >= n| n > H = ~!(a+a+ 1/2)

<  n|H| n >= ~!(n+ 1/2)

On peut montrer que 
1p
2
(⇠ +

@

@⇠
) n =

p
n n�1

1p
2
(⇠ � @

@⇠
) n =

p
n+ 1 n+1

a a+
Annihilation Création

En = (n+
1

2
)~!  =

s
1

2nn!

r
�

⇡
e��x

2
/2H

n

(
p
�x)
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et comme à 1D, v(r) est solution d’une équation de KUMMER

En,l = ~!(2n+ l + 3/2)

y
d2v

dy2
+ (l +

3

2
� y)

dv

dy
+ (



2
� 1

2
(l +

3

2
))v = 0 (y = �r2)

et à 3D H = � ~2
2m

r2 +
m!2

2
r2

avec où L2 est le moment cinérique
(dérivées en φ et θ)

POTENTIEL CENTRAL

r2 =
@2

@r2
+

2

r

@

@r
� L2

~2r2

on note Ylm les états propres de L2

(= harmoniques spériques, voir chapitre 4)

 n,l,m = exp(��r

2
/2)⇥ r

l
.v(r)⇥ Ylm(', ✓)
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si B = Bz on peut prendre A = Ay = B.x
il apparaît alors un terme : (1/2).(q2B2/m).x2 dans H

et les énergie sont donc sous la forme

E = ~!(n+ 1/2) avec ! =
p

k/m = eB/m

niveaux de Landau fréquence cyclotron

particules dans un champ magnétique

H =
1

2m
[~p� q ~A]2 + V

à partir des équations 
on peut montrer que cet Hamiltonien correspond
         bien à une force : ~F = q(~✏+ ~v ⇥ ~B)

~✏ = �~r(
V

q
)� @ ~A

@t
~B = �~r⇥ ~A

et

avec et

dp
x

dt
= �@H

@x

dx

dt
=

@H

@p
x
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Chapitre 4

Moment cinétique

définition, valeurs propres
opérateurs L+ et L-

représentation matricielle

Spectre molécule diatomique
Atome d’Hydrogène
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[L
x

, L
y

] = i~L
z

(et permutation x,y,z)

[L
x

, L2] = [L
y

, L2] = [L
z

, L2] = 0

4 =
@2

@r2
+

2

r

@

@r
+

1

r2
@2

@'2
+

1

r2tan'

@

@'
+

1

r2sin2'

@2

@✓2

Moment cinétique

L

x

= yp

z

� zp

y

= �i~(y @

@z

� z

@

@y

) = i~( cos✓
tan'

@

@✓

+ sin✓

@

@'

)

L

z

= xp

y

� yp

x

= �i~(x @

@y

� y

@

@x

) = �i~ @

@✓

L

y

= zp

x

� xp

z

= �i~(z @

@x

� x

@

@z

) = i~( sin✓
tan'

@

@✓

� cos✓

@

@'

)

L2 = L2
x

+ L2
y

+ L2
z

= �~2r2⇥ partie angulaire de 4

θ

φ
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L2 et Lz (par exemple) ont même vecteurs propres
= HARMONIQUES SHERIQUES (Yl,m)

LzYl,m = m~Yl,m

L2Yl,m = l(l + 1)~2Yl,m

notées |l,m >

L� = L
x

� iL
y

L+ = L
x

+ iL
y

L†
+ = L� [L2, L±] = 0 [Lz, L±] = ±~L±

L±|l,m >/ |l,m± 1 >

et l est demi-entier

||L±|l,m > || =
p
l(l + 1)�m(m± 1)~

�l  m  l
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Lz|l,m >= �i~ @

@✓
|l,m >= m~|l,m >

m et donc l sont des ENTIERS
 (voir SPIN = demi-entier)

< ', ✓|l,m >= Yl,m(', ✓) = fl,m(')eim✓

Par exemple Y2,±2 =

p
15/32⇡sin2'e±2i✓

Y2,±1 =
p

15/8⇡cos'sin'e±i✓ et Y2,0 =
p

5/16⇡(3cos2'� 1)

L+|l, l >= 0 fl,l(') = cl(sin')
l

Il suffit alors d’appliquer L- pour trouver fl,l-1 etc...

donc

L± = ~e±i✓(± @

@'

+ icotan(')
@

@✓

)

et en normant : cl =
(�1)l

2ll!

r
(2l + 1)!

4⇡

θ

φ
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P

m
l (x) =

(�1)m

2ll!
(1� x

2)m/2 d
l+m(x2 � 1)l

dx

l+m
= (�1)m(1� x

2)m/2 d
m
Pl(x)

dx

m

Pl = polynôme de LEGENDRE

remarque

Yl,m(✓,') =

s
(2l + 1)(l �m)!

4⇡(l +m)!
P

m
l (cos')eim✓

Y0,0 = 1

Y2,±2 / sin2'e±2i✓

Y2,0 / 3cos2'� 1 et Y2,±1 / cos'sin'e

±i✓

Y1,0 / cos' et Y1,±1 / sin'e

±i✓

θ

φ

Z
Yl,mY ⇤

l0,m0d⌦ = �ll0�mm0
X

Yl,m(✓,')Y ⇤
l0,m0(✓0,'0) = �(✓ � ✓0)�('� '0)
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Remarque 1 : représentation matricielle
exemple l=1 : 3 états propres de L2 et Lz : |1, 1 >, |1, 0 > et |1,�1 >

Lz = ~

0

@
1 0 0
0 0 0
0 0 �1

1

A L+ =
p
2~

0

@
0 1 0
0 0 1
0 0 0

1

A L� =
p
2~

0

@
0 0 0
1 0 0
0 1 0

1

A

Ly = (L+ � L�)/2i = ~/
p
2

0

@
0 �i 0
i 0 �i
0 i 0

1

AL
x

= (L+ + L�)/2 = ~/
p
2

0

@
0 1 0
1 0 1
0 1 0

1

A

Quelles sont les valeurs propres de Lx (et Ly) ?

EVIDEMMENT -1, 0, 1 (le choix de l’axe z est arbitraire)

et les vecteurs propres associés (pour Lx) ?

-1$ 1/2

0

@
1

�
p
2

1

1

A 0$ 1/
p
2

0

@
1
0
�1

1

A 1$ 1/2

0

@
1p
2
1

1

A
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L est hermitique Lij=Lji* (Lii=réel)

trace de la matrice = somme des valeurs propres (donc ici Tr(L)=0)

déterminant de la matrice = produit des valeurs propres (donc ici det(L)=0)

sélection mz = 0sélection mz = 1
I=1 I=0

mesure de my

I=1/4

Si on «filtre» les états my=1 l’intensité en sortie = 1/8 est 
SUPERIEURE à l’intensité (=0) obtenu en l’absence du «bloc my»
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(x’,y’)
(x,y)α

Remarque 2 : rotation d’un angle α autour de Oz

x

0 = xcos↵+ ysin↵

y

0 = �xsin↵+ ycos↵

Rz,↵[�(x, y, z)] = �(x0
, y

0
, z)

pour les petites valeurs de α : x

0 = x+ ↵y et y0 = �↵x+ y

Rz,↵[�(x, y, z)] = �(x, y, z) + ↵(y
@�

@x

� x

@�

@y

)

Rz,↵ = Id� i↵

~ Lz

Potentiel central = invariant par ROTATION donc H commute 
avec Lz (et Lx et Ly) mais les Li ne commutent pas entre eux

(les rotations ne commutent pas !)
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Molécule diatomique

Vibrations

Rotation

H =
L2

2I
I = m1d

2
1 +m2d

2
2

El =
~2l(l + 1)

2I

d1 d2 M1 M2 (1)

I = M1d
2
1 + M2d

2
2 (2)

⇧ = 0 ⇧ = 1 ⇧ = 2 (3)

L̂zY0,0(�,⌅) = 0 L̂+Y0,0(�,⌅) = 0 (4)

⇤ �

0
sin � d�

⇤ 2�

0
d⌅ |Y⇥,m(�,⌅)|2 = 1 (5)

Ĥ R̂(⌅0) = R̂(⌅0) Ĥ (6)

R̂(⌅0) (7)

= R̂(⌅0) ⇥(r,⌅) = R̂(⌅0)
�
Ĥ ⇤(r,⌅)

⇥
= Ĥ

�
R̂(⌅0)⇤(r,⌅)

⇥
(8)

Ĥ (9)

⇥(r,⌅ + ⌅0) = Ĥ⇤(r,⌅ + ⌅0) (10)

⇥(r,⌅) = Ĥ⇤(r,⌅) (11)

Ĥ⇤(r,⌅) = ⇥(r,⌅) Ĥ⇤(r,⌅ + ⌅0) = ⇥(r,⌅ + ⌅0) (12)

⇤ ⇥ (13)

L̂x, L̂y (14)

⌅0 ⇥ 1 (15)

[R̂z(⌅0)⇤](x, y, z) ⇤ ⇤(x + ⌅0y , �⌅0x + y , z) (16)

y� ⇤ �⌅0x + y (17)

x� ⇤ x + ⌅0y (18)

`,"6#;0"('1"#0%,1#6"#$%,B"$"&'#5"#1%'/')%&#7##

-6/;;)+,"$"&'I#6>*&"1@)"#5"#1%'/')%&#;>*(1)'#H###

[L̂x, L̂y] = ih̄L̂z (19)

[L̂y, L̂z] = ih̄L̂x (20)

[L̂z, L̂x] = ih̄L̂y (21)

L̂x =
h̄

i

�
y

⇥

⇥z
� z

⇥

⇥y

⇥
(22)

L̂y =
h̄

i

�
z

⇥

⇥x
� x

⇥

⇥z

⇥
(23)

h� ⇥ 50 à 500 meV (24)

E =
L2

2I
(25)

H#$%$"&'#5>)&"1')"#5"#6/#$%6*(,6"#

Z%6*(,6"#j#1%'/'",1#1)@)5"#

k/$)6'%&)"&#+,/&')+,"#H##

[L̂x, L̂y] = ih̄L̂z (19)

[L̂y, L̂z] = ih̄L̂x (20)

[L̂z, L̂x] = ih̄L̂y (21)

L̂x =
h̄

i

�
y

⇥

⇥z
� z

⇥

⇥y

⇥
(22)

L̂y =
h̄

i

�
z

⇥

⇥x
� x

⇥

⇥z

⇥
(23)

h� ⇥ 50 à 500 meV (24)

E =
L2

2I
(25)

I =
1
2
MR2 (26)

Ĥ =
L̂2

2I
(27)

G&#/''"&5#5%&(#5";#&)B"/,A#5>*&"1@)"#1"0*1*;#0/1#6"#&%$<1"#+,/&')+,"#

[L̂x, L̂y] = ih̄L̂z (19)

[L̂y, L̂z] = ih̄L̂x (20)

[L̂z, L̂x] = ih̄L̂y (21)

L̂x =
h̄

i

�
y

⇥

⇥z
� z

⇥

⇥y

⇥
(22)

L̂y =
h̄

i

�
z

⇥

⇥x
� x

⇥

⇥z

⇥
(23)

h� ⇥ 50 à 500 meV (24)

E =
L2

2I
(25)

I =
1
2
MR2 (26)

Ĥ =
L̂2

2I
(27)

⇤ (28)

E� =
h̄2⇤(⇤ + 1)

2I
(29)

[L̂x, L̂y] = ih̄L̂z (19)

[L̂y, L̂z] = ih̄L̂x (20)

[L̂z, L̂x] = ih̄L̂y (21)

L̂x =
h̄

i

�
y

⇥

⇥z
� z

⇥

⇥y

⇥
(22)

L̂y =
h̄

i

�
z

⇥

⇥x
� x

⇥

⇥z

⇥
(23)

h� ⇥ 50 à 500 meV (24)

E =
L2

2I
(25)

I =
1
2
MR2 (26)

Ĥ =
L̂2

2I
(27)

⇤ (28)

E� =
h̄2⇤(⇤ + 1)

2I
(29)

i#

I = M1d
2
1 + M2d

2
2 (1)

⇧ = 0 ⇧ = 1 ⇧ = 2 (2)

L̂zY0,0(�,⌅) = 0 L̂+Y0,0(�,⌅) = 0 (3)

⇤ �

0
sin � d�

⇤ 2�

0
d⌅ |Y⇥,m(�,⌅)|2 = 1 (4)

Ĥ R̂(⌅0) = R̂(⌅0) Ĥ (5)

R̂(⌅0) (6)

= R̂(⌅0) ⇥(r,⌅) = R̂(⌅0)
�
Ĥ ⇤(r,⌅)

⇥
= Ĥ

�
R̂(⌅0) ⇤(r,⌅)

⇥
(7)

Ĥ (8)

⇥(r,⌅ + ⌅0) = Ĥ⇤(r,⌅ + ⌅0) (9)
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R̂(⌅0) (5)

= R̂(⌅0) ⇥(r,⌅) = R̂(⌅0)
�
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Laboratoire A.Cotton - Orsay

�E = ~2

I ⇠ (10�34)2

10�25⇥(10�9)2 ⇠ 1 µeV

⇠ 10 mK ou ⇠ 1 GHz

~! ⇠ 50� 500 meV

En = (n+ 1/2)~!

spectre de 
l’oscillateur harmonique
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H⇤| >= E⇤| >

H⇤ = � ~2
2µ

[
@2

@r2
+

2

r

@

@r
� L2

~2r2 ]�
q2

4⇡✏0r

E = P 2
G/2(m+M) + E⇤ ( ~rG,~r) = ei

~PG. ~rG/~ (r, ✓,')

HG H*

H =
P 2
G

2(M +m)
+

P ⇤2

2µ
� q2

4⇡✏0r

Atome d’Hydrogène H = P 2
p /2M + P 2

e /2m� q2/4⇡✏0r

Centre de masse : ~rG =
M ~rp +m~re
M +m

~r = ~rp � ~re

~PG = (m+M)
d ~rG
dt

= ~Pp + ~Pe~P ⇤ = µd~r
dt (= m ~Pp�M ~Pe

m+M )
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Veff =
~2l(l + 1)

2µr2
� q2

4⇡✏0r

 (r, ✓,') = Rn,l(r)Yl,m(✓,')

Rn,l(r) = exp(��r)⇥ r

l ⇥ v(r) �2 = �2mE/~2

-> une (nouvelle !) équation de Kummer

y
d2v

dy2
+ (2l + 2� y)

dv

dy
� (l + 1� k)v = 0

y = 2�r et k = me2/4⇡✏0�~2

n = n⇤ + l + 1

E = � me4

8✏20h
2n2

voir (TD)

l + 1� k = �n⇤ = entier
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� = �n =

me2

4⇡✏0~
1
n =

1
a0n

où a0 est le rayon de Bohr

En = � 1
2

e2

4⇡✏0a0

1
n2 = � 13.6

n2 eV

R3,2 / (r/a0)2e�r/3a0

R3,0 / (3� 6r/a0 + 2(r/a0)2)e�r/3a0

R3,1 / (2� r/a0)(r/a0)e�r/3a0

R1,0 / e�r/a0

R2,1 / (r/a0)e�r/2a0

R2,0 / (1� r/2a0)e�r/2a0
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Chapitre 5

Spin

Spin 1/2
composition de moments cinétiques
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1922 (antérieur à la MQ) : faiseau d’atome (Ag = [46]5s1) 
neutre mais avec un moment magnétique

~F = ~r(~µ. ~B) et ~� = ~µ⇥ ~B

modèle classique µ = IS~k = � qv

2⇡r
⇡r2~k = � q

2m
vr~k = � q

2m
~L

µ = �0~L ou �0 = � q
2m est le rapport gyromagnétique

d~µ
dt = �0~µ⇥ ~B ! précession
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~F = µz
@Bz

@z
~k

direction aléatoire du moment, on s’attend à observer en 
mécanique classique un segment continu entre -𝜇 et +𝜇

et en mécanique quantique des valeurs quantiques 
correspondant à la quantification de Lz :

2l+1 valeurs = nombre impair = 
µ = m�0~ ⇠ m⇥ 9.310�24 JT

mais en pratique 2 pics avec μB = 9.27 10-24 JT
mais PAS de pic en zéro

mz = 1/2   => 

μ n’est PAS associé au moment ORBITAL de l’électron mais à un 
degré de liberté INTERNE appelé SPIN

µ = �e
~
2 ! �e = 2�0



expérience de Stern-Gerlach

transition 2p->1s du sodium 
        -> 2 Raies
structure hyperfine liée
au couplage spin-orbite

Expérience de Einstein & de Haas
déviation du miroir sous champ liée à la 
conservation du moment cinétique
-> rapport gyromagnétique = 2

65

le concept de SPIN a été introduit en 1925 par Uhlenbeck & Goudsmit :
        «tout électron possède un moment cinétique intrinsèque égal à        »            ~/2
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Les particules élémentaires : leptons (non soumis à l’interaction 
forte) = électrons, muons, neutrinos,... et quarks (soumis à toutes les 

interactions) sont toutes de spin demi-entier.

on appelle ces particules FERMIONS

            mais existe-t-il des particules à spin entier ?

ou des bosons composites : He4, les électrons d’une paires (de 
Cooper) dans les supraconducteurs, les excitons....

on les appelle BOSONS, mais toutes sont des bosons de jauges
= intermédiaires des interactions fondamentales

(photon = interaction électromagnétique, gluons = interaction forte, 
Z0,W = interaction faible et peut-être... le boson de Higgs)

OUI

 Remarque : 

protons et neutrons sont des particules composites (quarks) 

�
proton

⇠ 2.8 q

mp
et �

neutron

⇠ �1.9 q

mn
>> q/m
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Soit un Hamiltonien de deux (ou plus généralement N) particules INDISCERNABLES : 
cet Hamiltonien est invariant par permutation des particules H(x1,x2) = H(x2,x1)

Soit l’opérateur Permutation (P12) des 2 particules : [H,P12]=0
H et P12 ont donc même vecteurs propres et P122 = Id

𝝍𝝍 est donc soit symétrique (𝝍(x1,x2) = 𝝍 (x2,x1)) 

soit antisymétrique (𝝍(x1,x2) = - 𝝍 (x2,x1)) 

On ne peut pas mettre deux fermions dans le même état 
quantique (= tous nombres quantiques : n,l,m... ET spins 

identiques) = principe d’exclusion de Pauli

Les bosons sont les particules de Ψ symétriques et les 
fermions les particules de Ψ antisymétriques

 (x1, x2) = �a(x1)�b(x2)� �a(x2)�b(x1)

mais si �a = �b (même état quantique) alors  = 0

dans ce cas : 
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L’espace des spin est donc un espace de dimension 2 

on note |+ > et |� > les 2 vecteurs propres

de valeurs propres ±~/2

Remarque 1 : les particules quantiques n’obeissent pas à la statistique (classique) 
de Maxwell-Boltzmann mais à des statistiques quantiques spécifiques 

(Fermi-Dirac pour les Fermions et Bose-Einstein pour les Bosons, voir M1)

Remarque 2 : le spin n’a PAS  de «représentation» classique

vitesse de rotation de l’électron (de rayon rc) sur lui même ?

mc2 = q/4⇡✏0rc et moment cinétique J = mr2c!/2 = ~/2
! veq = rc! = [4⇡✏0~c/q2]⇥ c = 137c !

S
z

= ~/2
✓
1 0
0 �1

◆
, S

x

= ~/2
✓
0 1
1 0

◆
et S

y

= ~/2
✓
0 �i
i 0

◆

Remarque : on aurait pu utiliser les opérateurs S+ et S- pour construire Sx et Sy 

Si = [~/2]⇥ �i, ou �i = matrice de Pauli
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il y a un angle de 180° entre +z et -z dans l’espace réelle ( ~µz. ~µ�z = �1)

mais dans l’espace de spins : |+ > et |� > sont ORTHOGONAUX

rotation de θ dans l’espace réel = rotation de θ/2 dans l’espace des spins

θ 
z

S

✓

= S

z

cos✓ + S

x

sin✓ = ~/2
✓
cos✓ sin✓

sin✓ �cos✓

◆

|+ >✓= cos(✓/2)|+ > +sin(✓/2)|� >

Ry(✓)|+ >= |+ >✓

Ry(✓) = exp(�i✓�y/2) = cos(✓/2)Id� isin(✓/2)�y

[Si, Sj ] = i~Sk = règles de commutation des moments cinétiques

S2 = S2
x

+ S2
y

+ S2
z

= 3~2/4
✓
1 0
0 1

◆
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représentation complète du système :

Odegrés de liberté en 
TRANSLATION (x,y,z)

degré de liberté 
interne = SPIN

produit tensoriel des espaces de Hilbert correspondants

| >= | + > ⌦|+ >z +| � > ⌦|� >z

| +|2=densité de probabilité de présence dans l’état |+ >z

H = Hexterne + Hspin

Energie cinétique

+ potentiel central, harmonique,.... 

V = �~µ. ~B = �gµB(~L+ ~S) ~B

action du champ magnétique : 

Hspin = �µBBz

✓
1 0
0 �1

◆

(en prenant l’axe des z selon B)
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i~@a±
@t

= �± µBBza±

a± = A±e
�±i!0t/2

état de spin : |� >=

✓
a+
a�

◆

!0 = �qBz

m

<  |µz| >= µB(A
2
+ �A2

�) = constante

precession de Larmor

<  |µ
x

| >= 2µ
B

A+A�cos(!0t)

<  |µ
x

| >= 2µ
B

A+A�sin(!0t)
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�E = ~!0

|+ >

|� > -> principe de la RMN
(Résonnance Magnétique Nucléaire)

~

B1 = B1cos(!t) ~ux

+B1sin(!t) ~uy

En présence de Bz + champ tournant

|!1| = |� �B1| << |!0|

Hspin = ~
2

✓
!0 !1e

�i!t

!1e
i!t �!0

◆
b±(t) = a±(t)e

±i!t

b̈± +
⌦2

4
b± = 0 ⌦2 = (! � !0)

2 + !2
1

et

avec

|� >=

✓
a+
a�

◆

b+(t) = cos(⌦t/2) + ↵sin(⌦t/2) et b�(t) = �sin(⌦t/2)

Equation différentielle ! � = �i!1/⌦ et ↵ = i(! � !0)/⌦

(↵2 + �2 = 1)
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probabilité de transition entre les états |+ > (à t=0) et |� > (à t) :

P�(t) =
!2

1
⌦2 sin2(⌦t

2 ) résonnance pour ! = !0

Il est extrêmement difficile en pratique de préparer tous les spins dans l’état +

⇧�
⇧+

= exp(
~!0

kBT
)

~!0
kBT ⇠ 10�5 à 300K et !0 = 60MHz

A l’équilibre thermique 

50,00025% des spins dans l’état +
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«Neurospin» Saclay : 11.7T avec une 
homogénéïté de 10-10

IRM : on regarde les protons de l’eau 
en utilisant le fait que la teneur en 

eau des différentes cellules (malade et 
saine) n’est pas la même. Un gradiant 
de champ permet de faire des coupes 

et de reconstruire une image 3D

Aimant : généralement bobine 
supraconductrice (NbTi) de quelques Tesla 

(typiquement 3T)

Bloch et Purcell (1946 -> Prix Nobel 1952)
1979 première image sur l’homme 
Prix Nobel de Chimie : Ernst 1991 

et Médecine : Lautenbur & Mansfield 2003
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COMPOSITION de 2 spins 1/2

✏ = ✏spin1 ⌦ ✏spin2 = espace vectoriel de dimension 2x2=4

|� >= |± >1 ⌦|± >2= |�1,�2 > avec �1 = ±, �2 = ±
~S =

~S1 ⌦ Id2 + Id1 ⌦ ~S2 noté simplement

~S1 +
~S2

et : S2 = ( ~S1 + ~S2)
2 = S2

1 + S2
2 + 2 ~S1. ~S2

(S2
1 + S2

2)|±,± >=
3

2
~2|±,± >

on a : Sz|+,+ >= ~|+,+ >, Sz|�,� >= �~|�,� >

et Sz|+,� >= Sz|�,+ >= 0

et on a bien : S2|±,± > 2~2|±,± >

|±,± > sont des vecteurs propres de S2
avec s=1

( ~S1
~S2 = S1xS2x + S1yS2y + S1zS2z)

avec m = ±1, respectivement
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en résumé : 2⌦ 2 = 3� 1 (voir aussi TD)

on aurait aussi (pour 2 spins 1) 3⌦ 3 = 5� 3� 1 (programme M1)

et le vecteur propre  associé à mz=0 ?

il est proportiel à : S�|+,+ >/ (|�,+ > +|+,� >)

i.e. |s = 1,m = 0 >= 1p
2
(|�,+ > +|+,� >)

est ORTHOGONAL aux 3 vecteurs propres précédents
de plus, il vérifie : 

c’est le vecteur propre s=0, m=0

S2[
1p
2
(|�,+ > �|+,+ >)] = Sz[

1p
2
(|�,+ > �|+,+ >)] = 0

1p
2
(|�,+ > �|+,� >)et le vecteur

= état intriqué



77

espace de dimension 4

l’état 1s est donc dégénéré 4 fois

W |1,m >= A
4 et W |0, 0 >= � 3A

4

état fondamental 1s
+ mouvement du centre de masse

retour sur l’atome d’Hydrogène
✏ = ✏

externe,e

⌦ ✏
spin,e

⌦ ✏
externe,p

⌦ ✏
spin,p

cette dégénérescence est partiellement levée par l’interaction 
dipolaire entre les spins de l’électron et du proton

A=5.87.10-6 eV << 10 eV 
                      (écart typique entre niveaux)

~Se. ~Sp =
1

2
[S2 � S2

e � S2
p ] =

S2

2
� 3~2Id

4

W = �2

3

µ0

⇡a30
~µe. ~µp =

A

~2
~Se. ~Sp
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|1,m >

|0, 0 >

�E = �5.87.10�6 ev

<=> � = 21 cm

�t ⇠ ~/�E ⇠ 107 ans

 tous les 10 milions d’années le spin de l’électron d’un atome se 
retourne et il y a émission d’une raie caractéristique à 21 cm 

Hydrogène = 90% des atomes du milieu interstellaire 
0.3 atome/cm3 en moyenne (He = 10% restant)

matière essentielle pour la formation des 
nouvelles générations d’étoiles

effet Doppler => mouvement intergalaxie
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et pour 2 électrons (atome He) : Z=2

H = P 2
1

2m + P 2
2

2m � Ze2

r1
� Ze2

r2
+ e2

r12
+ mvt centre de masse

interaction e-e (corrélations) négligée ici (-> M2) En = �Z2E1

n2

peut-on mettre les 2 électrons sur le niveau 1s ?

fermions : la fonction d’onde doit être ANTISYMETRIQUE

SPIN 1 : |� > est symétrique (|+,+ >, |�,� > ou 1/
p
2(|+,� > +|�,+ >)

donc la partie spatiale doit être antisymétrique : 

�(r1, r2) = 1/
p
2(�1(r1)�2(r2)� �1(r2)�2(r1))

SPIN 0 : |� > est antisymétrique ( 1/
p
2(|+,� > �|�,+ >)

et la partie spatiale peut dans ce cas être symétrique

�(r1, r2) = �1(r1)�1(r2)
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remarque 1 : l’énergie du fondamental serait dans ce cas 
-2x22E1= -8E1 mais expérimentalement on trouve -5.8E1 : 

les interactions e-e ne sont pas négligeables

remarque 2 : pour N spins 1/2 la fonction d’onde antisymétrique peut 
être construite à l’aide du déterminant de Slatter (état fondamental)

| >= 1p
N !

��������

�1(r1)|+ > �1(r1)|� > ... �N (r1)|+ > �N (r1)|� >
�1(r2)|+ > �1(r2)|� > ... �N (r2)|+ > �N (r2)|� >

... ... ... ... ...
�1(rN )|+ > �1(rN )|� > ... �N (rN )|+ > �N (rN )|� >

��������

remarque 3 : N bosons peuvent être condensés tous sur le niveau fondamental

| >= �1(r1)�1(r2). . . .�1(rN )|spin >

refroidissement d’atomes par laser
+ «évaporation» dans un piège magnétique

~ qq milliers d’atomes à ~ 100 nK
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of lanthanum is 7/2, hence the nuclear magnetic
moment as determined by this analysis is 2.5
nuclear magnetons. This is in fair agreement
with the value 2.8 nuclear magnetons deter-
mined, from La III hyperfine structures by the
writer and N. S. Grace. 9
' M. F. Crawford and N. S. Grace, Phys. Rev. 4'7, 536

(1935).

This investigation was carried out under the
supervision of Professor G. Breit, and, I wish to
thank him for the invaluable advice and assis-
tance so freely given. I also take this opportunity
to acknowledge the award of a Fellowship by the
Royal Society of Canada, and to thank the
University of Wisconsin and the Department of
Physics for the privilege of working here.
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete' ?

A. EINsTEIN, B. PQDoLsKY AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufFicient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

A NY serious consideration of a physical
theory must take into account the dis-

tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.
In attempting to judge the success of a

physical theory, we may ask ourselves two ques-
tions: (1) "Is the theory correct?" and (2) "Is
the description given by the theory complete?"
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
conzp/eEe, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the physical reality must have a counter
part in the physical theory We shall ca. 11 this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.
The elements of the physical reality cannot

be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e. , with
probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding lo this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recognizing a
physical reality, at least provides us with one
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Paradoxe EPR

81

une grandeur physique 
est réelle si elle peut 
être déterminée sans 

incertitude, sans 
perturber le système
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where a is a number, then the physical quantity
A has with certainty the value a whenever the
particle is in the state given by P. In accordance
with our criterion of reality, for a particle in the
state given by P for which Eq. (1) holds, there
is an element of physical reality corresponding
to the physical quantity A. Let, for example,

'p —e (pre/ p) ppg (2)

where h is Planck's constant, po is some constant
number, and x the independent variable. Since
the operator corresponding to the momentum of
the particle is

p = (h/2rri) 8/Bx,
we obtain

p' =pp = (h/2iri) 8$/Bx =ppp (4)

Thus, in the state given by Eq. (2), the momen-
tum has certainly the value pp. It thus has
meaning to say that the momentum of .the par-
ticle in the state given by Eq. (2) is real.
On the other hand if Eq. (1) does not hold,

we can no longer speak of the physical quantity
A having a particular value. This is the case, for
example, with the coordinate of the particle. The
operator corresponding to it, say g, is the operator
of multiylication by the independent variable.
Thus,

such way, whenever the conditions set down in
it occur. Regarded not as a necessary, but
merely as a sufficient, condition of reality, this
criterion is in agreement with classical as well as
quantum-mechanical ideas of reality.
To illustrate the ideas involved let us consider

the quantum-mechanical description of the
behavior of a particle having a single degree of
freedom. The fundamental concept of the theory
is the concept of state, which is supposed to be
completely characterized by the wave function
P, which is a function of the variables chosen to
describe the particle's behavior. Corresponding
to each physically observable quantity A there
is an operator, which may be designated by the
same letter.
If P is an eigenfunction of the operator A, that

is, if
A/=a—g,

In accordance with quantum mechanics we can
only say that the relative probability that a
measurement of the coordinate will give a result
lying between a and b is

P(a, b) = PPdx= I dx=b a. —(6)

Since this probability is independent of a, but
depends only upon the difference b—a, we see
that all values of the coordinate are equally
probable.
A definite value of the coordinate, for a par-

ticle in the state given by Eq. (2), is thus not
predictable, but may be obtained only by a
direct measurement. Such a measurement how-
ever disturbs the particle and thus alters its
state. After the coordinate is determined, the
particle will no longer be in the state given by
Eq. (2). The usual conclusion from this in
quantum mechanics is that when the momentnm
of a particle is known, its coordhnate has no physical
reali ty.
More generally, it is shown in quantum me-

chanics that, if the operators corresponding to
two physical quantities, say A and B, do not
commute, that is, if AB/BA, then the precise
knowledge of one of them precludes such a
knowledge of the other. Furthermore, any
attempt to determine the latter experimentally
will alter the state of the system in such a way
as to destroy the knowledge of the first.
From this follows that either (1) t'he guanturn-

mechanical description of rea1ity given by the wave
function is not cornplele or (2) when the operators
corresponding .to two physical qlantities do not
commute the two quantifies cannot have simul-
taneous reality. For if both of them had simul-
taneous reality—and thus definite values—these
values would enter into the complete description,
according to the condition of completeness. If
then the wave function provided such a complete
description of reality, it would contain these
values; these would then be predictable. This
not being the case, we are left with the alter-
natives stated.
In quantum mechanics it is usually assumed

that the wave function does contain a complete
description of the physical reality of the system
in the state to which it corresponds. At first

définition d’une 
observable et des valeurs 

propres

Si la fonction d’onde est 
une onde plane, p est 

parfaitement déterminée 
(p=p0) donc «réelle»

mais on ne peut pas 
déterminer la position de 
la particule, elle n’a donc 

pas de «réalité»

de façon générale, si A 
et B ne commutent pas, 
les quantités physiques 
associées n’ont pas de 

réalité simultanée

la fonction d’onde contient 
toute l’information du 

système
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sight this assumption is entirely reasonable, for
the information obtainable from a wave function
seems to correspond exactly to what can be
measured without altering the state of the
system. We shall show, however, that this as-
sumption, together with the criterion of reality
given above, leads to a contradiction.

2.
For this purpose let us suppose that we have

two systems, I and II, which we permit to inter-
act from the time t =0 to t =T, after which time
we suppose that there is no longer any interaction
between the two parts. We suppose further that
the states of the two systems before t=0 were
known. We can then calculate with the help of
Schrodinger's equation the state of the combined
system I+II at any subsequent time; in par-
ticular, for any t) T. Let us designate the cor-
responding wave function by +. Ke cannot,
however, calculate the state in which either one
of the two systems is left after the interaction.
This, according to quantum mechanics, can be
done only with the help of further measurements,
by a process known as the reduction of the wave
packet. Let us consider the essentials of this
process.
Let a~, a2, a3, be the eigenvalues of some

physical quantity A pertaining to system I and
u((x(), u2(x)), us(x(), ~ the corresponding
eigenfunctions, where x& stands for the variables
used to describe the first system. Then +, con-
sidered as a function of x~, can be expressed as

+(x(, xm) = Q ))(.(xm)u. (x(),

where x2 stands for the variables used to describe
the second system. Here P„(x&) are to be regarded
merely as the coefficients of the expansion of +
into a series of orthogonal functions u„(x)).
Suppose now that the quantity A is measured
and it is found that it has the value af, . It is then
concluded that after the measurement the first
system is left in the state given by the wave
function uh(x(), and that the second system is
left in the state given by the wave function
ph(x2). This is the process of reduction of the
wave packet; the wave packet given by the

infinite series (7) is reduced to a single term
)t h(xg)uh(x().
The set of functions u„(x() is determined by

the choice of the physical quantity A. If, instead
of this, we had chosen another quantity, say B,
having the eigenvalues b~, b2, b3, and eigen-
functions v((x(), v2(x(), v3(x(), we should
have obtained, instead of Eq. (7), the expansion

4'(x), xm) =Q ((),(x2)v, (x(),
s=l

+(x& x2) — e(2&&ih) (&s—&2+&o) ndp
—co

where x0 is some constant. Let A be the momen-
tum of the first particle; then, as we have seen
in Eq. (4), its eigenfunctions will be

(x ) e(2m(/h) yes, (io)
corresponding to the eigenvalue p. Since we have
here the case of a continuous spectrum, Eq. (7)
will now be written

where y, 's are the new coeAicients. If now the
quantity 8 is measured and is found to have the
value b„we conclude that after the measurement
the first system is left in the state given by v„(x()
and the second system is left in the state given
by (.(»)
We see therefore that, as a consequence of two

different measurements performed upon the first
system, the second system may be left in states
with two different wave functions. On the other
hand, since at the time of measurement the two
systems no longer interact, no real change can
take place in the second system in consequence
of anything that may be done to the first system.
This is, of course, merely a statement of what is
meant by the absence of an interaction between
the two systems. Thus, it is possible to assign two
different wave functions (in our example )Ih and
e„) to the same reality (the second system after
the interaction with the first).
Now, it may happen that the two wave func-

tions, )th and e„, are eigenfunctions of two non-
commuting operators corresponding to some
physical quantities P and Q, respectively. That
this may actually be the case can best be shown
by an example. Let us suppose that the two
systems are two particles, and that

On construit une fonction 
d’onde à 2 particules

La mesure «réduit» le 
paquet d’onde

On part d’une 
superposition (continue) 

d’ondes planes

on mesure la quantité de 
mouvement de 1 (ici p)

 2 particules intéragissent 
pendant un laps de temps T 

pour former un état 
intriqué puis 

N’INTERAGISSENT PLUS mais en mesurant 1, on fixe 
aussi l’état de 2

différentes projections sont 
possibles (on peut mesurer 

différentes grandeurs)

L’évolution temporelle est 
donnée par l’équation de 

Schrodinger
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where

%(x(, xg) = P„(x,)u, (x))dP,
4

(x )—s—(sw(l h) (zg—zo) P (12)

This P„however is the eigenfunction of the
operator

P= (8/2')(7/Bx2, (13)

corresponding to the eigenvalue —p of the
momentum of the second particle. On the other
hand, if 8 is the coordinate of the first particle,
it has for eigenfunctions

corresponding to the eigenvalue x, where
()(xq—x) is the well-known Dirac delta-function.
Eq. (8) in this case becomes

where

e(21r i/h) (x—F2+$0) gldp

=h()(x—xp+xo). (16)

corresponding to the eigenvalue x+xo of the
coordinate of the second particle. Since

PQ QP =1(/2mi, —
we have shown that it is in general possible for
P~ and p„ to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.
Returning now to the general case contem-

plated in Eqs. (7) and (8),. we assume that P),
and y„are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues pI, and q„, respectively. Thus, by
measuring either A or 8 we are in a position to
predict with certainty, and without in any way

This q, however, is the eigenfunction of the
operator

(17)

disturbing the second system, either the value
of the quantity P (that is p)„) or the ~alue of the
quantity Q (that is q„). In accordance with our
criterion of reality, in the first case we must
consider the quantity I' as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions P), and q, belong to the same
reality.
Previously we proved that either (1) the

quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with rioncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.
One could object to this conclusion on the

grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only +hen they can be
simultaneously measured or predi cted. On this
point of' view, since either one or the other, but
not both simultaneously, of the quantities I'
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon the process of measurement carried
out on the first system, which does, not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.
While we have thus shown that the wave

function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.

Alors on «sait» que la 
particule 2 à une 

quantité de mouvement -
p sans pour cela devoir 

la mesurer donc on 
connait la quantité de 

mouvement de la 
particule 2 SANS LA 
PERTURBER, elle est 

donc «réelle»

de même si on mesure x1 
on «connait» x2 SANS 

PERTURBER la particule 
2, la position de 2 est 

donc également «réelle»

mais X et P ne 
commutent pas ! donc p2 

et x2 ne peuvent pas 
être tous deux «réels» !

donc la mécanique 
quantique ne peut pas 

être une théorie 
complète = il existe des 
VARIABLE CACHEES qui 
fixe l’état de la particule 
2 (et celui de 1) dès t=T 

(exemple des cartes)

OU la mesure de x1 (ou 
p1) PERTURBE la 

particule 2 même si les 
deux particules 

n’intéragissent pas :
la mécanique quantique 
serait dans ce cas une 
théorie NON LOCALE
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un cas équivalent : état intriqué de spin 0

chaque spin (a et b) est mesuré selon un axe différent (ua et ub) 

on défini la fonction de corrélation de ces deux mesures 
= moyenne (normalisée) des résultats en A et en B 

A B ub ua

spin a spin b

E( ~ua, ~ub) =
4

~2 <  | ~Sa. ~ua ⌦ ~Sb. ~ub| >= � ~ua. ~ub

En mécanique Quantique

Dans la théorie des variables cachées : il existe un paramètre (inconnu) λ qui a fixé les 
états de spin a et b avant la mesure (par exemple le melange des cartes). Le resultat 

de la mesure en A dépend alors de λ et ua mais PAS de ub (principe de localité)

E( ~ua, ~ub) =
4

~2

Z
P (�)A(�, ~ua)B(�, ~ub)d�
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On s’interesse alors à la quantité
 

S = E( ~ua, ~ub) + E( ~ua, ~u0
b) + E( ~u0

a,
~u0
b)� E( ~u0

a, ~ub)

u’a
u’b

ua

ub

la mécanique quantique prévoit (pour θ=45°)

S = �
p
2/2�

p
2/2�

p
2/2�

p
2/2 = �2

p
2

= inégalité de Bell, la mesure de S pour des photons polarisés   
     (A.Aspect, Orsay 1982) a donné |S| = 2.697± 0.015

et pour la théorie des variables cachées, 
la mesure ne peut donner que         donc±~/2

A(�, ~ua)B(�, ~ub) +A(�, ~ua)B(�, ~u0
b) +A(�, ~u0

a)B(�, ~u0
b)�A(�, ~u0

a)B(�, ~ub) =

donc S = 2E( ~ua, ~ub) et |S|  2

A(�, ~ua)(B(�, ~ub) +B(�, ~u0
b)) +A(�, ~u0

a)(B(�, ~u0
b)�B(�, ~ub)) = 2A(�, ~ua)B(�, ~ub)
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Crypographie Quantique
 Alice dispose de 4 états de spins possibles +x -x, +z et -z, elle envoie une série de 

spins à Bernard selon une séquence connue d’elle seule : par exemple 
 +z, -z, +x, -z, -z, -x, +x, -z

Bernard mesure ces spins mais comme il ne connait pas l’axe utilisé par Alice, il fait 
ces mesures aléatoirement et décide de mesurer selon z,x,x,z,x,z,x et x et obtient : 

+z, -x, +x, -z, -x, +z, et +x. 

Il rend public une partie (disons la moitié) des résultats, soit : +z, -x, +x et -z. 

Alice compare alors les résultats obtenus selon les axes communs (ici 1, 3 et 4) et 
vérifie qu’ils sont TOUS identiques.

Mais si un espion avait lu la séquence (également selon des axes choisis 
aléatoirement). Il aurait pu choisir par exemple l’axe z pour le spin #3 et 

aurait obtenu (par exemple) +z (ou -z avec la probabilité 1/2).



88

 Il aurait alors renvoyé +z à Bernard (et non pas +x) qui aurait obtenu soit +x (en 
accord avec l’envoi d’Alice) soit -x. Donc si Alice a été espionnée, la moitié (en 
moyenne) des mesures «a priori justes» seront fausses (en fait 1/4 car l’espion 

aurait aussi pu tomber sur le bon axe). Alice pourra donc aisemant vérifier si elle a 
été espionnée ou non (sur 500 mesures, la probabilité que l’espion n’altère pas les 

mesure de Bernard est de (3/5)500 soit 10-63).

autre «application» : les ordinateurs quantiques. Le «principe» serait ici de créer 
des états intriqués des différents bits. Pour effectuer une opération sur une série 
de bit, on agirait non plus «en série» sur un bit puis le suivant mais directement 
sur l’état intriqué, ce qui reviendrait à faire l’opération «en parrallèle» sur tous 

les bits de la séquences, d’où un gain de temps considérable!

Après avoir vérifié qu’elle n’a pas été espionnée, Alice dévoile publiquement (donc 
à Bernard) la séquence qu’elle avait choisi pour les 500 autres spins et Bernard 

peut alors sélectionner les résultats utiles pour reconstruire le message


