Mécanique Quantique
20x1.5h de Cours : Thierry Klein
thierryklein@grenoble.cnrs.fr - 04 76 88 74 64
16x1.5h de TDs : Hermann Sellier & Arnaud Ralko

(contréle continu : 20% de la note avec regle de max)

seront traites :

Dualité onde-corpuscule et principe d‘incertitude, paquets d’ondes,
équation de Schrodinger,
puits de potentiel, barrieres, oscillateur harmonique,
formalisme matricielle, bra-kef,
moment cinétique et spin

ne seront PAS traites :

méthodes perturbatives et variationnelle, théorie de la diffusion, regle d’or de
Fermi, décohérence, matrice densité (M1), seconde quantification (M2)
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- 1675 : Théorie corpusculaire de la lumiére (Newton) , mais
Huygens (1677) établie théorie ondulatoire de la lumiere

- 1687 : Newton : mécanique -> espace des phases : 1, p

- 1865 : Maxwell : électro-magnétisme, semble confirmer
l'approche d'Huygens (lumiére = onde)

- 1866 : Physique statistique (Boltzmann, théorie cinétique)
et thermodynamique (entropie,...)

Kelvin 1857 : «la physique a fourni une description cohérente et compléte de ‘univers»

Maxwell 1871 : «les hommes de sciences passeront leur temps a ajouter quelques
décimales aux grandes constantes de la physique»

Michelson 1903 : «les lois des sciences sont désormais si fermement établis que la
possibilité qu'ils soient supplantés un jour est excessivement lointaine»




XXe siecle : Philipp Lenard :
effet photoélectrique :

théorie ondulatoire : |'électron se met a vibrer
sous |'effet de l'onde EM et lorsqu'il a assez
d'énergie il s'échappe

i(uA)
Forte intensité lumineuse
I > 1y

/| Faible intensité lumineuse
—— |

il existe une fréquence seuil pour déclencher l'effet mais |'émission est instantanée

le potentiel d'arrét est indépendant de l'intensité lumineuse
(théorie ondulatoire intensité = énergie ?)

e nombre d’électrons émis (intensité) proportionnel a l'intensité lumineuse




Eistein introduit alors la notion de «quanta de lumiere»

= PHOTON (corpuscule) d’énergie :

énergie des électrons arrachés (seuil) proportionnelle a la fréquence de la lumiére

Apres avoir obtenu la charge élémentaire de
I'électron (expérience de la goutte d'huile 1910)
Millikan, persuadé qu'Einstein avait tort, chercha a
invalider sa proposition mais vérifiera la linéarite du L
potentiel d'arrét avec la fréquence (1916): N St %0 10 T

pente = h/e

Cela permet d’expliquer |'effet Compton (1928)
AN o< 1 — cos(0)




lumiére = onde ET corpuscule

= X

diffraction, interférences discontinuité des échanges d’énergie

mais ceci est également vrai pour les ELECTRONS

En 1906 J.J.Thomson montre que les rayons cathodiques
sont constitués de "corpuscules” (les futurs électrons)

et 20 ans plus tard, G.P.Thomson
montre que les électrons sont diffractes
par une fente et sont donc des ondes
(nous reviendrons sur ce point)

les deux regurent le prix Nobel pour leur déecouverte
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20
Wavelength 7. (um)

densité spectrale d'énergie : Wien 1896 :

description phénoménologique a haute fréquence
3
Rayleigh-Jeans : quantification des modes

E.M dans une cavité k = nn/a
dN = 2 x 4Ark*dk/8 x (a/7)?

permet de retrouver |‘ensemble du spectre
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Apparition de «discontinuités» a |’échelle microscopique
-> THEORIE DES QUANTA

expérience de Franck et Hertz (1914) :
quantification du courant d’émission
(= niveau d'énergie des électrons dans atomes)
Série de Balmer etc...

expérience de Stern et Gerlach (1921) : g 1‘
quantification de l‘orientation du moment .<'

magnétique des atomes

Sommerfeld : regle de quantification
(pour tout couple de variables conjuguées de Lagrange E-t,...)

7{1)(1’(] = 7l

mais valable que pour les systemes périodiques ?
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De méme en matiere condensée :

Chaleur Spécifique
(au dela de la loi de Dulong-Petit)

Cr x T3

Cldomond)

équivalent a la loi de Stephan
du rayonnement du corps noir

B T

quantification des modes de vibration du cristal
= PHONONS

De méme pour les électrons de conduction d'un métal C ~ T

et toutes leurs propriétés relévent de la mécanique quantique
(statistique différente de celle des photons, phonons car principe d’exclusion)




-> mécanique ONDULATOIRE

lumiére = onde ET corpuscule mais électrons : particule ou onde ?

caracteére corpusculaire : matiére constituée de «briques
élémentaires» (atomes), découverte de 'électron par Rutherford en 1911,
radioactivité : émission de particules (électron, Hélium)

Caractéristique premiere d'une onde :
interférences entre ondes
traversant 2 fentes (d'Young)

1
70— cosz(g (5;1:)

Fentes
Capteur




et en faisant une expérience identique avec des électrons....

De Broglie : généralisation de la dualité

onde-corpuscule a tout objet microscopique




interprétation PROBABILISTE

on peut définir des amplitudes de probablité de passer par la
fente 1 (@1) ou la fente 2 (@)

By ()] + |Pa(z) > + B D5 + DDy

—

si l'électron passait en 1 OU en 2 B ctonces

le terme d'interférence n'existerait pas (P12 = P1+P2)
l'électron passe en 1 ET en 2
ONDE = densité de probabilité de présence

La notion d'onde de probabilité a été initialement introduite par Bohr sous le
terme de «champ guidé» (ou Einstein «champ fantome»)

fonction scalaire des coordonnées de toutes les particules. Le
mouvement d’une particule est régit par le principe de conservation
de E et p (et les conditions aux limites) et est maintenu dans les
limites imposés par le champ «guidé». La probabilité qu'une
particule suive un chemin particulier est alors donnée par le carré
du «champ guidé» (crée en quelque sorte par les autres particules)




Si une particule peut étre dans un état ®; ou dans un état ®; elle
également étre dans |'état ai®i+a.®; : principe de SUPERPOSITION

le chat de Schrodinger

|chat>= 1/+/2(Jmort> +|vivant>)

est mort ET vivant

sauf si on ouvre la boite, dans quel cas on pourra voir s'il est mort OU vivant

la MESURE modifie |'état quantique !

de la méme fagon

peut-on «regarder» comment les électrons traverse les fentes ?




de plus, si une particule est alors localisée dans un intervale ~ Ax, le
«champ guidé» correspondant est crée par la superposition d‘ondes planes
(voir plus loin) distribuées sur une largeur ~ Ak tel que AxAk ~ 1

Age Ap = fu/2
Principe d'incertitude d’'HEISENBERG
on ne peut pas déterminer simultanément la position et l'impulsion avec

une infinie précision : influence entre 'objet microscopique et
«|'instrument>» de mesure (= lumiere)

Par exemple : fente de taile a = Ax alors Ap = pa ~ pd/D ftaille (d de la tache centrale)

d~ DAp/p ~ Dh/ap ~ DA/a

électron dans une boite de taille a = Ax ~ AE ~ pAp/m > (Ap)?/m ~ h? /ma®

Les énergies des états liés sont QUANTIFIES (discrets) -> stabilité de la matiere

~ 10 eV pour a ~ 1A




En résumé : les objets microscopiques ont un caractere corpusculaire et
ondulatoire

I'état physique d'une particule peut alors étre défini par une
«fonction d’onde (de probabilité)»
qui est perturbée par la mesure (!)
Le résultat de cette mesure est probabiliste
[mais attention la fonction d’onde est elle parfaitement bien connue :
® = exp(ikx) dans le vide]

Il n'y a aucun lien de causalité entre les états avant et apres la mesure

et certaines propriétés sont NON LOCALES (la particule peut étre
simultanément en tout point de |’espace !)

de plus les variables conjuguées (p-x, E-t)

ne peuvent pas étre déterminés simultanément avec une infinie précision




Postulats de la MQ

Pl. La connaissance de |'état quantique (a to) est completement contenue dans
un «vecteur» d'un espace de Hilbert de dimenson (in)finie (= fonction d’onde)

P2. A toute propriété observable (position, énergie,...) est associée un
opérateur (A) agissant sur les «vecteurs» (sous espace) définis en Pl.

P3. Une mesure de la grandeur physique associée a A ne peut donner qu’une
valeur propre de A

P4. Le résultat de cette mesure est alors probabiliste (et la moyenne de A
doit respecter le principe d'incertitude)

P5. Apres la mesure, |'état du systéme est projeté dans le sous-espace
engendré par les vecteurs propres associés a la valeur propre mesurée

P6. L'évolution temporelle du systéme est totalement déterminée par
l'équation de Schrodinger




@ P1+P6 semble incompatible avec PS5 (et P4)
@ Comment passe-t-on de 0<P<l (P3) a P=0 ou 1 (P5)

La MQ ne permet pas décrire totalement la réalité car elle est incompleéte (variables
cachées). Influence de la conscience dans P5 «troublante» (dans quel état était
l'univers quand il n'y avait personne pour l‘observer ?)

La MQ décrit parfaitement la réalité mais P5 n'existe pas : en faisant la mesure nous
ne «voyons» qu'une partie de |'état quantique (bien que la totalité existe dans un
«multivers») ou certains états disparaissent rapidement mais pas instantanément (lors
de la mesure ou avant) du fait du couplage avec l’environnement (décohérence)

ou

Interprétation de Coppenhague (Bohr) : la MQ n'a pas pour vocation de décrire la
«realité» (?) mais de prédire le résultat de tout ce que l'on peut mesurer.




Chapitre 1

Les postulats de la mécanique quantique

Paquets d'ondes
Principe d'incertitude
Equation de Schrodinger




Postulat 1 : Fonction d'onde : densité de probabilite de
trouver la particule dans un volume dV :

Onde plane Py () = )
= délocalisée dans tout |'espace (MAIS pas de carrée sommable)

- O(x) = Zak@k(:v)
ou en «sommation continue» (I)(T) — 1/ 2 / l/)(k)(I)k (Ll?)(l]i’,

de gj(k) = Paquets d’ondes

La largeur de la distribution en x est relié a celle de (k) par le
principe d’incertitude AxAk -~1

exemple : paquets q)(l") s (1/\/%(1,)1/26_”"2/4“2eiko‘l‘

d’ondes Gaussien

o P(k) = \fi)at»(l/?ﬂa?)I/J‘c>,""2(k’k"’)2




carrée (largeur 1) -SI,an(ﬂ'k)

s

: o : sin(nz)
* ou la fonction de Dirac est définie par : 0(z) = lim)n 00

TFlaf(z) +bg(x)] = a x TF[f(x)] + b x TF|[g(z)]

T

aTF[f(z)]
dk




On peut définir un PRODUIT SCALAIRE < U . >— L'( ) *
(espace de Hilbert) i 4

P> =< &, D >= /<I>*(1')<I>(1:)(l:u

et a toute grandeur physique est associée une
OBSERVABLE (postulat 2) = opérateur A de moyenne :

Les opérateurs seront LINEAIRES
A(»(\I(I’l B (\‘2‘1’2) = (11.4((1’1) o (,IZA((I’-Z)

et hermitique (auto-adjoint) /‘I’TA(%):/:I' = /(:’1(1)1)*(1)3([1'

=> les moyennes sont alors REELLES

Onnote Aag=1+/< A2 > — < 4 >2

Soit F(z) = (z— < x >)®(z) et |F()= [/ |F(z)|de}2 = V<22 > - <z >2= Az
G(p) = i(p— < p>)¥(p) |G(p)] = Ap

on (re)trouve alors A”LAp Z h/2




Einstein's Light Box

De méme on peut montrer que AEAt > h/2 (after a drawing by Bohn)

Si une particule (libre) se déplace a une vitesse v et on cherche Photon

Earth's
gravitation

le temps t auquel elle passe en un point x alors ce temps peut
étre obtenu avec une incertitude At=Ax/v
de méme son énergie (p?/2m) est définie a AE=vAp donc on
retrouve bien ici ApAx=AEAt

P m—

to release

Clock
(pre-set) . shutter
photon

-> polémique Bohr - Einstein
Résultats possibles d’'une mesure

La mesure de la grandeur physique donnera une valeur propre de A (postulat 3)
l'ensemble des valeurs propres peut étre discret (énergie) ou continu (position)

si ® est un etat propre de A (¢, de valeur propre a.)

alors la mesure est parfaitement définie (Aa=0) et sera égale a a, (et <A> = an)
et la réciproque est vraie

Deux fonctions d'ondes associées a des valeurs propres différentes sont orthogonales
Si plusieurs fonctions d’ondes correspondent a une méme valeur propre
on dit quil y a dégénérescence
21




Si ® n'est pas un etat propre mais
¢ = chq)n et <A Zan|cnl2
alors la mesure donnera a, avec la probabilité

’671‘2 =2 ‘ < q)n; P > ‘2 (postulat 4)

Remarque 1 : pour l'opérateur position @, (I) — 5(1 - '170)
-> décomposition de @ sur les @y (et non pas en ondes planes)
Dlip) = /@(:{:0)5(1: — xg)dz

w(xi) : densité de probabilité de trouver la particule en x;

LU(Ll‘l) = ](I)(le)|2 = '/(I)(;l'())(s(l'l i .'l'())d;l‘()l2

= / ®(x)6(zy — x)dz)? = | /Q)Ll.l(;z‘)@(‘l?)(l;r\z =0, (1),0(x) > |
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Remarque 2 : Cp — /q)(l)@;(’l‘)di
S / (') (2 )da )y ()
[ vu@e @)

Z ®,,(2)®F (2')dx’ = §(x — x')  Relation de fermeture

Juste apres la mesure la particule se trouve dans l'état ®n (postulat 5)

Soit 2 opérateurs dont on cherche a déterminer
les grandeurs associées (a et b)

on peut alors définir le (opérateur) COMMUTATEUR AB-BA = [A,B]

(et on appelle «reste de commutation» C=-i.[A,B])
[A,B]=0 <=> A et B ont les mémes vecteurs propres
et AaAb=0 et les grandeurs physiques associées (a et b) peuvent alors étre

déterminées simultanément avec une infinie précision
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inversement, on ne peut PAS connaltre simultanément les quantités physiques
associées a 2 opérateurs ne commutant pas avec une précision infinie

<D ——ih / V* (k)kyp(k)dk = / CID*(I)E[@(I)](ZI

opérateur p &

12, D] =Gl

on remarque donc que  AzAp > | < C > |/2
On peut montrer que ceci est un résultat général : AaAb > | > ‘/2

remarque : pour I'opérateur position @, (x) = 6(x — x¢)
N S ipox/h
et &, (z) = (1/V2rh)eo?/
vecteurs propres différentes d'od AxAp non nul
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Quelques opérateurs

N T

Energie cinétique, T=p?/2m (1/2m)(hV [i)% = —h2/2mA

par exemple pour |'état 1s de |'atome d’hydrogene

<T>=— <V > /2=me"/2h(4rep)?

Energie totale : HAMILTONIEN=H

w<« E/h Qe — cikz—wt) _ i(pz—FEt)/h
< @, (1hd/ot)® >= ,'h/ ‘0D /Otdr — /t\tb\ 5

< ®,(-R*/2mA)® > = /(/)' 2m)|®|*dx
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Ho = zh@@/@t Equation de Schrodinger

Si H ne dépend pas du temps (systéeme conservatif), on peut chercher @ sous la forme
laft) = U(x)x

eszt/h

avec X(f) = et

dEVA R O
dt 2




dF QR Gl
Har i i
A db i OF
O OH
o ObPEE Ot L ek 6 AT |
o oz Op g dt ot { : }

crochet de Poisson

En mécanique classique (analytique)

théoreme d’Ehrenfest

d<tps ik d<gng— OV
St oRe in N ey TR Rl
dt m dt ox

équivalent aux équations du mouvement de la mécanique
classique mais sur les VALEURS MOYENNES

i 1dE

Remarque : le paquet d'onde de déplace avec la 5, — — ko )
¥ g ~ [0
vitesse de GROUPE £ h dk

qui peut-étre différent de la vitesse de PHASE
de chaque composante




si H ne dépend pas de t, |'énergie est une constante du mouvement

si V ne dépend pas de x, px est une constante du mouvement

et on vera plus tard que si V ne dépend que de r (potentiel central), le
moment cinétique (L?) est une constante du mouvement (seconde loi de Kepler)

electrodynamique : conservation de la charge

Si la charge varie dans un élement de volume, Pe

alors un courant s’écoule a travers la surface Ot
qui entoure cet élément

+ div(je) =0

Courant de probabilité

sid — @()éi(p:t*EU/ﬁ alore

équation de conservation




Quelques remarque sur la mécanique quantique RELATIVISTE

Klein-Gordon ont cherché a formuler une équation permettant de reproduire
l'équation relativiste

E2= 22 tomig

, 2P A ,
A e AP e d
o2
mais on peut montrer que les solutions de cette équation ne permettent pas
d’avoir I'équation de conservation de w = |®(z)[*

g il 0D
mais de w = —[d

B ot qui peut etre négatif, interprétation ?

Equation de DIRAC : ler ordre

20 5
zﬁaaf = the(aV)® + mc

ol les composantes de & (et3) sont des matrices (de Pauli) et ® = quadrivecteur
-> théorie quantique des champs
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Chapitre 2

Notation de Dirac
Représentation matricielle

bra-ket
projecteur




1/V2nh / eF W (k)dk ondes planes = états propres de T

fonctions de Dirac = états propres de X

états propres de H (ou tout opérateur
formant un base)

fonctions de Block = états propres de
l'opérateur translation (potentiel périodique)

Remarque : la fonction d‘onde est CONTINUE et (généralement)
DERIVABLE (sauf potentiel infini)

La physique ne doit pas dépendre de la base choisie et certains états
quantiques (spin par exemple) ne peuvent pas étre défini a partir
d’une fonction @(x)

-> généralisation de la notation




Notation de Dirac
espace des «ket» : |n >
un état est alors également etre défini par un
vecteur «colonne» (de dimension (in)finie)
dont les composantes dépendent de la base (=jeu de ket) choisie

A1
A2

e Z i |® >=

A’!lv

espace des «bra» : < 7|

espace dual : vecteur «ligne» (de méme dimension)

Z/\,,|n > Z’\;l <in)|
<Ol e
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produit scalaire < nim el 8

norme V< nln >

inégalité Cauchy-Schwartz | < njm > |> << njn >< m|m >

par exemple dans |'espace des positions, on a comme precédemment

< q)l|q)2 >= /(I)Tq);)dl’

mais la notation est générale a toute espace (de Hilbert sauf
pour etats propres non normables) engendré par les vecteurs
propres d'un opérateur A
|z > 6(x — x0)
< 2|® >= Pzt il o 1))
<mipEei /Y 2mhetPr/h
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moyenne < A >=< ®|A|P >
au ket A|® > est associé le bra < ®|AT

A+ = opérateur adjoint de A
< Oy A d, o ®, 44+|q)1 =
(cA)=c*A*  (AB)*=B*A*  (A+B)*=A*+B*

Observable : opérateur hermitique (auto-adjoint) : A*=A,
et les spectres des valeurs propres (réelles) de A et A* sont identiques

A = mafrice Dans la base des états propres de A

Agy AT any s U g 0
A-_}l :122 e :12,1 (0] as2 0 0]
A

Al/rl ;l,,-? Alun

et At = A;*
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Comme précédemment |‘ensemble des ket associée a des valeurs propres distincts
sont orthogonaux

Si A est un observable, |'ensemble de ces états propres |a; > forme une base et
vérifie la relation de fermeture

E |(147 >< a,| = 1 (opérateur identité)

|oi; >< ;] est le projecteur sur l'état |o; > (noté Pai)

(ot plus généralement le projecteur dans le sous espace engendré par les vecterus
propres associés a a; si la valeur propre est dégénérée)

* |‘observable

« la probabilité d'obtenir @ est < ®|Poy;|® >= | < ®|ay > |?
P(\,“(I) >

N N .
* apres la mesure le systeme est dans |'etat Paa|® > ]

(Jag > si I'état est non dégénére)
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On appele ECOC un jeu d’opérateurs A,BC,... qui commutent 2 a 2 s'il existe une
base d'états propres unique a tous les opérateurs

Toutes les grandeurs physiques associées peuvent alors étre
mesurés indépendamment (et avec précision infinie)

Sur la base propre d'un ECOC

) >=3 cal®lan >

et |'évolution temporelle est donnée par |'équation de Schrodinger

soit g Hymem  avec Hym =< an|H|am >

Si|a,, > est un état propre de H : ) Z F U 0) o, >




matrice S : |®(7,t) >= S(t)|®(r,0) >

: iHt
= fu:z,:‘p(—T) e

Sur la base propre de H : [ €xp(—ikot/h) 0
0 exp(—iErt/h) 0
D= T

0 0 ... exp(—iE,t/h)

Remarque : En notant Sy, =< ©p|S|om >

\Snmlz est la probabilité de passer de l'état n a l'état
m au bout du temps t sous l'influence de H




Chapitre 3

Quelques exemples simples

Puits de potentiel (fini)
Transmission-Reéflexion sur une barriere
Oscillateur harmonique




7 + K’

R=|rfPetT = 5|t
k = VEm (B P

de facon générale  ®; = Ae't? 4+ Be kT
b = Ce'il"’/w i De—ih”/a}

A € k+K!
‘T<D> avecty i — 2k
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-/
5K
k+K'

DI

pour une chute de potentiel

et si la discontinuité a lieu en | et non pas en O

AN Gl ) iK'l (0]
Bl 0 ekl ) T 2

A F—ilx’lll
(B) = < 0




dans le cas particulier (voir TD) ot

g 4k2K"?
T 4k2K”2 + (k2 — K'2)2sin2kl

T =1 pour kl = nn

Effet Ramsauer-Townsend : diifusion
d'un électron par un gaz rare

(potentiel analogue a un puits)

K’ <-> k




E &V
K = v/2m(Vy — E)/h?

idem E>Vo avec K’ -> iK

Rt |

mais probabilité non nulle dans la région II sur d ~ 1/K

l'onde «resort» de la région II avec un déphasage ¢ (r=e'%)

aroL”

T O e -
42K? + (K% + k?




T est NON NULLE (quelle que soit | et Vo)
= effet tunnel

si: KIE>> 18 e s 5{_2]\71

de fagon générale pour V(x) i.e. K(x)

exemple : radioactivité o

inT =a+ B/VE

loi de Gamov-Condon-Gurney




Conditions de continuite de
et ’en x=a et x=-a
(attention changement ordonnées)

K = ktan(ka) ou K = —k/tan(ka)
( paire) ( impaire)

k et donc E sont discrets (quantification)
Il existe au moins une solution (état fondamentale) (voir TD pour puits infini)
La premiere solution est paire puis les suivantes sont
alternativement impaires et paires

«boite» quantique a 3D = hétérostructure semiconductrice
<=> atome mais 100x plus grand

InAs/GaAsQD

pyramide InAs sur (dans) GaAs

10-stack InAs QD

ajustement des raies spectrales
=> diode laser, LEDs




e e S
: : : i P Mw*x
Oscillateur Harmonique (voir aussi TD) H — e
2m 2
- mode collectif de vibration dans les solides (phonons)
- mouvement d’un électron dans un champ (niveau de Landau w=gB/m)
- distribution du champ dans un supraconducteur (type II)

it U(y) = e ¥ p(y)

d? 1. dp K
e

Ty R
G o) T & =8
Equation difféerentielle de KUMMER (hypergéométriques confluentes)

1
k=0 (voir TD)

-> Polynomes d’Hermite H, (z) = (—1)"e

O0H, . O"H,
LCI = 2nHp, 1 ’ H/'Hrl = 2€Hn i Q’Lanl et % ~ — 2"n|
(,)g L)gn

avec¢ = \/XI . HV() — il Hl = .2{ H_)

Propriétes :
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R T G
\/j(::*)\.z- ""'H,;(\/X.'I'l)
i

1

Energie de «point zéro» : By = fw/2 ~«—— Heisenberg

Probabilité de présence |\:[/.n|2 SISO AR

On peut montrer que

(5 4 %)\Ijn R \/m\II,L+1

)\Ijn T \/E\P?zfl
S

1
V2
a+
Création

B0 04+ 1/2)

< U, |H|¥, >= hw(n +1/2)
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POTENTIEL CENTRAL
L2

ol L? est le moment cinérique

r Or hpr2 (dérivées en @ et 0)

on note Yim les états propres de L2
(= harmoniques spériques, voir chapitre 4)

et comme a 1D, v(r) est solution d'une équation de KUMMER
d?v 3 dv ke ol 3

7 j R [ Ry il 7_71 7‘y:
,u(1y2+(+2 ,l/)der(.2 2(+2))l 0

E,:=hm2n+1+3/2)




particules dans un champ magnétique

—

H.= 7—qAlf 4+ V

7

N ; . 3 dpz i "OH dz  OH
a partir des equations 7 e et %= an

on peut montrer que cet Hamiltonien correspond
bien a une force : F = ¢(é+ 7 x B)

avec ¢= —6(1) ——4 ehiB— v A
q ot
si B = B, on peut prendre A = Ay = B.X
il apparalt alors un terme : (1/2).(q*B%/m).x? dans H

et les énergie sont donc sous la forme

E = hw(n+1/2) avec w = y/k/m = eB/m

niveaux de Landau fréquence cyclotron




Chapitre 4

Moment cinétique

définition, valeurs propres
opérateurs L, et L.
représentation matricielle

Spectre molécule diatomique
Atome d'Hydrogene




Moment cinétique

) ) ., cosf 0 O
f lh(mmpa—e + ,971190—99)

L, =yp, — zp, = —ih(z z
© = YP: — 2Py (Jaz 29

0 0] sinf O L(c)

L, =zpy; —xp, = —th(z— — x—) = th(—— — — cosf—
Ve iy Ox T@z) i tany 00 i 0(,9)
L, =1zp; —yp; = —’iﬁ(;l’% - y%) = —‘ih%

L2 st L% + L? = —h%r?x partie angulaire de A
2 29 1 92 L5550 1 0?
2002 rtanp Op  r2sin’p 962

T o2 3 r Or % 7
I Ly} = s (et permutation x,y,z)
Lo, L] = [Ly, D7) = [L., L] = O

50




L2 et L. (par exemple) ont méme vecteurs propres
= HARMONIQUES SHERIQUES (Yim)

notées |l,m >

L2 fl,m e l(l e 1)h2Y2’,m
LzYi.m = th&m

Ly=L,+iLy, IV =L gl

LV =5 (L diatyc . [L, - I

Lyl e |, mved =

|Lill,m > || =+/U(1+1) —m(mz£1)h

—1<m<] et | est demi-entier
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Sk
L= —'z,h%|l, m >= mh|l,m >

s ©, 0 lv m >= Yi,m(@a 0) b fl,m(()o)e”ne
m et donc | sont des ENTIERS
(voir SPIN = demi-entier)

e h‘eim(i% i z'cot(m(tp)a%

L+|l,l —— () donc fl.l(vﬁ) Lo Cz(.S“i‘)),gﬁ)]

1L (21 A
et en normant : ¢ = (‘ ) \/ it
2L 47

Il suffit alors d'appliquer L. pour trouver fi.; etc...

Par exemple Y5 1o = 1/15/3271sin?pet?¥

Ys 41 = \/15/8mcospsinpet™ et Y39 = 1/5/16m(3cos?p — 1)
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remarque

P, = polynome de LEGENDRE

. (]H~m ('.'1‘2 il 1)1
dzgltm

) oo d™P()
e (71)”1(1 7([-1)771/2( ](l)

o D ) m/
g e

/ )V/.HISV/;‘:A,V,;’(Z{2 = (S”/(SI!IHI’ Z Y}Am('g-‘r‘)x;jl‘,yl’(_Hl- il
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Remarque 1 : représentation matricielle

exemple |=1 : 3 états propres de L2 et L, : [1,1>,[1,0> et [1,—1>

Tevi0mEsd (07 (0]
Ly=h{0 0 0 Ly =2hl0 0 1 e o
000 sl 00500 0

010
L= e o= 0 (1 0 1) L!,(L+—L_)/2ih/ﬁ<

0
i

Qe w70 0

Quelles sont les valeurs propres de Lx (et Ly) ?

EVIDEMMENT -1, O, 1 (le choix de |'axe z est arbitraire)

et les vecteurs propres associés (pour Ly) ?

1 1 1
1 1/2 [ —v2 0 1/4/2 1 1/2 | V2
1 - 1




@ L est hermifique Lij:Lji* (Lii=reel)
o trace de la matrice = somme des valeurs propres (donc ici Tr(L)=0)

o déterminant de la matrice = produit des valeurs propres (donc ici det(L)=0)

sélection mz =1 sélection mz = 0

mesure de my

Si on «filtre» les états my=1 l'intensité en sortie = 1/8 est
SUPERIEURE a l'intensité (=0) obtenu en |'absence du «bloc my»
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Remarque 2 : rotation d'un angle a autour de Oz

o (xy)

/ .
- T = TCOSQ + YSina

X,, ) 3
(x"y) y' = —xsina + ycosa

R, o[®(z,y,2)] = ®(',y/, 2)

pour les petites valeursde a : 2’ =x +ay et y = —azr+y

od od
o PR, 2)| ST e V(y— — r—
R, o[®(z,y,2)] = (z,y,2) + o 5 1(33/)

100
R" o i Ili 7[4‘7
<~ 4C ( ﬁ ~

Potentiel central = invariant par ROTATION donc H commute
avec L. (et Lx et Ly) mais les Li ne commutent pas entre eux
(les rotations ne commutent pas !)
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Moléecule diatomique

Rotation
L’Z
I = mu[% - 1112'13
~ RA(+1)

E o

R
AE ="

~ 1 peV

~ 10 mK ou ~ 1 GHz

Vibrations

spectre de
l'oscillateur harmonique

E,=(n+1/2)hw
hw ~ 50 — 500 meV

Signal ionique
(unités arbitraires)

v (GHz)

atomes froids Cs;
Laboratoire A.Cotton - Orsay




Atome d’'Hydrogéne H = B /2M + P2 /2m — ¢* /4weor

Mry+mre

Centre d S —
entre de masse : ¢ ¥

drg

oot ’u’@ (- mP,,—MPe,) Po = (m+ M) =

dt m+M

PCZ,' P+2 q2
2(M+m)  2u  A4weor

He H*

U1, F) = P/ Mp(r 0. 0)  E = P2/2(m + M) + E*

H*|¢p >= E™|¢ >
B 0°aeaslig '

4reqr




RA(L+1) q>
2478 dmegr

w(ra 95 90) = Rn,l (71)}/2,'771,(0» 90)

Rni(r) = exp(=vyr) x rl x v(r) 42 = —2mE/h>

5

y = 2yr et k = me?/4mweqyh?

-> une (nouvelle !) équation de Kummer
2

"ol + 248

dv i

(R =
i 1+ Ju=0

Y

&7

(e — iy = Ty n=n"+1+1

771,64 3
E = —W voir (TD)
el




= me 1 _ 1 43 g4 est le rayon de Bohr
dwegh n agn

e g
Ep=—%5—

2 47‘(‘5()(1(; i

Rl‘() X (5‘7"/““ R30 X (3 - 6'/‘/(L() -+ 2(7’/(1,())2)

Rgl() X (1 — ‘7‘/2(LQ 6i_r/2(‘"’ Rg 1 X (2 — /(10)(7‘/(1‘0)6‘_7‘/3&”

Ry (,),/” —r/2ag bt (7‘/(1‘0)2 —r/3ao

notation spectroscopique
1s
2
2p
2
3s
3p
3p
3d

Radial probability 47r2R 2,




®,,
-

2,1,0

©

(4,0,0)

Probability density plots.

Hydrogen Wave Function

2P LY (p) - Yim(D, ¢

3' ’

19
=)

{0}

=

(4,3,0)




Chapitre 5

Spin

Spin 1/2
composition de moments cinétiques




The beam of the
atoms of silver

The slit

l ms = +(172)

The furnace The special shaped
with silver magnets

The Stern-Gerlach experi On the photographic plate are two clear tracks.

1922 (antérieur a la MQ) : faiseau d'atome (Ag = [46]5s?)
neutre mais avec un moment magnétique

F=V(iB)etT=jxB

N : 5 URZEAS ol q = ) =
modele classique p = ISk = — k= Wk — —
i 2m 2m
q

p =L ou v = —5- est le rapport gyromagnétique

10 = = , y
= qqii X B — précession
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— OB: m3
J == 3 k

direction aléatoire du moment, on s’attend a observer en
mécanique classique un segment continu entre -u et +u

et en mécanique quantique des valeurs quantiques
correspondant a la quantification de L :
2l+1 valeurs = nombre impair =
w=mryh~mx 9.3102* JT

mais en pratique 2 pics avec pg = 9.27 1072 JT
mais PAS de pic en zéro

byl = W’ég‘ = Ye = 2’)/0

U n‘est PAS associe au moment ORBITAL de |'électron mais a un
degré de liberté INTERNE appelé SPIN
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le concept de SPIN a été introduit en 1925 par Uhlenbeck & Goudsmit :

«tout électron posséde un moment cinétique intrinseque égal a /2 »

@ expérience de Stern-Gerlach

@ transition 2p->1s du sodium
-> 2 Raies
structure hyperfine liée
au couplage spin-orbite

Spring wiré |aser mirror setup

@ Expél"ience de Einsfein & de HaaS for measuring deflection ¢
déviation du miroir sous champ liée a la
conservation du moment cinétique
-> rapport gyromagnétique = 2

magnet (iron)




Les particules élémentaires : leptons (non soumis a l'interaction
forte) = électrons, muons, neutrinos,... et quarks (soumis a toutes les
interactions) sont toutes de spin demi-entier.

on appelle ces particules FERMIONS

mais existe-t-il des particules a spin entier 2 OUI

on les appelle BOSONS, mais toutes sont des bosons de jauges
= intermédiaires des interactions fondamentales
(photon = interaction électromagnétique, gluons = interaction forte,
Z°W = interaction faible et peut-étre... le boson de Higgs)

ou des bosons composites : Hes, les électrons d'une paires (de
Cooper) dans les supraconducteurs, les excitons....

Q g q p
Remarque : Yproton 7 287[ et Yneutron ~ *19i >> (1/771'

my mn

protons et neutrons sont des particules composites (quarks)
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Soit un Hamiltonien de deux (ou plus généralement N) particules INDISCERNABLES :
cet Hamiltonien est invariant par permutation des particules H(xi,x2) = H(xz2,x1)

Soit I'opérateur Permutation (P2) des 2 particules : [H,P12]=0

H et P12 ont donc méme vecteurs propres et P22 = Id

wy est donc soit symétrique (y(x1,xz) = y (x2,x1))

soit antisymétrique (w(xixz) = - ¥ (X2,x1))

Les bosons sont les particules de ¥ symétriques et les
fermions les particules de ¥ antisymétriques

dans ce cas : ¥ (x1,x2) = Pyp(x1)Pp(x2) — Py (x2)Pp(x7)

mais si &, = ®;, (méme état quantique) alors ¥ = 0

On ne peut pas mettre deux fermions dans le meme état
quantique (= fous nombres quantiques : n,,m... ET spins
identiques) = principe d’exclusion de Pauli




Remarque 1 : les particules quantiques n‘obeissent pas a la statistique (classique)
de Maxwell-Boltzmann mais a des statistiques quantiques spécifiques
(Fermi-Dirac pour les Fermions et Bose-Einstein pour les Bosons, voir M1)

Remarque 2 : le spin n‘a PAS de «représentation» classique
vitesse de rotation de |'électron (de rayon rc) sur lui méme ?
mc? = q/4meore et moment cinétique J = mr:

— Voq = Tew = [dmeohe/q?] x ¢ = 137c !

on note [+ > et |— > les 2 vecteurs propres

de valeurs propres +//2

L'espace des spin est donc un espace de dimension 2

i 1 0] 071 ; 0 —2
d ' i b bt SRR
S, 1/2 <0 —I)i A h/2 <l ()> et Sy =T (7. ())

S; = [A/2]' X o;, ol o= smatiicetde Pauli

Remarque : on aurait pu utiliser les opérateurs S, et S_ pour construire Sy et Sy
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§? = 524 2 4+ §2 = 3h2/4 ((1) ‘1)>

; Y N % sl
= ihS, = regles de commutation des moments cinetiques

sinf  —cos6

Sp = S,cos0 + Sysinf = h/2 (

cost)  sind >

Ry(O)|+ >= [+ >¢
R, (0) = exp(—iboy/2) = cos(8/2)Id — isin(6/2)o,

|+ >o= cos(G/2)|F > +sin(Gf21= "

mais dans |'espace de spins : |+ > et |— > sont ORTHOGONAUX

il y a un angle de 180° entre +z et -z dans |'espace réelle (/i.p~, = —1)

rotation de 6 dans |'espace réel = rotation de 8/2 dans |'espace des spins




représentation complete du systeme :

degrés de liberté en degré de liberté
TRANSLATION (x,Y,z) interne = SPIN

|

produit tensoriel des espaces de Hilbert correspondants
W >=hy > Q|+ >, Hl- > Bl 2,

40, |>=densité de probabilité de présence dans 1'état [+ >,

H = Hexterne + Hspin

Energie cinétique ;
S M1 0
+ potentiel central, harmonique,.... sovilemimi e g ]

ction du champ magnéti 5
action SR e (en prenant |'axe des z selon B)




; : a
état de spin: |y >= (CI;+>

— = ,LLBBZCH:

—ﬂ:int/Q

< Ulps | >= pp(A3 — A%) = constante

< Upy |V >=2up Ay A_cos(wot)

< U\ | ¥ >=2up At A_sin(wot)

precession de Larmor




== -> principe de la RMN
(Résonnance Magnétique Nucléaire)

‘AE:M

En présence de B, + champ tournant
B = Bycos(wt)i, + By sin(wt)uy,
wi] = | = vB1| << |wol

REAILIT

W€ a i
Lw., ) Ix >= <(j+> et b:l:(f) = a,i(t)eil‘/vt

LoD
bi‘f‘Ibi:O avec Q2:(w—w0)2—|—w%

by (t) = cos(Qt/2) + asin(Qt/2) et b_(t) = Bsin(Qt/2)

Equation différentielle — 3 = —iw; /Q et a = i(w — wp) /N
e+ 52 =1




probabilité de transition entre les états [+ > (& t=0) et |[— > (a t) :

résonnance pour w = Wy

Il est extréemement difficile en pratique de préparer tous les spins dans |'état +

. II_ th
A l'équilibre thermique T exp(

Bese 1075 4 300K et wo = 60MHz  50,00025% des spins dans I'état +

745




Bloch et Purcell (1946 -> Prix Nobel 1952)
1979 premiére image sur |'homme
Prix Nobel de Chimie : Ernst 1991

et Médecine : Lautenbur & Mansfield 2003

IRM : on regarde les protons de |'eau
en utilisant le fait que la teneur en
eau des différentes cellules (malade et
saine) n'est pas la méme. Un gradiant
de champ permet de faire des coupes
et de reconstruire une image 3D

Aimant : généralement bobine

supraconductrice (NbTi) de quelques Tesla
(typiquement 3T)

«Neurospin» Saclay : 11.7T avec une
homogénéité de 10-1°
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COMPOSITION de 2 spins 1/2
€ = €spinl & €spin2 = espace vectoriel de dimension 2x2=4
X >=|£ >4Q|E >orilo, 05 > AuedG{— = o5 0
o S? ®Idy + 1d; ® Sz noté simplement §1 + gg

ona: Sz‘_’_a_i_ >= h’+7+>7 SZ|_’_>: _h‘_’_>

et: $2= (5 +8)° =057+ 52+25.5

(52 © SO ihz|i,i >

. 2 2 e
et on a bien : §°|£, £ > 2R°|E£, £ > (518 = 510820 + 51,52 + 51.52:)

|+, = > sont des vecteurs propres de S? avec s=1

avec m = %1, respectivement
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et le vecteur propre associé a m,=0 ?

il est proportiel a: S_|+,+ > (|—,+ > +|+,— >)

= état intrique

et le vecteur %U—ﬁ- e
est ORTHOGONAL aux 3 vecteurs propres préecédents
de plus, il verifie :
S
b ) % \/é

—+>—|++>)]=0
7 (I | )]
c’est le vecteur propre s=0, m=0
en resume : : (voir aussi TD)

on aurait aussi (pour 2 spins1) 3 R3I=5P3P1 (programme M1)
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retour sur |'atome d'Hydrogene

€ = €cgterne,e @ Espin,e @ Eexterne,p @ Espin,p

p T

état fondamental 1s espace de dimension 4
+ mouvement du centre de masse l'etat 1s est donc dégénéré 4 fois

cette dégenérescence est partiellement levée par 'interaction
dipolaire entre les spins de l’électron et du proton

2upa A§ g A=5.87.10" eV <« 10 eV
He-Hp = 72 0eOp

_§ 71'@8 (écart typique entre niveaux)

52 % 3n1d
2

SRR e
5.5, = 315* - 52 - S} =

W|l,m >= 4 et W[0,0 >= —34




At ~ B/AE ~ 107 ans

tous les 10 milions d’années le spin de |'électron d'un atome se
retourne et il y a émission d’une raie caractéristique a 21 cm

Hydrogeéne = 90% des atomes du milieu interstellaire
0.3 atome/cm?® en moyenne (He = 10% restant)

matiére essentielle pour la formation des
nouvelles générations d’étoiles

effet Doppler => mouvement intergalaxie




et pour 2 électrons (atome He) : Z=2
2 P - g 2
= = : -= + . + mvt centre de masse
)
Z “El

interaction e-e (corrélations) négligée ici (-> M2) En — .
n2

peut-on mettre les 2 électrons sur le niveau 1s ?

fermions : la fonction d’onde doit étre ANTISYMETRIQUE

SPIN 1 : |X > est symétrique (|+,+ >, |=, = > ou 1/3/2(|+, — > +|—, + >)

donc la partie spatiale doit etre antisymétrique :

G(r1,72) = 1/V2(¢1 (1) d2(r2) — ¢1(r2)d2(r1)) ¢

SPIN O: |x > est antisymétrique ( 1/v/2(|+, — > —|—, + >)

et la partie spatiale peut dans ce cas étre symétrique

P(r1,7m2) = ¢1(r1)P1(r2) A |
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remarque 1 : |'énergie du fondamental serait dans ce cas
-2x2%E)= -8E; mais expérimentalement on trouve -5.8E; :

les interactions e-e ne sont pas négligeables

remarque 2 : pour N spins 1/2 la fonction d’onde antisymétrique peut
etre construite a |'aide du déterminant de Slatter (état fondamental)

Pr(ri)l+ > oulr o on(r)l+>  én(ri)|—>
o1(r2)|+ > P1(r v On(r)[+ > BN (r2)|- >

T >= T

o(rw)|+ > di(rn)|—> o on(rn)|+ > dn(rn)|— >

remarque 3 : N bosons peuvent étre condensés tous sur le niveau fondamental

¥ >= ¢1(r1)¢1(r2). .. .¢1(rn)|spin >

refroidissement d'atomes par laser
+ «évaporation» dans un piege magnétique

~ qq milliers d’atomes a ~ 100 nK
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PoboLsky AND N. RoOsEN, Institute for Advanced Study, Princeton, New Jersey

In a complete theory there is an element corresponding
to each clement of reality. A sufficient condition for the
reality of a ph y is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1

ANY, serious consideration of a_ physical
theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?” and (2) “Is
the description given by the theory complete?”
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
‘This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

(Received March 25, 1935)

quantum mechanics is not complete or (2) these two
iti i lity. Considerati

of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) s false then (2) is also false. One s thus led to conclude
that the description of reality as given by a wave function
s not complete.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory scems to be a necessary one: every
clement of the physical reality must have a counter-
part in the physical theory. We shall call this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the followine criterion, which we regard as
reasonable. If, without in any way disturbing
system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical
quantity, then there exisls an element of physical
reality corresponding to this physical quantity. 1t
seems to us that this criterion, while far from
exhausting all possible ways of recoghizing a
physical reality, at least provides us with one

Paradoxe EPR

une grandeur physique

est réelle si elle peut

étre déterminée sans
incertitude, sans




définition d’une
observable et des valeurs
propres

la fonction d’'onde est
une onde plane, p est

parfaitement déterminée
(p=po) donc «réelle»
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ns set down in
but
thi

such way, whenever the cond

Las well as
Quantum mechanic of
"To Mustrate the ideas imvolved It us rmmdw
the quastu-mechasical decript of
havior of a particle having a single desre g
frectom. The fomdamental concept of the theory
i the concpt of e, which i suppose o be
completely characterized by the e
¥ which s a functon of the variables chosen t
the partcc’s behavior. Coresponding
to each physically obsérvable quantity 4 there
i an operator, which may. be desgnated by the
same letter.
1f y is an eigenfunction of the operator 4, that

is, if
V=Ay=ay, (O}

Where ais a numl)er. then the physical quantity
A has with ce e value a whenever the
naruclc ‘ain the st civen by ¢, In accordance
with o ion of , for a particle in the
state gncn by ¥ for which Eq. (1) holds, there
is an element of physical reality corresponding
to the physical quantity 4. Let, for example,

Y=ctriiine, @

where J is Planck’s constant, po is some constant
number, and x the independent variable. Since
the operator corresponding to the momentum of
the particle is

= (h/2xi)a/ox,
‘we obtain

¥ = (h/2)og/0x = poy. @)

Thus, in the state given by Eq. (2), the momen-

tum has certainly the value p,. It thus has

‘meaning to say that the momentum of the par-
the state given by Ea. (2) is real.

On the other hand if Eq. (1) does not hol
we can no longer speak of the physical quantity
A having a particular value. This is the case, for
example, with the coordinate of the particle. The
operator corresponding to it, say g, is the operator
of multiplication by the independent variable.
Thus,

p=rbral. )

In accordance with quantum mechanics we can

only say that the relative probability that a

measurement of the coordinate will give a result
g between o and

Pla,b) _{'w

[ oo ©

Since this probability is independent of a, but
depends only upon the difference 5—a, we see
that all values of the coordinate are equally
probabl
A definite value of the coordinate, for a par-
ticle in the state given by Eq. (2), is thus not
predictable, but may be obtained only by a
dlrect messorement- Such » meamrement hnw-
ever disturbs the part
Sate. Alter the coondinate & determined, the
particle will no longer be in the state given by
Eq. (2). The usual conclusion from this in
quantum mechanics is that when the momentum
of a particle is knowen, its coordinate has no physical
reality.

More generally, it is shown in quantum me-
chanics that, if the operators corresponding to
two physical quantities, say 4 and B, do not
commute, that is, if ABBA, then the precise
knowledge of one of them precludes such a
knowledge of the other. Furthermore, an:

ttempt to determine the latter experimentally
will alter the state of the system in such a way
as to destroy the knowledge of the first.

From this follows that either (1) fhe quantum-
‘mechanical description of reality given by the wave
function is not complete or (2) when the operators
corresponding to two physical quantities do not
commute the two quantities cannot have simul-
taneous reality. For if both of them had simul-
taneous reality—and thus definite values—these
values would enter into the complete description,
‘according 1o the condition of compieteness. it
then the wave function provided such a complete
dmnphnﬂ of reality, it would contain these

ese would then be predictable. This
ng the case, we are left with the alter-

In quantum mechanics it is usually assumed
that the wave function does contain a complete
description of the physical reality of the system
in the state to which it corresponds. At first

mais on ne peut pas
déterminer la position de
la particule, elle n'a donc
pas de «réalité»

de facon générale, si A
et B ne commutent pas,
les quantités physiques
associées n'ont pas de
realité simultanée

la fonction d’onde contient
toute l'information du
systéeme




2 particules intéragissen

pendant un laps de tfemps T

pour former un état
intriqué puis
N'INTERAGISSENT PLUS
L'évolution temporelle est

donnée par |'équation de
Schrodinger

On construit une fonction
d’onde a 2 particules

La mesure «réduit» le
paquet d’onde

RIPTION OF

sight this assumption is entirely reasonable, for
the information obtainable from a wave function
seems to correspond exactly to what can be
measured without altering the state of le
system. We shall show, however, that t
sumption, together with the criterion of realuy
given above, leads to a contradiction.

2.

For this purpose let us suppose that we have
two systems, T and 11, which we permit to inter-
act from the time ¢=0 to =T, after whicl e
we suppose that there is no longer any interaction
between the two parts. We suppose further that
the states of the two systems before /=0 were
known. We can then calculate with the help of
Schridinger’s equation the state of the combined
system I+11 at any subsequent time; in par-
ticular, for any ¢>T. Let us designate the cor-
responding wave function by ¥. We cannot,
however, calculate the state in which either one
of the two systems is left after the interaction.
This, according to quantum mechanics, can be
done only with the help of further measurements,
by a process known as the reduction of fhe wave
packet. Let us consider the essentials of this

rocess.

Let ay, as, as, ++- be the eigenvalues of some
¢ A pertaining to system I and

us(x1), wus(x)), --- the corresponding
eigenfunctions, where x, stands for the variables
used to describe the first system. Then ¥, con-
sidered as a function of x, can be expressed as
W, x2) Zl\b»(xx)u.(x.), (0]
where x; stands for the variables used to describe
the second system. Here ,(x;) are to be regarded
merely as the coeffcients of the expansion of ¥

it found that it has the value ax. It is then
concluded that after the measurement the first
system is left in the state given by the wave
function w:(x), and that the second system
te gi y tior
Va(x2). This is the process of reduction of the
wave packet; the wave packet given by the
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infinite series (7) s reduced to a single term
Valxsus(x).

The set of functions u,(x:) is determined by
the choice of the physical quantity A. If, instead
of this, we had chosen another quantity, say B,
having the igenvalues b, by b, - and cgen.
functions ei(xy), va(x), (), - we should
Live abtained, instead of Eq (7), the expandion

(s, w3) = lv».(x'x)v.( ®)
where ¢,'s are the new coefficients. If now the
quantity B is measured and is found to have the
value b,, we conclude that after the measurement
the first system is left in the state given by v,(x,)
and the second system is left in the state given
by ¢(xs).

We see therefore that, as a consequence of two
different measurements performed upon the first
system, the sccond system may be left in states

two different wave functions. On the other
hand, since at the time of measurement the two
systems no longer interact, no real change can
take place in the second system in consequence
of anything that may be done to the first system.
is is, of course, merely a statement of what is
meant by the absence of an interaction between
the two systems. Thus, i is possible (o assign fwo
different wave functions (in our example yx and
@) 1o the same reality (the second system after
the interaction with the first).

Now, it may happen that the two wave func-
tions, Y« and ¢, are cigenfunctions of two non-
commuting operators corresponding to some
physical quantities P and Q, respectively. That
this may actually be the case can best be shown
by an example. Let us suppose that the two
systems are two particles, and that

W x)= [ eCrmengy,  (9)
where o is some constant. Let A be the momen-
tum of the first particle ; then, as we have seen
in Eq. (4), its eigenfunctions will be

p(rs) =eCtripn (10)

corresponding to the eigenvalue p. Since we have
here the case of a continuous spectrum, Eq. (7)
will now be written

mais en mesurant 1, on fixe
aussi |'état de 2

différentes projections sont
possibles (on peut mesurer
différentes grandeurs)

On part d'une
superposition (continue)
d’'ondes planes

on mesure la quantité de
mouvement de 1 (ici p)




Alors on «sait» que la
particule 2 a une
quantité de mouvement -
p sans pour cela devoir
la mesurer donc on
connait la quantité de
mouvement de la
particule 2 SANS LA
PERTURBER, elle est
donc «réelle»

de méme si on mesure x;
on «connait» x2 SANS
PERTURBER la particule
2, la position de 2 est
donc également «réelle»

mais X et P ne
commutent pas ! donc p>
et x2 ne peuvent pas
étre tous deux «réels» !

EINSTEIN, PODOL

Wiy, xz)ffh(xa)uu(n)dpv an

Yylaee) = e Critm eranry, (12)

This ¢, however is the eigenfunction of the
operator

P=(h/27i)o/0xs, 13)

corresponding to the eizenvalue —5 of the
momentum of the second particle. On the other
hand, if B is the coordinate of the first particle,
it has for eigenfunctions

valw) =82 —2), 19

corresponding to the ecigenvalue ¥, where
8(x1—x) is the well-known Dirac delta-function.
Eq. (8) in this case becomes

W w= [ edenepds (15)
where -

IR S —

=ho(x—xstxo). (16)

This ¢,, however, is the eigenfunction of the
operator
Q=x2 an

corresponding to_the eigenvalue x+xo of the
coordinate of the second particle. Since

PQ-QP=h/2ri, 18)

we have shown that it is in general possible for
i and ¢, to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.

Returning now to the general case contem-
plated in Eqs. (7) and (8), we assume that ¢,
and g, are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues p and g, respectively. Thus, by
measuring cither 4 or B we are in a position to
predict with certainty, and without in any way

SKY AND ROSEN

disturbing the second system, either the value
of the quantity P (that is p) or the value of the
quantity Q (that is ¢,). In accordance with our
criterion of reality, in the first case we must
consider the quantity P as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions yx and ¢, belong to the same
reality.

Previously we proved that either (1) the
quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with noncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.

One could object to this conclusion on the
grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only when they can be
simultaneously measured or predicted. On  this
point of view, since either one or the other, but
not both simultaneously, of the quantities P
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon the process of measurement carried
out on the first system, which does. not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.

While we have thus shown that the wave
function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.

donc la mécanique
uantique ne peut pas
étre une théorie
compléte = il existe des
VARIABLE CACHEES qui
fixe |'état de la particule
2 (et celui de 1) dés t
(exemple des cartes)

OU la mesure de x; (ou
p1) PERTURBE la
particule 2 méme si les
deux particules
n'intéragissent pas :
la mécanique quantique
serait dans ce cas une
théorie NON LOCAL




un cas équivalent : état intriqué de spin O

spin a spin b
A e
Uq U

b

chaque spin (a et b) est mesuré selon un axe different (uq et up)

on défini la fonction de corrélation de ces deux mesures
= moyenne (normalisée) des résultats en A et en B

En mécanique Quantique

4 — —
Elug, o) = =) < U8,y ® Sp.aip|¥ >= —uy.up

Dans la théorie des variables cachées : il existe un parametre (inconnu) A qui a fixé les
états de spin a et b avant la mesure (par exemple le melange des cartes). Le resultat
de la mesure en A dépend alors de A et u, mais PAS de uy (principe de localité)

E(u, a5~ /P()\)A(/\q Ug)B(A, Up)dA
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On s'interesse alors a la quantite

S = E(ug,up) + E(ug, uz) + B(ul, uz) — E(ul, 1)

v

u's la mécanique quantique prévoit (pour 8=45°)
T DYPESRVET e )

et pour la théorie des variables cachées,

o la mesure ne peut donner que +//2 donc

A\ ) B, @) + A, i) B, wh) + A(A ) BOA, ul) = A(X, ul) B(A, ) =

A, ug) (B, up) + B(/\,‘l;;,)) + A\l )(B(A, uy) — B\, ) = 2A(N, ug)B(X, up)

Ha

donc S = 2F(ug,up) et |[S| <2

= inégalité de Bell, la mesure de S pour des photons polarisés
(A.Aspect, Orsay 1982) a donné |S| = 2.697 + 0.015




Crypographie Quantique

Alice dispose de 4 états de spins possibles +x -x, +z et -z, elle envoie une série de
spins a Bernard selon une séquence connue d’elle seule : par exemple

+Z, -2, +X, -Z, -Z, =X, +X, -2

Bernard mesure ces spins mais comme il ne connait pas |'axe utilisé par Alice, il fait
ces mesures aléatoirement et décide de mesurer selon z,x,x,z,x,z,x et x et obtient :
+Z, -X, +X, -z, -X, +z, et +x.

Il rend public une partie (disons la moitié) des résultats, soit : +z, -x, +x et -z.

Alice compare alors les résultats obtenus selon les axes communs (ici 1, 3 et 4) et
verifie qu'ils sont TOUS identiques.

Mais si un espion avait lu la séquence (également selon des axes choisis
aléatoirement). Il aurait pu choisir par exemple |'axe z pour le spin #3 et
aurait obtenu (par exemple) +z (ou -z avec la probabilité 1/2).




Il aurait alors renvoyé +z a Bernard (et non pas +x) qui aurait obtenu soit +x (en

accord avec |'envoi d’Alice) soit -x. Donc si Alice a été espionnée, la moitié (en
moyenne) des mesures «a priori justes» seront fausses (en fait 1/4 car |'espion
aurait aussi pu tfomber sur le bon axe). Alice pourra donc aisemant vérifier si elle a
été espionnée ou non (sur 500 mesures, la probabilité que |’espion n'altére pas les
mesure de Bernard est de (3/5)°% soit 10-63).

Apres avoir verifié qu’elle n'a pas été espionnée, Alice dévoile publiquement (donc
a Bernard) la séquence qu’elle avait choisi pour les 500 autres spins et Bernard
peut alors sélectionner les résultats utiles pour reconstruire le message

autre «application» : les ordinateurs quantiques. Le «principe» serait ici de créer

des états intriqués des différents bits. Pour effectuer une opération sur une série

de bit, on agirait non plus «en série» sur un bit puis le suivant mais directement

sur |'état intriqué, ce qui reviendrait a faire |'opération «en parralléle» sur tous
les bits de la séquences, d’ol un gain de temps considérable!




