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+16 TDs  

1 contrôle continu = 30% de la note avec règle de max 

= 1QCM + 1DM 



Pré-requis : 
Quanta de lumière et corps noir

Dualité onde-corpuscule, 
Paquets d’ondes, Notation de Dirac (bra-ket),  

Opérateurs (dont formalisme matricielle),  
Principe d’incertitude, Equation de Schrödinger,  

Puits de potentiel (V constant) + barrières
 Oscillateur harmonique, Moment cinétique et spin

Atome d’Hydrogène

Aspects mathématiques :
Transformées de Fourier, Intégrales (multiples)

Espaces vectoriels, Fonction delta
Matrices (valeurs et états propres) 

Ne seront PAS traités (voir S2 et S3) 
Mécanique quantique relativiste (diffusion) = S2,  

Electrodynamique quantique = S3/PSC 
Seconde quantification = S3/MQ



Et pour cette année

1.Rappels, symétries et invariances
A. Les postulats de la mécanique quantique (rappels) 

B. Générateurs, lois de conservation (Noether)  
C.  Symétries, dégénérescence (théorème de Wigner) 

Application : systèmes périodiques et potentiel central (cas de l’atome d’hydrogène). 

2. Méthodes de résolution
A. Théorie des perturbations (1er et 2eme ordre)  

Application : corrections relativistes de l’atome d’hydrogène (structure fine I) 
B. Perturbations dépendantes du temps  

C. Méthode variationnelle. 

3. Hamiltonien sous champ magnétique
A. Quantification des niveaux sous champ magnétique (niveaux de Landau) 

B. Couplage spin-orbite (structure fine II) et Structure hyperfine 
C. Diamagnétisme et paramagnétisme des solides (introduction). 

4. Atomes à plusieurs électrons
A. Potentiel effectif (corrélations), termes spectraux 

B. Interaction d’échange règles de Hund 
C. Notions de physique moléculaire 

5. Interaction atome/lumière
A. Diffusion (notion) 

B. Oscillations de Rabi, transition résonante 
C. Matrice densité et représentation de Bloch, relaxation  

D. Règles de sélection (Wigner-Eckhart (notions)) et règle d’or de Fermi 



Chap.1 

Rappels, symétries et invariances



Densité de probabilité de trouver la particule dans un volume d3x :  

• P1. La connaissance de l’état quantique (à t0) est complètement 
contenue dans une fonction d’onde complexe = un vecteur d’un 
espace de Hilbert de dimension (in)finie

!(x) = |�(x)|2

La fonction d’onde peut alors être décomposée sur une base de 
fonctions d’ondes particulières  (vecteurs propres d’un opérateur donné) 

 = paquet d’ondes : 

                           ⇥ �(x) =
X

ak�k(x)

et

par exemple les ondes planes (vecteurs propres de l’opérateur p) 

�k(x) ⌘ ei(kx�!t) �(x) = 1/
p
2⇡

Z
 (k)�k(x)dk

ou les fonctions de Dirac (vecteurs propres de l’opérateur x) : 

�(x) =

Z
�(x0)�(x� x0)dx0

A. Les postulats de la mécanique quantique (rappels) 



6

on défini un espace dual = espace des «bra» : 

= vecteur «ligne» (de même dimension)

< n|
X

�n|n >!
X

�⇤
n < n|

espace des «ket» : 

= vecteur «colonne» (de dimension (in)finie) 

|n >

|� >=
X

�n|n > |� >=

0

BBBB@

�1

�2

...
�n

...

1

CCCCA

Certains états quantiques (spin par exemple) ne peuvent pas être défini à partir d’une fonction 
𝛷(x) ⇒ généralisation de la notation

Notation de Dirac

dans l’espace des positions, on a < �1|�2 >=

Z
�⇤

1(x)�2(x)dx

Espace de Hilbert => produit scalaire < n|m >=< m|n >⇤

et

on note l’état «particule en x0»

alors

l’état «particule d’impulsion p0»

|x0 >$ �(x� x0)

|p0 >$ �(p� p0)

< x|� >= �(x) < x|p >= 1/
p
2⇡~eipx/~< p|� >=  (p)
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• P2. A toute propriété observable (position, énergie,...) est associée un 
opérateur (A) agissant sur les vecteurs (sous espace) définis en P1

en notation de Dirac, A est une matrice nxn A =

0

BB@

a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
a1n a2n ... ann

1

CCA

Un opérateur transforme une fonction d'onde (un vecteur) en une autre fonction d'onde (autre vecteur).

Les opérateurs seront toujours LINEAIRES A[↵1�1 + ↵2�2] = ↵1A[�1] + ↵2A[�2]

Pour connaître l’action d’un opérateur sur n'importe quel vecteur, 
il suffit de connaître son action sur une base.

Un opérateur associé à une grandeur physique mesurable est appelé observable 
il est alors hermitique (valeur propre réel, voir suite)

Opérateur adjoint : 

Opérateur Hermitique = auto-adjoint  A = A†

< A�| >=< �|A† >



�~2�
2m + V (x) = HAMILTONIEN (énergie totale)

ou l’opérateur quantité de mouvement     p ⇔          ~r
i

par exemple l’opérateur position x[�(x)] = x⇥ �(x)

�~2�
2m = énergie cinétique ~r ⌦ ~p = moment cinétique
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et la position moyenne de la particule est (PARFAITEMENT DEFINIE) :

et la quantité de mouvement moyenne de la particule est :

< p >= ~
Z
 ⇤(k)k[ (k)]dk =

Z
�⇤(x)

~r
i
[�(x)]dx

< x >=

Z
�⇤x[�(x)]dx =

Z
x|�(x)|2dx

MOYENNE (statistique) de l’observable : < A >=

R
�⇤(x)A[�(x)]dxR
�⇤(x)�(x)dx

ou en notation de Dirac < A >=
< �|A� >

< �|� >



donc les ondes planes sont les états propres de l’opérateur impulsion de valeur propres p 

donc les fonctions de Dirac sont les états propres de l’opérateur position de valeur propres x0

par exemple (~/i)(@/@x)eikx = ~keikx = peikx

de même x�(x� x0) = x0�(x� x0)
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• P3. Une mesure de la grandeur physique associée à A ne peut donner qu’une 
valeur propre de A. 

A�n = an�n

L’ensemble des valeurs propres forment le spectre de l’opérateur

Dans la base de ces états propres la matrice A est diagonale

Deux fonctions d’ondes associées à des  
valeurs propres différentes sont orthogonales

A =

0

BB@

a11 0 ... 0
0 a22 ... 0
... ... ... ...
0 0 ... ann

1

CCA
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Si A�1 = a1�1 et A�2 = a2�2, alorsR
�⇤

1�2dx =
R
�⇤

1
A�2
a2

dx =
R
(A�1) ⇤ �2

a2
dx = a(⇤)

1
a2

R
�⇤

1�2dx
donc si a1 6= a2 alors < �1,�2 >= 0

Si plusieurs fonctions d’ondes correspondent à une même valeur propre 
on dit qu’il y a dégénérescence

attention la somme de deux vecteurs propres n'est (généralement) pas un 
vecteur propre (sauf si valeur propre identique)

[A,B]=0 <=> A et B ont un jeu de vecteurs propres commun

on peut définir le (opérateur) COMMUTATEUR :  AB-BA = [A,B]
Les opérateurs ne commutent pas nécessairement A[B[�(x)]] 6= B[A[�(x)]]

[x, p] = i~avec par exemple

et les énergies sont les valeurs propres de l’HAMILTONIEN

H�n = En�n
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si Φ est un état propre de A (Φn de valeur propre an)

alors la mesure est parfaitement définie, égale à an 

• P4. Le résultat de cette mesure est probabiliste. Les grandeurs mesurées 
sont soumises au principe d'incertitude  

(= écart-type des histogrammes de mesure)

mais si Φ n’est pas un état propre de A
� =

P
cn�n et < A >=

P
an|cn|2

alors la mesure donnera an avec la probabilité

cn =
R
�⇤

n(x)�(x)dx

le résultat de la mesure a ainsi un caractère statistique  
= répétition de N mesures sur des états strictement identiques

|cn|2 = | < �n|� > |2



=>
= Heisenberg

Si on note 

= écart type de la distribution des résultats de la mesure sur un 
ensemble de N particules identiques (largeur de l’histogramme)

Par exemple : 

�a =
p

< A2 > � < A >2

�x�p � ~/2

[x, p] = i~

où h vaut (heureusement) : 6.6210-34 Js

�a�b � | < [A,B] > |/2

et inversement si deux opérateurs commutent [A,B]=0 alors les grandeurs physiques associées peuvent 
être déterminées simultanément (sur un vecteur propre commun) [mais pas forcément !]

On ne peut jamais connaitre (prédire) exactement le résultat de mesures de 
deux quantités physiques associées à des opérateurs ne commutant pas

12
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Sommerfeld : règle de quantification 
(pour tout couple de variables conjuguées de Lagrange E-t,...)

mais valable que pour les systèmes périodiques !

I
pxdx = nh

Formule de Weyl : nombre d’états quantiques d’énergie inférieure à E :

Particule dans une boite (L)
-> stabilité de la matière
~ 10 eV pour L ~ 1Ap =

nh

2L
! En = n2 h2

8mL2

N(E) =
S(E)

(2⇡~)d

taille d’un état

nombre d’états

Orbitales atomiques
mv2

r
=

A
r2

→ mv2 =
A(2π)(mv)

nh
→ v =

(2πA /h)
n

(2πr)(mv) = nh

→ En =
mv2

2
−

A
r

= −
E0

n2
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En = ℏω(n + 1/2)

Oscillateur harmonique E =
p2

2m
+

1

2
kx2 ! En = n~!

< X|�n >=
1

⇡1/4
e
�X2/2(

1

n!2n
)1/2Hn(X) où Hn est un polynôme d’Hermite,

Hn(X) = (2X � d
dX )Hn�1(X) avec H0 = 1

avec :
H0 = 1
H1 = 2X
H2 = 4X2 � 2
...

Probabilité de présence < �n|�n >= |�n|2 !cl =
1

⇡a

1p
1� (x/a)2

Energie de «point zéro» : HeisenbergE0 = ~!/2

X = λx λ = mω/ℏavec

(ωcl . dx = 2dt/T )
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• P5. Après la mesure, l’état du système est projeté dans le sous-
espace engendré par le(s) vecteur(s) propre(s) associé(s) à la valeur 
propre mesurée

Ce processus de mesure ne nécessite pas la présence d'un expérimentateur. Il se
produit dès que la particule quantique influence son environnement, et peut donc

se produire aussi bien dans une pièce vide, que sur une île déserte!

Ce phénomène est en fait incessant et omniprésent, c'est le contraire
qui est plutôt exceptionnel : un système peut être considéré comme étant 

(approximativement) isolé que pendant un certain intervalle de temps appelé le 
temps de décohérence

~ 1µs pour une molécule dans un vide de laboratoire à 10-24s pour une poussière dans l’air

La mécanique quantique n’a jamais été mise à défauts à l’échelle microscopique 
(et même certain états quantiques macroscopiques comme l’état supraconducteur)

 

mais devient mort OU vivant 
si on ouvre la boite !

le chat de Schrodinger…. est mort ET vivant
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• P6. L’évolution temporelle du système est totalement déterminée par 
l’équation de Schrödinger

H� = i~@�/@t (ou H|� >= i~@|�>
@t )

en écrivant :

�(x, t) =
P

cn(0)e�iEnt/~�n

i~@cn
@t

=
X

n

< �n|H|�m > cm

�(t) =
X

cn(t)�n

et si H�n = En�n alors < �n|H|�m >= En�n,m

et



Remarque 2 : 
toute fonction d'onde conserve sa norme au cours du temps mais en général 

les états ne sont pas stationnaires, et leur
forme évolue au cours du temps. 

Remarque 1 : 
pour un potentiel donné, il existe des fonctions

d'onde appelées ondes stationnaires, dont la « forme » reste invariante (i.e. le 
module seule la phase varie). Chaque onde stationnaire a une énergie précise.
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Remarque 3 : 
évolution temporelle de la somme = somme des évolution temporelle 

= principe de superposition.

Remarque 4 : 
l’équation de Schrödinger n’est valable que pour des constituants élémentaires ou 

des ensemble de constituants (atomes, molécules) isolés de leur environnement. 

Ici isolé = le système ne modifie pas l’environnement (ne change pas son état)
Sinon, on peut (doit) se contenter d'une description classique du système

Par contre l’environnement peut exercer sur la particule une force F décrite par un potentiel V (x)



http://www-fourier.ujf-grenoble.fr/~faure/enseignement/meca_q/animations/
Pour des exemples : voir la page web de Frédéric Faure

Si on connait         , alors pour un un décalage infinitésimale 

et on peut donc reconstruire (= générer) l’évolution complète à partir  
d’une transformation exponentielle 

�(x+ ⌧) = �(t)� ⌧ d�
dt

= �(⌧)� iH~ ⌧

S = exp(� iHt

~ ) =
X 1

n!
(� iHt

~ )n|�(x, t) >= S(t)|�(x, 0) > avec

�(t+ ⌧) = �(t) + ⌧
d�

dt
= �(t)� i

⌧H�

~ = (1� i
⌧H

~ )�

Si une fonction d’onde évolue en fonction du temps alors  

| < �(0)|�(t) > |2 = 1� (t/�t)2 + o(t3) avec �t = ~
�E

| (t) >= S(t)| (0) >= (1� i
tH

~ � t
2
H

2

2~2 + ...)| (0) >

| <  (0)| (t) > |2 = (1� t
2

2~2 < |H2| >)2 + (
t

~ < |H| >)2

<  (0)| (t) >= S(t)| (0) >= (1� i
t

~ <  (0)|H| (0) > � t
2

2~2 <  (0)|H2| (0) > +...)|<  (0)| (t) >= S(t)| (0) >= (1� i
t

~ <  (0)|H| (0) > � t
2

2~2 <  (0)|H2| (0) > +...)|

Remarque :

B. Générateurs, lois de conservation (Noether) et symétries (théorème de Wigner) 
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De même, pour une translation dans l’espace réel

|�(x� �) >= T (�)|�(x) >

�(x� �) = �(x)� �d�
dx + �2

2
d2�
dx2 + .... = exp(�i p~�)

et le générateur du groupe des opérateurs de translation est 
l’opérateur impulsion                  .

(et de même -x est le générateur des translation en impulsion)  

p = ~
i

@
@x

T (�) = exp(�i p~�)

on peut donc définir l’opérateur translation tel que 

S(t) = opérateurs unitaires vérifiant :  
S(t1+t2)=S(t1)S(t2), S-1(t)=S+(t) [=S(-t)] et S(0)=1 
Ils foment un groupe (de Lie de dimension 1)  

dont le générateur est le Hamiltonien H = groupe d’évolution dans le temps
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et pour une rotation (autour de Oz) :  

Lz = ~
i

@
@'

le générateur de ce groupe de rotation est donc

= moment cinétique (selon z)

Φ(φ − α) = Φ(φ) − α(∂/∂φ)Φ

⃗L = ⃗r ∧ ⃗p

[L2, Lz] = 0 Fonctions propres communes,= harmoniques sphériques

L2Ym
l = l(l + 1)ℏ2Ym

l LzYm
l = mℏYm

let

�l  m  l

Ym
l = Θm

l (θ)Φm(φ)

Polynôme de Legendre
1

2π
eimφ



Rz(↵) = exp(�iLz
~ ↵)|�('� ↵) >= Rz(↵)|�(') >

Comme pour E-t, on peut écrire  un incertitude « angle-moment cinétique » 

�'�Lz ⇡ ~
21



Remarque : dans l’espace des spins 

Ry(✓) = exp(�iSy✓/~) = cos(✓/2).Id� isin(✓/2)�y

Sz = ~/2
✓

1 0
0 �1

◆
, Sx = ~/2

✓
0 1
1 0

◆
et Sy = ~/2

✓
0 �i
i 0

◆

matrice de Pauli

les vecteurs propres de valeurs propres ±~
2

Pour un spin 1/2 on note |+ > et |� >

il y a un angle de 180° entre +z et -z dans l’espace réelle  
mais dans l’espace de spins :   

|+ > et |� > sont ORTHOGONAUX

rotation de θ dans l’espace réel = rotation de θ/2 dans l’espace des spins

= règles de commutation des moments cinétiques[Si, Sj ] = i~Sk et [Si, S2] = 0

S2 = S2
x + S2

y + S2
z = 3~2/4

✓
1 0
0 1

◆



Théorème de Noether : à toute invariance d’un système est associée  
une grandeur physique conservée = valeur propre du générateur

invariance par rotation dans l’espace [potentiel central] ⟺ moment cinétique

Comme H commute avec lui même, l’énergie se conserve ! 

par exemple si le système est invariant par translation, le potentiel est constant 
et H commute avec p : la quantité de mouvement se conserve
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[S,A] = 0 ! conservation de < A >

Remarque, on a :

< A > (t) =< �(t)|A|�(t) >=< �(0)|S†AS|�(0) >=< �(0)|S†SA|�(0) >

=< �(0)|S(�t)S(t)A|�(0) >=< A > (0)

d < A >

dt
=

i

~ < [H,A] > (si A ne dépend pas explicitement de t)

et si [H,A]=0 alors :
 Soit A le générateur d’un groupe (de symétrie de paramètre λ) 



En présence d’un champ électromagnétique 

~A ! ~A0 = ~A+ ~r(�) et U ! U 0 = U � @�
@t

~E = �~r(U)� @ ~A
@t et ~B = ~rot ~A

m
d2~x

dt2
= q[ ~E + ~v ^ ~B]

dx

dt
= @H

@p
et dp

dt
= �@H

@x

⇳ H =
1

2m
[~p� q ~A]2 + qU

l’Hamiltonien est alors bien invariant  par le changement de Jauge

conservation de la charge (q)

et la fonction d’onde (définie à une phase près) peut être « changée » (voir TD) en 

�(~x, t) ! �0(~x, t) = exp(�iq �
~ )�(~x, t)

Remarque : cette invariance de Jauge est intimement liée au fait que les photons ont 
une masse nulle (dans les équations de Maxwell) et la supraconductivité est une 

transition de phase dans laquelle l’invariance de Jauge est brisée  
=> les photons acquièrent une masse…..

invariance de Jauge ⇳

24
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Le spectre en énergie et la norme de la fonction d’onde sont donc 
invariants par ce changement de jauge MAIS

la présence d’une phase peut donner lieu à des phénomènes 
d’interférence qui n’ont bien entendu aucun équivalent classique

La conséquence surprenante de cette 
expérience, est qu'un champ 

magnétique B peut influencer le 
mouvement d'électrons qui ne le 

traversent même pas. (Mais dont la 
fonction d'onde le contourne).

 Effet Bohm-Aharonov (voir TD)I = |Φ1 + Φ2 |2 = I0(1 + cos(2πΦ/Φ0))

de même en physique des particules, l’Hamiltonien (interaction  faible/forte) est 
invariant par une « transformation de jauge » impliquant la conservation de la 
couleur, du nombre baryonique et/ou leptonique qui permettent de déterminer 

les « transformations » autorisées des particules
(voir physique des particules)
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� = Ae�px/~ +Bepx/~

quelques exemples :  
pour V= 0 (ou plus généralement V=V0) H=p2/2m

n’est PAS un état propre de H  car ce n’est PAS un état propre de p
(         doit être indépendant de x, invariance en translation)|�|2

Si V(x) = V(-x), [H,P]=0  
(ou l’opérateur P est l’opérateur parité) 

P�(x) = �(�x)

et la fonction d’onde est soit paires soit impaires

Comme [H,A]=0, on peut chercher le spectre de H dans  
les sous-espaces (dit irréductibles)        de l'opérateur A  

(associées aux différentes valeurs propres an,                   )H = �aHa

Ha

Remarque : si le groupe engendré par A est commutatif, les sous-espaces sont de 
dimension 1 = non dégénéré

brisure de symétrie => levée de dégénérescence

C.  Symétries, dégénérescence (théorème de Wigner) 



Dans un cristal le potentiel (et donc l’Hamiltonien) sont invariants par toute 
translation TR d’un pas du réseau (a) (et non pas translation infinitésimale)  

[ou angle fini pour les orbitales moléculaires, par exemple benzène]

pour                                          ,                 ⌅R = n1 ⌅a1 + n2 ⌅a2 + n3 ⌅a3 C(⌅R) = C( ⌅a1)n1C( ⌅a2)n2C( ⌅a3)n3

TR(H�) = H(r + R)�(r + R) = H(r)�(r + R) = H(TR�)

TRTR�� = TR�(r + R�) = �(r + R� + R) = TR+R��

C(⇤ai)              est un complexe que l’on peut écrire sous la forme      e2�ixi

➞ ψ peut se mettre sous la forme �(r) = ei⌅k⌅ru⌅k(r)

u⇥k(r + R) = u⇥k(r) THEOREME DE BLOCH

TR� = �(r + R) = c(R)� = ei⌅k ⌅R�(r)

avec

en écrivant                                               on a donc      ⌅k = x1
⌅b1 + x2

⌅b2 + x3
⌅b3 C(⌅R) = ei⌅k ⌅R

où               

les vecteurs     définissent le RESEAU RECIPROQUE (voir physique du solide)               ⇥bi

⇧ai
⇧bj = 2⇥�ij

27



 * L2 commute avec tous les générateurs du groupe, c’est un opérateur dit de Casimir du groupe

si H est invariant par rotation, [H,Li]=0*, les sous-espaces propres de H 

sont les représentations irréductibles du groupe des rotations (les Di) 

(groupe de Lie de dimension 3 [noté SO(3)])  engendré par les Yl,m

Cas du potentiel central :

Yl,m(✓,') =< ✓,'|l,m >H peut s’écrire  

0

@
a0I 0 0
0 a1I 0
0 0 ...

1

A

} } }

D0 D1 …

Les (trois) rotations « primaires » ne commutent pas 

ET DONC LE SPECTRE DE H est dégénéré en m, 2l+1 fois

En,l

Veff(l,r)

1/r2

V(r)� = @2

@r2 + 2
r

@
@r + 1

r2
@2

@'2 + 1
r2tan'

@
@' + 1

r2sin2'
@2

@✓2 =
@2

@r2
+

2

r

@

@r
� L2

~2r2

H = � ~2
2m

[
@
2

@r2
+

2

r

@

@r
] + [

L
2

2mr2
+ V (r)]

�(r, ✓,�) =  (r)Yl,m(✓,�) Veff = V (r) +
~2l(l + 1)

2mr2avec
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Exemple : V (r) = m!2r2/2 ! En,l = ~!(2n+ l + 3/2)Exemple : V (r) = m!2r2/2 ! En,l = ~!(2n+ l + 3/2)

et dans le cas de l’atome d’hydrogène                     

Polynôme de Laguerre

Avec :

le spectre est dégénéré en m (invariance par 
rotation) mais aussi en l ?



Cette seconde dégénérescence découle  d’une autre invariance : 
la conservation du vecteur de Runge-Lenz. 

En effet, pour les force en -k/r2, on peut montrer en mécanique classique  
que hormis l’énergie et le moment cinétique 

le vecteur                                            est conservé (« loi de Képler »),  
pour nous (mécanique quantique)                 

et cette seconde règle de commutation conduit à la dégénérescence en l.
[ ~A,H] = 0

~A = 1
2 (~p ^ ~L� ~L ^ ~p)�mk~ur ou ~F = �k~ur

r2
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Chap.2 

Méthodes de résolution



+ corrections relativistes + spin/spin + spin/orbite + e/e + e/ions + …..H =
X

i

(
p
2
i

2mi
� Zq

2

4⇡✏0ri
)

soluble (atome hydrogène) insoluble et pourtant fondamentale !

un certain nombre de problèmes peuvent être résolus numériquement ou  
utilisation de méthodes d’approximation (solution approchée mais suffisante)

H = H0 + �H1

soluble perturbation = correction faible
H0|n >= E

0
n|n > et < n

0|H1|n > connus

On cherche En sous la forme 

En = E0
n + �E1

n + �2E2
n + .....

correction d’ordre 1, d’ordre 2,….

|�n >= |n > +�|'1
n > +�2|'2

n > +....et

Etats NON DEGENERES

A. Théorie des perturbations (1er et 2eme ordre)  
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On ”norme” |�n > en imposant < n|�n >= 1 alors < n|'i >= 0

et en identifiant les termes d’ordre 1 (termes en λ)

(H0 + �H1)(|n > +�|'1
n > +....) = (E0

n + �E
1
n)(|n > +�|'1

n > +....)

H0|'1
n > +H1|n >= E

0
n|'1

n > +E
1
n|n >

et donc E
1
n =< n|H1|n >

|'1
n >=

X

n0

|n0 >< n0|'1
n >=

X

n0 6=n

|n0 >< n0|'1
n >

|'1
n >=

X

n0 6=n

< n
0|H1|n >

E0
n � E00

n

|n0
>

relation de fermeture
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soit E
2
n =< n|H1|'1

n >=
X

n0 6=n

< n|H1|n0
>< n

0|'1
n >

i.e.  E
2
n =<

X

n0 6=n

| < n|H1|n0
> |2

E0
n � E

0
n0

et en identifiant les termes d’ordre 2 (termes en λ2)

H0|'2
n > +H1|'1

n >= E
0
n|'2

n > +E
1
n|'1

n > +E
2
n|n >

 pour p=1, le premier ordre est nul par parité,  
pour le second ordre seul le terme n = 1 est non nul  

avec E2
0 = �c2�2/2~!0 = �c2/2k

remarque : dans ce cas on trouve le résultat exact donc les corrections suivantes s’annulent  

par exemple pour une correction en cxp de l’oscillateur harmonique 

pour l’état fondamental 

E0
0 = ~!

2 et < x|0 >= 1
(⇡�2)1/4

exp(�x2/2�2) avec � =
p

~/m!

⇠|n >=
p
n/2|n� 1 > +

p
(n+ 1)/2|n+ 1 > avec ⇠ = x/�
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E0/~!

�

pour p = 4 
E1

0 = 3c�4/4

E2
0 = �21c2�8/8~!0

etc….

pour p = 2 

avec E1
0 = c�2/2

pour le second ordre seul le terme n=2 est non nul 
avec E2

0 = �c2�4/4~!0

remarque : dans ce cas on retrouve :  
E0 = ~

p
(k + 2c)/m/2 = (~!0/2)(1 + 2c/k)1/2 = (~!0/2)(1 + c/k � (c/k)2/2 + ....)

⇠2|n >=
p

n/2[(
p

(n� 1)/2|n� 2 > +
p

n/2|n >] +
p

(n+ 1)/2[
p

(n+ 1)/2|n > +
p

(n+ 2)/2|n+ 2 >]



Voir aussi terme de Darwin (voir TD) = fluctuations de position de 

l’électron par rapport à son « orbite » :                                  meV 

et couplage spin-orbite (voir suite)

δr ∼
ℏ

mc
→ δV ∼ 0.1

∼
10
105

∼ 10−4

Exemple : corrections relativistes de l’atome d’hydrogène (structure fine)

H = T + V = mc2( (
p

mc
)2 + 1 − 1) + V =

p2

2m
+ V −

p4

8m3c2
+ . . .

perturbation 1er ordreEn = − E0/n2

T =
mc2

1 − (v/c)2
− mc2 et   soit  p =

mv

1 − (v/c)2

p
c

=
m(v/c)

1 − (v/c)2

E1
n = −

1
8m3c2

< n |p4 |n > = −
E0

n

mc2
(

2n
l + 1/2

−
3
2

) × E0
n

et



NX

i=1

↵i < n, j|H1|n, i >) = E
1
n↵j

 les N valeurs de En1 s’obtiennent en annulant le déterminant de ce système  
et la résolution du système (+ normalisation) permet de calculer les αi 

��������

W11 � E1
n W12 ... W1N

W21 W22 � E1
n ... W2N

... ... Wkk � E1
n ...

WN1 WN2 ... WNN � E1
n

��������
= 0
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|�n >= (
NX

i=1

↵i|n, i >) + �|'1
n > +�2|'2

n > +....

Etats DEGENERES

maintenant on doit écrire

état n, dégénéré N fois

et en identifiant les termes d’ordre 1 (termes en λ)

puis en projetant sur chacun des vecteurs              on  
obtient un système  de N équations du type

|n, j >

H0|'1
n > +H1(

NX

i=1

↵i|n, i >) = E
0
n|'1

n > +E
1
n(

NX

i=1

↵i|n, i >)
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En brisant une symétrie la perturbation lève (partiellement) la dégénérescence

la présence d’un champ électrique (effet Stark, voir TD) introduit doc une 
perturbation du type

H1 = q~r. ~E = qErcos�

et pour le niveau n=2 de l’atome d’hydrogène (4 fois dégénéré)

barycentre de la charge - 
(électron) n’est plus 
confondu avec le 

barycentre de la charge + 
(proton au centre) 

⟹ apparition d’un 
moment électrique 

(induit) 

avec 𝜸 = -3ea0<n|H1|n’>=

3eEa0

1/
p
2( 200 � 210)

1/
p
2( 200 + 210)

±

-

+ ~P

~P

Ψ2,1,1 Ψ2,1,−1 ,et et

en particulier : interaction électromagnétique (dipolaire) 



évolution sous H0 inconnu

|�(t) >=
X

k

|k > e�iE0
kt/~ ⇥ ck(t)et on cherche

On suppose qu’à t=0 le système est dans l’état |n > i.e. ck(0) = �k,n

i~e�iE0
mt/~ ⇥ @cm(t)/@t =

X

k

e
�iE0

kt/~ck(t)⇥ < m|H1|k >

i~@c1m(t)/@t =
X

k

e
�i(E0

k�E0
m)t/~⇥ < m|H1|k > c

0
k = e

�i(E0
n�E0

m)t/~⇥ < m|H1|n >

et en projetant sur l’état |m >

X

k

e
�iE0

kt/~[E0
kck(t) + i~@ck(t)/@t]|k >=

X

k

e
�iE0

kt/~ck(t)⇥ {E0
k|k > +H1|k >}

soit Pn!m = |c1m(t)|2 = 1
~2 |

R t
0 e

i!m,nt
0
< m|H1(t0)|n > dt

0|2

probabilité de transition entre l’état n et l’état m n

m
Pnm

B. Perturbations dépendantes du temps : H=H0+H1(t)

cette approche perturbative est valable pour TOUT H1(t) [<<H0] 



si H1 = constant (pour t<t0=0) 

Pn→m(t) =
| < n |H1 |m > |2

ℏ2
|

eiωn,mt − 1
iωn,m

|2 =
Ω2

ω2
n,m

sin2(ωn,mt/2) si ωn,m ≠ 0

si ωn,m = 0=
Ω2t2

4

H1 = q~r. ~E = qErcos�et  pour un champ électromagnétique (interaction dipolaire)

Avec ⃗E = ⃗E0 ejωt Pn→m(t) =
|2 < n |q ⃗E0 rcosθ |m > |2

ℏ2
F(t, ωn,m − ω)

à la résonance la probabilité de 
transition est  

proportionnelle à t2 

mais cette approche n’est valable 
que pour  P <<1 
(voir plus loin)

h/|(Eb � Ea)� ~!|

4|Wab|2

|(Eb � Ea)� ~!|2

si ω0>0 (réciproquement <0) : l’atome gagne (resp. cède) de l’énergie de l’onde EM 
en langage « quantique » : absorbe ou émet un photon d’énergie ℏω

résonance pour ωn,m=ω 



Transition vers un continuum
⇢(E) = dn

dE = densité de niveaux du continuum par unité de volume

Densité d’états (en physique du solide)

On suppose | < n|H1|m > | constant autour de Eb

(Eb � Ea)� ~! << �E

P =

Z

continuum
Pabdn =

Z
Pab⇢(E)dE et avec dE = ~d! on obtient (comme précédemment)et F (t,!) ! 2⇡�(!)t

Pa!cont = ⇢(Eb)
2⇡
~ | < n|H1|m > |2t car

R +1
�1 F (t,!)d! = 2⇡t

si 

règle d’or de Fermi

41

Dans ce cas la probabilité devient linéaire [comme pour une onde EM est incohérente  
= superposition d’onde de fréquence différence] et non plus quadratique 

(taux de transition dP/dT = constante)

Application à l’ionisation des atomes et/ou LASER
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Cette méthode est basé sur le fait que E0  < �|H|� >

< �|� >

la méthode consiste à choisir une famille de fonction 
d’essai dépendant d’un paramètre μ 

on calcul alors :  

Eµ =
< �µ|H|�µ >

< �µ|�µ >

et on minimisa cette énergie en « espérant » se rapprocher le plus près possible de E0 
Ce minimum sera d’autant plus proche de E0 que l’on a su choisir la « bonne » famille d’essai

Par exemple H =
p
2

2m
+

1

2
kx

2

H|�� >= [
~2

2m�2
(1� x

2

�2
) +

1

2
kx

2]|�� >

E� =
~2

4m�2
+

k�2

4

cinétique potentielle

�2
min = ~

m! et Emin = ~!
2 = E0

car « bonne » fonction d’essai 

< x|�� >= exp(�x2/2�2)

< ��|
@2��

@x2
>= �0.89/�

< ��|x2|�� >= 0.89�3

< ��|�� >= 1.77�

C. Méthode variationnelle.  
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< x|�� >=
1

1 + (x/�)2 Lorentzienne

< ��|�� >= 1.57�

et < ��|x2|�� >= 1.55�3

E� =
~2

2m�2
⇥ 0.49 +

k�2

2
⇥ 0.99

�2
min = ~

m! ⇥ 0.70 et Emin = ~!
2 ⇥ 1.4

< ��|
@2��

@x2
>= �0.77/�

et < ��|x2|�� >= �3/15

< ��|�� >= 2�/3

E� =
~2

2m�2
⇥ 3 +

k�2

2
⇥ 0.1

�2
min = ~

m! ⇥ 5.5 et Emin = ~!
2 ⇥ 1.1

triangle< x|�� >= 1± (x/�)

< ��|
@2��

@x2
>= �2/�

< x|�� >=
1

(⇡�2)1/4
exp(�x2/2�2)

H =
p
2

2m
+

1

2
kx

2 + �x
4

et si < x|�� >= (x/�)(1� (x/�)2)

�2
min = ~

m! ⇥
p

10.7/0.33 et Emin = ~!
2 ⇥ (2

p
10.7 ⇤ 0.33) = ~!

2 ⇥ 3.8

Eσ =
ℏ2

2mσ2
× 10.7 +

kσ2

2
× 0.33



Chap.3 

Hamiltonien sous champ magnétique



H =
1

2m
[~p� q ~A]2 + qU

, H =
p
2

2m
� �0LzB +

q
2
r
2
B

2

8m

si B est constant (//Oz), on prend prendre : 

~A = (�By

2
,
Bx

2
, 0)

γ0 = q/2m

H =
p2

2m
−

q
2m

( ⃗p . ⃗A + ⃗A . ⃗p ) +
q2A2

2m
(U=0)

A. Quantification des niveaux sous champ magnétique

le terme en r2 ⬄ oscillateur harmonique 
les solutions sont donc 

                                             

avec 2ω = ωc = qB/m = fréquence cyclotron

                  

En = [(nx +
1
2

) + (ny +
1
2

)]ℏω ↔ ω =
qB
2m

En = (n + 1)
ℏωc

2

ℏωc

2
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Et − < γ0LzB > = −
qB
2m

< Lz > = − n′�
ℏωc

2

avec n’=-n,-n+2,….,n-2,n 

MOUVEMENT D’UNE PARTICULE DANS UN CHAMP MAGNÉTIQUE UNIFORME : LES NIVEAUX DE LANDAU § 2. Le spectre d’énergie en physique quantique

ce qui s’écrit encore

En =

✓
n +

1

2

◆
~!c, avec n =

n0 � m

2
entier positif ou nul. (2.28)

On retrouve donc la structure de l’hamiltonien en niveaux de Landau ré-
gulièrement espacés (voir aussi la figure 2.3, cadre du bas). On note de plus
que chaque niveau de Landau est infiniment dégénéré, au moins si la parti-
cule peut explorer tout le plan xy. Il existe en effet une infinité de façon
d’atteindre tout entier n à partir de couples (n0, m) si on ne restreint pas
les valeurs de n0 et m réalisables.

2-3 Le niveau de Landau fondamental (LLL)

Cette procédure fournit un moyen systématique pour trouver une base
d’états propres de Ĥ . Intéressons nous ici au niveau de Landau fondamen-
tal n = 0 (Lowest Landau Level, LLL en anglais), obtenu en prenant systéma-
tiquement n0 = m dans (2.28). Nous avons donné en (2.26) la forme des
fonctions d’onde correspondantes, que nous reproduisons ici :

 n0=m, m(x, y) / (x + iy)me�r2/4`2 = r
meim'e�r2/4`2

. (2.29)

Nous avons tracé sur la figure 2.2 la densité de probabilité radiale
r| m|2, associée à un état  m du LLL (oublions l’indice n0 puisqu’il est
de toute façon égal à m pour le LLL). Cette densité de probabilité est inva-
riante par rotation autour de l’axe z et elle est maximale sur un cercle de
rayon

rm =
p

2m + 1 `. (2.30)

Sa largeur à mi-hauteur est indépendante de m et d’ordre

�r ⇠ `. (2.31)

Une particule préparée dans un état  m donné est donc localisée sur un
anneau étroit, la réunion de tous ces anneaux recouvrant le plan. On trouve
par ailleurs

h m|r2| mi = (2m + 2)`2. (2.32)

..."

�1 0 +1 +2 +3

~!c

..."

..."
m = �2

�1 0 +1 +2 +3

n0 = 0

n0 = 1

n0 = 2

n0 = 3

~!c/2

n0 = 4

m = �2

n = 0

n = 1

n = 2

FIGURE 2.3. Haut : structure des niveaux d’énergie de l’hamiltonien Ĥ0 décrivant
un oscillateur harmonique 2D, avec des niveaux (n0 + 1)~!c/2, n0 entier positif
ou nul. La dégénérescence d’un niveau est n0 + 1, et les états propres peuvent
être repérés par les deux nombres quantiques, n0 et m, où m~ est la valeur de la
composante selon z du moment cinétique L̂z . Les flèches grisées indiquent l’action
de �!cL̂z/2 sur certains niveaux. Bas : structure des niveaux d’énergie de l’ha-
miltonien Ĥ décrivant une particule dans un champ magnétique uniforme. Cette
structure se déduit de celle du haut en déplaçant un niveau (n0, m) de l’énergie
�~!cm/2.

Cours 2 – page 6

et un électron c’est également un SPIN

g = facteur de Landé = -2,002 pour un spin 1/2

→ Hspin = gγ0
⃗B . ⃗Se

qui se couple également au champ extérieur

ℏωc

2

En = n′�′�ℏωc

= effet Paschen-Back : Sz et Lz sont traités ici indépendamment  
(restent de bons nombres quantiques, fonction d’onde = états produits)  

mais à faible champ on doit tenir compte du couplage SPIN-ORBITE (voir plus loin)

avec n′�′� =
n + n′ � + 1 ± 1

2

Niveau de LA NDAU



electrons libres
(V=A=0)

E =
~2k2
2m
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electrons dans un potentiel périodique (a)
(A=0)

Apparition de BANDES
(voir physique du solide II)

(liaisons fortes = couplage 
aux plus proches voisins)

E = E0cos(k.a)

E

(Φ = onde plane)

E

Papillon de Hofstadter
(fractal)

↵ =
�

�0
=

Ba2

h/e

On retrouve des bandes
 (plus étroites)

pour  α = rationnel

electrons en présence d’un champ B constant
ET d’un potentiel périodique (carré, a)

electrons en présence d’un champ B 
constant   (V=0)

E
En = ~!(n+ 1/2)

Niveaux de Landau DISCRETS
(une dégénérescence est liée à la symétrie 

de révolution autour de H)

avec ω = fréquence cyclotron qB/m
+ correction (hyper)fines



(A⌦B)(|u > ⌦|v >) = (A|u >)⌦ (B|v >)*

dans le référentiel de l’électron, le noyau décrit une orbite et crée donc un champ magnétique

On peut montrer que ce champ interne est ∝ ⃗L

→ HSO = λso(r) ⃗L . ⃗Se
⃗L . ⃗Se = ⃗L ⊗ ⃗Se

*( on devrait écrire                          ) 

= vecteurs propres de L2 et Lz ⬄ orbitales atomiques (partie angulaire)

= vecteurs propres de Se (de valeurs propres ±ℏ/2)

|φ > = | l, ml >

| + > , | − >

comme pour la composition des deux spins 1/2  note les états propres de 
J2 (et Jz) : construit à partir de 

|J, mJ >
| l, ml > ⊗ |s, ms >

⇾  espace vectoriel = produit tensoriel (de dimension 2x2=4)

engendrée par |+ > ⌦|+ >, |+ > ⌦|� >, |� > ⌦|+ > et |� > ⌦|� > notés |+,+ > etc...

|+,+ >, |�,� > et (|+,� > +|�,+ >)/
p
2 ⬄    STOT=1 et et ms=1,-1 et 0

(|+,� > �|�,+ >)/
p
2 ⬄    STOT=0 et ms=0

B. Couplage spin-orbite et Structure hyperfine 
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les C sont appelés coefficients de  Clebsch - Gordan (cf wikipedia)

de façon générale pour toute composition de moments J1 et J2 (spin et/ou orbital)

Htot = DJ1 ⌦DJ2 =

J=|J1+J2|M

J=|J1�J2|

DJ|J, mJ > = ∑ C( j, mJ, j1, j2, m1, m2) |J1, m1 > ⊗ |J2, m2 >

coefficient de Clebsch - 

|1, 1 >

|1, 0 >

|0, 0 >

|1,�1 >

|+ > ⌦|+ > |+ > ⌦|� > |� > ⌦|+ > |� > ⌦|� >

1 0 0 0

0

0
0 0 0

0

0

1

1/
p
2 1/

p
2

1/
p
2 �1/

p
2

Par exemple : 2 spins 1/2

2⌦ 2 = 3� 1

J=L+S=3/2
voir aussi TD - isospin

Ou pour l=1, s=1/2 : 3 ⊗ 2 = 2 ⊕ 4
J=L-S=1/2



< Hso > = < n, l, ml |λso(r) |n, l, ml > < ⃗L . ⃗Se >

Intégrale sur sur l’espace (réel~1/r3)  avec ⃗J = ⃗L + ⃗Se

J2 = L2 ⊗ Id + 2(Lx ⊗ Sx + Ly ⊗ Sy + Lz ⊗ Sz) + Id ⊗ S2 noté L2 + 2 ⃗L . ⃗S + S2

⃗L ⃗S =
J2 − L2 − S2

2

~ 1meV => contribution à la structure FINE

< ⃗L . ⃗Se > =
ℏ2

2
( j( j + 1) − l(l + 1) − 3/4)

Remarque : une différence d’énergie entre les état 2s1/2 et 2p1/2 a néanmoins été 
observé par Eugène Lamb en 1947. Ce décalage de Lamb est du aux fluctuations du 

vide (du champ électromagnétique, non traitées ici)  
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< HSO > =
En2

mc2

n
l(l + 1/2)(l + 1)

[( j( j + 1) − l(l + 1) − 3/4]On peut montrer que 

Et en incluant les corrections relativistes (voir chapitre précédent) et avec 

 on obtient j = l ± 1/2 H1
SF =

E2
n

2mc2
(3 −

4n
j + 1/2

)

ces corrections hyper fines ne dépendent que de j (pas de l)



< Hhf > = < n, l, ml |λhf |n, l, ml > < ⃗Sp . ⃗Se >

Bp =
μ0

4π
(3( ⃗μp . ⃗r ) ⃗r − ⃗μp)

Hhf = 2gpμpμB
μ0

4πr3
[3( ⃗Sp . ⃗r )( ⃗Se . ⃗r ) − ⃗Sp

⃗Se] = λhf(r) ⃗Sp . ⃗Se

et avec le SPIN du noyau = moment dipolaire  ⃗μp =
gpe

2mp

⃗Sp (gp ~ 5.6)

< Hhf > =
λhfℏ2

2
(S2

TOT −
3
2

)
⃗STOT = ⃗Se + ⃗Sp

S2
TOT = S2

e + 2 ⃗Se
⃗Sp + S2

p

STOT = 0,1

Remarque : spin nucléaire souvent noté I, voir TD pour plus de détails

|1,m >

|0,0 >

ΔE = − 5.87.10−6eV ≡ λ = 21cm
(état fondamental l=0) Terme HYPERFIN

 tous les 10 milions d’années le spin d’un atome se retourne 
et il y a émission d’une raie caractéristique à 21 cm 

Hydrogène = 90% des atomes du milieu interstellaire 0.3 atome/cm3 en moyenne (He = 10% restant) 
matière essentielle pour la formation des nouvelles générations d’étoiles.



De même  précesse autour de   
avec une fréquence deux fois plus faible 
ils peuvent être traités séparément

⃗L ⃗B

 n’est ici pas conservé⃗J = ⃗L + ⃗S

Hspin = �~µ. ~B = �gµB

~
~S. ~B

|�(t) >= S(t)|�(0) > avec S(t) = exp(�iHspint/~)

|� >= a|+ > +b|� >

Hspin = � gµBB
2 �z = ~!0�z pour B||Oz avec ω0 =

qB
2m

=
ωc

2

S(t) = cos(!0t)⇥ Id� isin(!0t)⇥ �z

a(t) = a0e�i!0t et b(t) = b0ei!0t

Retour sur les niveaux de Landau : 

⤇
PRECESSION à la fréquence (de Larmor)  2ω0 = ωc



avec une fréquence λSOL

avec αJ = mJgJ = mJ
3j( j + 1) + s(s + 1) − l(l + 1)

2j( j + 1)

< Hpara > = − γ0gJ < Jz > B = − αJμBB (B//Oz) Effet Zeeman

gJJ2 = ( ⃗L + 2 ⃗S ) . ⃗J = J2 + ⃗S . ⃗J = J2 + S2 + ⃗L . ⃗S =
3J2 + S2 − L2

2
on pose ⃗L + 2 ⃗S = gJ

⃗J

Par exemple si l=1, s=1/2 :

3 ⊗ 2 = 2 ⊕ 4
J=L-S=1/2

J=L+S=3/2

gJ=2/3, mJ=1/2,-1/2

gJ=4/3, mJ=-3/2,…,3/2

αJ=-1/3,1/3

αJ=-2,-2/3,2/3,2

mais le couplage spin-orbite =>  et  tournent l’un autour de l’autre (et autour de ) 
 

⃗L ⃗S ⃗J

et si  alors on doit faire un traitement perturbatif sur les B < λSOℏ/γ0 |J, mJ >

< Hso > ≈ < J, mJ |Hso |J, mJ >



Effet Paschen-BackEffet Zeeman

L+2s = 2

L+2s = 1

L+2s = 0

L+2s = 0

L+2s = -1

L+2s = -2

αJ = 2

2/3

2/3

-2
αJ = 1/3

-1/3

MJ
3/2
1/2
-1/2
-3/2

MJ
1/2
-1/2

S=1/2, l=1

Clebsch-Gordan 
(|J,mJ>) états produits

Pour les champs intermédiaires : on utilisera la théorie des perturbations dégénérées 
(ou diagonalisation exacte) en utilisant soit les |J,mJ> soit les états produits
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Remarque 2 : d < ⃗J >
dt

=
< [ ⃗J , H ] >

iℏ
relation d’Ehrenfest : 

d < ⃗Jx >
dt

= γ0gJBz < Jy > = ω < Jy > ( < Jx > + i < jy > )(t) = e−iωt( < Jx > + i < jy > )(0)⤇
(et  = conservation de la composante le long de B)d < ⃗Jz >

dt
= 0

Ce couplage donne bien lieu à une précession du moment autour du champ 

Remarque 3 :Il faudrait également tenir compte du 

couplage de B avec le spin nucléaire I.  

Voir TD pour l’influence de B sur la structure hyperfine  

(effet Back-Goudsmith)

Remarque 1 : si <0|J|0>=0 on conserve une réponse paramagnétique 

au second ordre en perturbation = paramagnétisme de Van Vleck 

H(2)
vv = [γ0gJB]2 ∑

n≠0

| < 0 |J |n > |2

E0
0 − E0

n



D’un point de vue magnétique, le terme en r2 correspond à la loi de Lenz (le 
système cherche à crée un champ (= des orbites) s’opposant au champ 

qu’on lui applique) = diamagnétisme de Larmor  

Finalement l’HAMILTONIEN s’écrit

H =
p2

2m
+ V − γ0( ⃗L + 2 ⃗Se) . ⃗B + λSO

⃗L . ⃗Se + λhf
⃗Se . ⃗Sp +

q2r2B2

8m

C. Diamagnétisme et paramagnétisme des solides

ll apparaît un moment magnétique  et l’énergie associée à ce moment vaut   ⃗μ − ⃗μ . ⃗B

< μdia > = − ∂ < H > ∂B = −
q2 < r2 >

4m
B = −

q2BR2

6m

Pour B=1T, avec μB = magneton de Bohr  

:  Am2
qℏ
2m

= 9.3.10−24

~ rayon de Bohr a0

< μdia > ≈ μB ×
a2

0

h /qB
∼ μB

2.10−21

4.10−15
∼

μB

1000000

« Rayon » magnétique

le champ total (induction magnétique) dans le solide   
(ou  est le champ appliqué et l’aimantation   = moment/unité de volume)

⃗B = ⃗Hext + ⃗M⃗Hext
⃗M



mais dans les solides = ensemble d’atomes, on doit faire une moyenne statistique  

< μpara > = γ0 < Lz > = γ0
∫ Lze

γ0 ⃗L ⃗B
kBT dτ

∫ e
γ0 ⃗L ⃗B

kBT dτ
=

(γ0L)2B
3kBT

moyenne sur tous les angles (voir fonction de Langevin)

=1 : équipartition  (2D=orbite planaire)

En mécanique classique :  (Bohr (1911) & von Leeuwen (1922)) 

a piece of metal in electric and thermal equilibrium will not possess any magnetic properties

Mpara + Mdia = 0

Et    ⇒ paramagnétisme (de Curie)γ0( ⃗L + 2 ⃗S )

< μpara > = γ0(ml + 2ms)ℏ à haut champ

< μpara > = γ0gJmJℏ à bas champ

=
(γ0pR)2B

3kBT
=

q2BR2

6m
×

p2

2mkBT
= +

q2BR2

6m

∼ μB



Bj(x) =
2J + 1

2J
coth(

2J + 1
2J

x) −
1
2J

coth(
x

2J
)

fonction de Brillouin

Pour les faibles valeurs de x,  et  

Avec  (par atome), loi de Curie

BJ(x) ∝ x < μpara > ∼
C
T

B

C =
4μ2

B

3kB
J(J + 1)

< μpara > ≈
μB

100 et pour B=1T et T=100K

< μPara > = μB × BJ(μBB/kT )

Mais il faut tenir compte de  

la quantification des niveaux selon Oz et la présence du SPIN
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spin orbite non négligeable 

dépend de J< μpara >



voir : Physique du Solide S7

Ces électrons délocalisées ont également  
une contribution diamagnétique ~  (Landau) 

Sauf SUPRACONDUCTEURS M = -B

μpara /3

Densité d’état ~ 0.1 état/eV.atome

μB × [g(EF) . μBB] ∼
μB

10000 Pour B=1T

Remarque  et pour les états étendus 

la contribution paramagnétique (Pauli) est alors de l’ordre de
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Les interactions* entre spins peuvent donner lieu à  l’existence d’un moment même 

en l’absence de champ extérieur  

: champ interne = (anti-)FERROmagnétisme

de Curie-Weiss pour les états de coeur et Stoner pour les électrons délocalisés

* nous reviendrons sur l’origine microscopique de ces interactions plus loin

Electrons 
 localisées 

(couches atomiques)

Electrons  
délocalisées 

(métaux)

Diamagnétisme

LARMOR  
  

à 1T, indépendant de T

LANDAU 

(sauf supraconducteurs)

Paramagnétisme

CURIE (ou Van Vleck)

à 1T/100K ~1/T

PAULI

à 1T, indépendant de T 

μdia ∼ −
μB

1000000

μpara ∼
μB

10000
μpara ∼

μB

100

μdia ∼ − μpara /3



Chap.4 

Atomes à plusieurs électrons



Les particules élémentaires : leptons (non soumis à l’interaction forte)  
= électrons, muons, neutrinos,... et quarks (soumis à toutes les interactions)  

sont toutes de spin demi-entier, 
 on les appelle ces FERMIONS

on appelle BOSONS les particules de spin entier = bosons de jauges 
= intermédiaires des interactions fondamentales 

(photon = interaction électromagnétique, gluons = interaction forte,  
Z0,W = interaction faible et... le boson de Higgs) 

ou des bosons composites : He4, les électrons d’une paires (de Cooper) 
dans les supraconducteurs, les excitons....
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A. Corrélations (potentiel effectif), termes spectraux



 

donc . La fonction d’onde est donc  
soit symétrique = bosons , 

soit antisymétrique = fermions 

PijΦ(r1, r2, . . ri, . . . , rj, . . rN) = λΦ(r1, r2, . . rj, . . . , ri, . . rN)
λ2 = 1,λ = ± 1

(λ = + 1)
(λ = − 1)

On ne peut pas mettre deux fermions dans le même état quantique  
(= tous nombres quantiques : n,l,m... ET spins identiques)  

= principe d’exclusion de Pauli

par contre il peut être énergétiquement favorable de placer tous les bosons dans le 
même état = condensation de Bose-Einstein (voir physique statistique)
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L’Hamiltonien des N particules (INDISCERNABLES) est invariant par permutation 
 

 et la fonction d’onde est donc également un état propre de  
l’opérateur permutation  :  et  

H(r1, r2, . . ri, . . . , rj, . . rN) = H(r1, r2, . . rj, . . . , ri, . . rN)
[H, Pij] = 0

Pij P2
ij = Id



Pour l’atome d ‘hélium (Z=2) on pourrait s’attendre à ce que l’énergie du 
fondamental soit : -22*13.6*2=-109eV mais en réalité -79eV

Pour N électrons : Hel.st. = ∑
i

(
p2

i

2m
− ∑

j

Ze2

4πϵ0(ri − Rj)
) + ∑

i≠j

e2

4πϵ0rij

Corrélations

interaction e/ions 
périodique 

fonctions de Bloch 
(voir Solide II)

Calcul très délicat pour les électrons (délocalisés) des couches externes  
=> bandes, voir seconde quantification : « Hartree-Fock » M2-MQ

pour le fondamental on peut faire une approche variationnelle  
en cherchant la fonction d’onde sous la forme 

  Φ(Z*, r1, r2) = ΦZ*(r1)ΦZ*(r2)
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par l’approche variationnelle. On trouve  
 (En minimisant ) 

Z* = Z-5/16=1.69  (Z=2, voir TD)  et E ~ -77 eV (2% d erreur)
< Φ(Z*, r1, r2) |H12 |Φ(Z*, r1, r2) >

Zeff (r) D(r)

Zeff (r) = Z °
Z

r

0
D(r)dr £ p° 1

p

Zeff (0) =
Z Zeff (1) = 1 p Zeff (1) =
Z ° (p° 1)

Veff

Veff

p

Hi = ° h̄
2

2m

~ri + Veff (~ri)

√nlml
= Rnl(r)Ylml

(µ,¡)

Rnl

Veff

Veff

≤nl

n l 0 ∑ l ∑ n°1

D
Ω D(r) = 4ºr2Ω(r)/(°e)

Partie radiale dépend de Veff

pas facile à calculer ! Harmonique sphérique
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1/rij

°4£ 13,6£ 2 = °108,8 Z = 2

p + 1 p

p ° 1

H ª
X

i

(° h̄
2

2m

~ri + Veff (~ri)) =
X

i

Hi

Veff (~ri) = °Zeff (~ri)e2

4º≤0ri

Zeff (~r) ~r

Veff ~r r

Potentiel effectif (écrantage) ⇒ charge effective vue par l’électron se trouvant à ri 

mais pour connaître Veff il faut connaître la structure de l’atome mais c’est justement ce que l’on cherche… 

cela revient à écrire :

Veff reste un potentiel central mais plus en 1/r   

⇒ on conserve la dégénérescence en m mais PAS en ⇒ En,l

ou  est la fonction d’onde du fondamental d’un atome hydrogénoïde (à 1e) et Z* est une charge 
« effective » du noyau (variable) qui tient compte de l’écrantage par l’autre électron. 

ΦZ(r)



Règle de Klechkovski

En « gros » on remplit les couches en n croissant et 
d’abord les couches à l faible pour lesquelles les 
électrons sont plus proche du noyau : interaction 

(négative) plus grande

Exemple du carbone  Z=6 : 1s22s22p2

2 électrons (S1,2=1/2) occupent la couche 2p : L1,2=1

STOT = S = 0,1LTOT = L = 0,1,2

En fait chaque électron a 6 états possibles 
 (Sz,Lz)=(1/2,-1), (1/2,0), (1/2,1); (-1/2,-1),….

On note 2S+1X les niveaux correspondants = termes spectraux

où X=S (L=0), X=P (L=1), X=D (L=2),….

donc ici à priori 6 niveaux possibles 1S, 3S, 1P, 3P, 1D, 3D
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ces niveaux sont associés à 6x6=36 possibilités          
➡        21 possibilités           
➡        15 possibilités

indiscernabilité (X)
Exclusion de Pauli (X)

(1/2,-1) (1/2,0) (1/2,1) (-1/2,-1) (-1/2,0) (1/2,1)

(1/2,-1) X X X X X X
(1/2,0) ✔ X X X X X
(1/2,1) ✔ ✔ X X X X

(-1/2,-1) ✔ ✔ ✔ X X X
(-1/2,0) ✔ ✔ ✔ ✔ X X
(1/2,1) ✔ ✔ ✔ ✔ ✔ X
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mais 3P est possible car intervient pas  |1,0 > ⊗ |1,0 >

le niveau 3S  

fait appel à la configuration Lz1=Lz2=0 et Sz1=Sz2=+/-1/2  
ce qui est interdit par le principe d’exclusion 
de même pour 3D (Lz1=Lz2=1 et Sz1=Sz2=1/2 est interdit)

( |1,1 > ⊗ |1, − 1 > − |1,0 > ⊗ |1,0 > + |1,1 > ⊗ |1, − 1 > )/3
| ↑ , ↑ >
( | ↑ , ↓ > + | ↓ , ↑ > )/2
| ↓ , ↓ >

⊗

( |1,1 > ⊗ |1, − 1 > + 0 |1,0 > ⊗ |1,0 > − |1, − 1 > ⊗ |1,1 > )/2

( |1,0 > ⊗ |1, − 1 > − |1, − 1 > ⊗ |1,0 > )/2

( |1,1 > ⊗ |1,0 > − |1,0 > ⊗ |1,1 > )/2 | ↑ , ↑ >

( | ↑ , ↓ > + | ↓ , ↑ > )/2

| ↓ , ↓ >

⊗

elle est dégénérée 9 (2Ltot+1).(1Stot+1)=9 fois



les interactions inter-électrons lèvent alors la dégénérescence entre ces niveaux

(1/2,-1) (1/2,0) (1/2,1) (-1/2,-1) (-1/2,0) (-1/2,1)

(1/2,-1) X X X X X X

(1/2,0) 3P X X X X X

(1/2,1) 3P 3P X X X X

(-1/2,-1) 1D 3P,1D 3P, 1S,1D X X X

(-1/2,0) 3P,1D 1S,1D 3P,1D 3P X X

(-1/2,1) 3P, 1S,1D 3P,1D 1D 3P 3P X

1P est interdit par symétrie (les fonction radiale ET de spin sont antisymétrique) 
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et les 15 configurations restantes 
correspondent aux termes spectraux : 

1S (1), 3P (9), 1D (5) 

3D : interdit par Pauli

3P : OK

3S : interdit par Pauli

1D : OK

1P : interdit par symétrie

1S : OK 



électrons sans 
interaction

interactions e-e 
termes spectraux

couplage spin-orbite  
niveaux 2S+1LJ

J=|L-S|, |L-S+1|,… L+S ici J=0,1 ou 2

la dégénérescence des 
niveaux est finalement levée 
par le champ magnétique 

(effet Zeeman)

1 1

5 5

9

5

3
1

état fondamental = 3P(0): pourquoi cet ordre ?



|� > est antisymétrique ( 1/
p
2(|+,� > �|�,+ >)70

de façon générale pour Interaction entre 2 spins, la fonction d’onde 
doit être ANTISYMETRIQUE soit en spin, soit en orbital

SPIN TOTAL = symétrique (triplet)  
S=1 

la partie spatiale est antisymétrique  la partie spatiale est symétrique  

SPIN TOTAL = antisymétrique (singulet) 
S=0 

φAS(r1, r2) = φ1(r1)φ2(r2) − φ1(r2)φ2(r1) φS(r1, r2) = φ1(r1)φ2(r2) + φ1(r2)φ2(r1)

B. Interaction d’échange (ferromagnétisme), règles de Hund

Retour sur le l’hélium 1s2
(1/2,0) (-1/2,0)

(1/2,0) X X

(-1/2,0) ✔ Xterme spectral 1S0

Comme les deux électrons occupent le même état orbital : la fonction 
d’onde de spin doit être antisymétrique  

φ(r1, r2) = φS(r1)φS(r2) ⊗ ( | ↑ ↓ > − | ↓ ↑ > )

cette fonction est délicate à calculer (=> approche variationnelle : voir TD)



H = H1 + H2 + H12 avec H12 =
e2

4πϵ0

1
|r1 − r2 |

]soit

H12 =
ES + 3EAS4 − (ES − EAS)

×
⃗S1 . ⃗S2On peut alors ré-écrire H12 sous la forme :

et en ramenant l’origine des énergies à (Es+3Et)/4

Et Es
⃗S1 . ⃗S2 =

S2 − 3/2
2 -3/41/4

avec J = Es − Et

H12 = − J ⃗S1 . ⃗S2

Si on note respectivement Es et EAS les énergies des configurations S et AS

On note L = < φ1 |φ2 >
V = < φ1(r1), φ2(r2) |H12 |φ2(r2)φ1(r1) > interaction Coulombienne directe

X = < φ1(r1), φ2(r2) |H12 |φ2(r1)φ1(r2) > interaction Coulombienne d’échange
Purement quantique = antisymétrie de la fonction d’onde 

EAS = < φAS |H12 |φAS > =
V − X
1 − L2

Es = < φS |H12 |φS > =
V + X
1 + L2

si                       φ1 = φ2Es = V



si J>0 l’état de plus basse énergie est S1||S2 (triplet) ⬄ Ferromagnétisme (Heisenberg) 

Lorsque L↑, J peut devenir négatif = antiferromagnétisme

L'écart d'énergie Es-EAS détermine donc l’alignement antiparallèle (S =0) ou parallèle 
(S = 1) des spins mais il faut bien noter que cette « interaction magnétique » est en 

fait purement électrostatiques (échange)
 l’interaction dipolaire  ~ 0.01meV (pour 1nm) est ici totalement négligeableμ2

B /r3

J = Es − Et = 2
X − VL2

1 − L4
et

En particulier pour deux 2 états (intra-atomiques) orthogonaux : L=0, J=2X>0  
⇒ alignement des spins (en « évitant » r=0 l’état AS minimise l’interaction Coulombienne)

Le remplissage des différentes couches pour un atome à N électrons suit alors  
les règles de Hund 

 le terme de plus faible énergie est celui maximisant le spin total 
(première règle de Hund) 

EAS = V-X ~ 0 
(ES = V+X ~ 2X)

ES = (V+X)/2 ~ V 
(EAS  (Pauli))→ ∞



 et pour un spin total donné, le terme de plus faible énergie est celui de 
plus grande valeur de   (=ml) 

= deuxième règle de Hund : si tous les électrons tournent dans le même 
sens, ils se « rencontrent le moins souvent » 

∑ Lz

pour les remplissages <1/2 les états de plus basse énergie correspondent à  
J=|L-S| et pour remplissage >1/2 à J=L+S 

(troisième règle de Hund = minimisation du couplage spin-orbite)

Remarque : ceci est valable pour les éléments légers (Z<40 : Russell-Sanders) pour lesquels 
spin-orbite < interactions e-e.  et  restent de bons nombres quantiques et on peut alors 

définir un  et  puis faire  mais pour les éléments lourds il 

faut calculer  pour chaque élément puis faire  (couplage J-J)

⃗S ⃗L⃗Ltot = ∑ ⃗Li
⃗Stot = ∑ ⃗Si

⃗J = ⃗L + ⃗S
⃗Ji

⃗Jtot = ∑ ⃗Ji



C. Notions de physique moléculaire

où V contient toutes les interactions : e/ion - e/e et ion/ion

La première approximation (de Born-Oppenheimer) consiste à supposer que   

et à résoudre : 
où les Qj paramétrisent à la fois les fonctions d’onde et le spectre en énergie; 

Comme nous l’avons évoquer cette résolution reste TRES délicate car elle contient le terme de 
corrélation (voir Solide II pour le traitement de l’interaction e/ion). 

Mais une fois cette étape franchie on peut ré-introduire les ions en écrivant

Mj = ∞

avec

et en projetant sur  (et en passant en notation de Dirac)Φ*m



L’approximation adiabatique consiste alors à négliger* le terme

il ne reste alors qu’à résoudre  

et

* pas facile à justifier… mais cela revient à supposer que les électrons (légers) s’adapte instantanément 
aux changements lents de configuration des ions

Si  présente un minimum en  la liaison est dite liante et la molécule est stable. Em(Qj) Q0
j

A voisinage de ce minimum [TN + Em(Q0
j ) +

1
2

∂2Em

∂Q2
j

(Qj − Q0
j )2]χm(Qj) = Eχm(Qj)

∼ ℏ2/m(Q0
j )4

∼ ℏ2/m(Q0
j )2 ∼ eV

= énergie de liaison (solide covalent)

oscillateur harmonique = vibration des ions  

 avec meVEvib = ℏω(n + 1/2) ℏω ∼ ℏ2/ mM(Q0
j )2 ∼ 50 − 500
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d1 d2 M1 M2 (1)

I = M1d
2
1 + M2d

2
2 (2)

⇧ = 0 ⇧ = 1 ⇧ = 2 (3)

L̂zY0,0(�,⌅) = 0 L̂+Y0,0(�,⌅) = 0 (4)

⇤ �

0
sin � d�

⇤ 2�

0
d⌅ |Y⇥,m(�,⌅)|2 = 1 (5)

Ĥ R̂(⌅0) = R̂(⌅0) Ĥ (6)

R̂(⌅0) (7)

= R̂(⌅0) ⇥(r,⌅) = R̂(⌅0)
�
Ĥ ⇤(r,⌅)

⇥
= Ĥ

�
R̂(⌅0)⇤(r,⌅)

⇥
(8)

Ĥ (9)

⇥(r,⌅ + ⌅0) = Ĥ⇤(r,⌅ + ⌅0) (10)

⇥(r,⌅) = Ĥ⇤(r,⌅) (11)
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⇥(r,⌅ + ⌅0) = Ĥ⇤(r,⌅ + ⌅0) (10)
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�
R̂(⌅0)⇤(r,⌅)

⇥
(8)
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Ĥ⇤(r,⌅) = ⇥(r,⌅) Ĥ⇤(r,⌅ + ⌅0) = ⇥(r,⌅ + ⌅0) (10)

⇤ ⇥ (11)

L̂x, L̂y (12)

⌅0 ⇤ 1 (13)

[R̂z(⌅0)⇤](x, y, z) ⌅ ⇤(x + ⌅0y , �⌅0x + y , z) (14)

y� ⌅ �⌅0x + y (15)

x� ⌅ x + ⌅0y (16)

⌃L = ⌃r ⇥ ⌃p (17)

⌃̂p =
h̄

i
⌃⇧ (18)

⇧ = 0 ⇧ = 1 ⇧ = 2 (1)

L̂zY0,0(�,⌅) = 0 L̂+Y0,0(�, ⌅) = 0 (2)

⇤ �

0
sin � d�

⇤ 2�

0
d⌅ |Y⇥,m(�,⌅)|2 = 1 (3)
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atomes froids Cs2 

Laboratoire A.Cotton - Orsay

 avec H =
L2

2I
I ∼ M(Q0

j )2

Erot =
ℏ2l(l + 1)

2I
∼ ℏ2/M(Q0

j )2 ∼ 1μeV

c.a.d. 10mK ou 1GHz

TN contient des termes de translation (non pertinent) mais 
également des termes de rotation 

on a donc Evib ∼ (m /M) . Em < < Erot ∼ m /M . Em < < Em ∼
ℏ2

mR2



Chap.5 

Interaction atome-lumière
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⇒
masse réduite

Onde plane entrante 
(selon Oz)

Onde sphérique sortante
f(k, ✓,') = f(~k0) avec ~k0 = k ~x

r

loin de O (champ lointain) 
on cherche la solution sous la forme :

ikx

Collision entre 2 particules 
ou interaction rayonnement matière 

On suppose que le potentiel 
d’interaction ne dépend que de x1-x2  

et que V est nulle (très faible) pour 
x1-x2 grand 

V (~x) = o(
1

|~x| )

A. Diffusion (notions) [VOIR COURS MQR en S2 et M2]

(anglais = scattering, diffusion ⬄ chaleur)



d�

d⌦
= |f(~k0)|2

~Jinc =
~k
m et ~Jdiff = ~|f(k0)|2

mr2
~k0~Ji =

~~k
m

et en utilisant ~J = Re{�⇤(� i~
m

~r�} on  obtient :

on a finalement :
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où on a introduit a section efficace définie par d� = Kd⌦

particules diffusées/temps 
(sans interaction)

centres diffuseurs supposés 
indépendants 

(pas de diffusion multiple)

courant de probabilité incident : 
particules/temps/surface

angle solide

dn(⌦) = K ⇥ (|Ji|Nd⌦) = N |Ji |dσ

dn = | ~Jdiff |NdS = | ~Jdiff |Nr2d⌦ = |~Ji|Nd�et de même : dn(Ω) =
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angle d’ouverture 
α = Δθ ∼ 1/ka

en accord avec le principe 
d’incertitude  Pta ∼ ℏ

pour E ~ k2 grand Diffusion Rutherford�Born =
⇡U2

0 a
2

k2
.

1

1 + 1/(2ak)2
! A/E

U = U0
e�r/a

r
par exemple : = Yukawa = interaction électrostatique écrantée

|fBorn|2 =
U2
0

(1/a2 +�2)2
=

U0a4

(1 + [2(ka)sin(✓/2)]2)2

2



et pour l’interaction avec une onde électromagnétique…. 
(milieu neutre non magnétique) 

Les équations de Maxwell s’écrivent :

et le principe fondamental (on suppose le noyau fixe) :

en linéarisant ⃗Fe/n = − K ⃗re

m
d2 ⃗re

dt2
= q ⃗E + ⃗Fe/n

supposé indépendant de  car 
nm >> 

⃗r
λ ∼ 600 re ∼ Å

on obtient :  avec (
d2

dt2
+ ω2

0) ⃗re =
e
m

⃗E ω2
0 = K /m
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Puissance diffusée 
(Poynting)

section efficace 
(de diffusion)

Puissance incidente 
(par unité de surface)( ( () ) )= x

et il apparaît un moment dipolaire :  avec    ⃗P = Ne ⃗r = Nα(ω) ⃗E α(ω) =
e2/m

ω2
0 − ω2

Le traitement mathématique est alors le suivant :

m
d2−→X
dt2

= −K
−→
X + q

−→
E0 ejωt ω0

2 =
K

m

d2−→X
dt2

+ ω0
2−→X =

q

m

−→
E0 eiωt

(
−ω2 + ω0

2
)−→
X =

q

m

−→
E0 eiωt

−→
X =

q

m

1

ω0
2 − ω2

−→
E0 eiωt

Le moment dipolaire vaut :

−→p = q
−→
X =

q2

m

1

ω0
2 − ω2

−→
E0 eiωt = −→p0 eiωt

2- Rayonnement dipolaire

La théorie du rayonnement dipolaire résulte des équations de Maxwell.−→
E0 est pris suivant l’axe des z.

z

θ

r

M

−→eθ

Elle donne : seul Eθ est non nul et

Eθ = −
1

4πε0

sin θ

r

ω2

C2
p0 ei(ωt−kr)

Eθ = −
f(θ)

r
ei(ωt−kr) E0

f(θ) est l’amplitude de diffusion.

3- Diffusion Rayleigh

On montre que la section efficace totale est :

σ =
∫
|f(θ)|2dΩ

2

et donc un champ rayonné : 
(voir rayonnement dipolaire)

et avec ,   on a ⃗E = ⃗E0 ejωt ⃗r = ⃗r0ejωt r0 =
eE0/m

ω2
0 − ω2

Le traitement mathématique est alors le suivant :

m
d2−→X
dt2

= −K
−→
X + q

−→
E0 ejωt ω0

2 =
K

m

d2−→X
dt2

+ ω0
2−→X =

q

m

−→
E0 eiωt

(
−ω2 + ω0

2
)−→
X =

q

m

−→
E0 eiωt

−→
X =

q

m

1

ω0
2 − ω2

−→
E0 eiωt

Le moment dipolaire vaut :

−→p = q
−→
X =

q2

m

1

ω0
2 − ω2

−→
E0 eiωt = −→p0 eiωt

2- Rayonnement dipolaire

La théorie du rayonnement dipolaire résulte des équations de Maxwell.−→
E0 est pris suivant l’axe des z.

z

θ

r

M

−→eθ

Elle donne : seul Eθ est non nul et

Eθ = −
1

4πε0

sin θ

r

ω2

C2
p0 ei(ωt−kr)

Eθ = −
f(θ)

r
ei(ωt−kr) E0

f(θ) est l’amplitude de diffusion.

3- Diffusion Rayleigh

On montre que la section efficace totale est :

σ =
∫
|f(θ)|2dΩ

2

et donc en écrivant on obtient :

σ = ∫ | f(θ) |2 dΩ = ω4 × (
α(ω)

4πϵ0c2
)2 ∫

π

0
sin2(θ)2πsin(θ)dθ

8π/3diffusion Rayleigh
(ciel bleu)

Résonance pour ω = ω0



Remarque 1 :  l’intensité s’atténue en fonction de la distance z parcourue 
dans la matière : I(z) = I0e−Nσ(ω)z

Remarque 2 :  On n’a pas tenu compte des effets d’absorptions (inélastiques) 

On peut les introduire en rajoutant une terme « de frottement » :  

dans le principe fondamental 

 devient complexe avec un terme d’atténuation (= partie imaginaire) 

 avec  = « largeur » (de la Lorentzienne) 

= taux de collision

⃗Ffrot = − b
d ⃗r
dt

α

a(ω) =
Ne2

ϵ0mc
×

β
(ω0 − ω)2 + β2

β = b/2m
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Evolution temporelle de la fonction d’onde

H=H0

H=H0+H1

E=Ea

E=Eb

E=E1

E=E2

le système est initialement dans l’état |a>  
(état propre de H0) 

Comment l’état évoluer-t-il sous l’action 
de H1: transition a→b

Dans le cas d’un système à 2 niveaux, on peut faire le calcul exact  
on suppose que Waa = Wbb =0, par parité dans le cas d’une interaction dipolaire : 

On trouve pour les solutions stationnaires

H0|a >= Ea|a > et H0|b >= Eb|b >où

C. transition résonance : oscillations de Rabi

Wab = − < ⃗P . ⃗E > = − eE0 ⃗rab . ⃗z avec ⃗rab = < a | ⃗r |b >

pour un champ électrique constant (dans un premier temps)



évolution temporelle : our simplifier les écriture on prend l’origine des énergie en 
Ea et on on pose   

On cherche les états propres sous la forme 
 et on note  

et l’équation de Schrödinger donne 
 et ,  

soit donc      
et avec b(0)=0 et a(0)=1 on obtient finalement :  

       avec 

ℏω0 = ΔE = Eb

|Φ > = a(t) |a > + b(t) |b > ℏΩ = − 2Wab

iℏ ·a = Wabb iℏ ·b = ΔEb + Wbaa
··b + iω0

·b + Ω2b/4 = 0

b(t) = Beiω0t/2sin( ω2
0 + Ω2t/2) B = 2Wba/iℏ ω2

0 + Ω4

Ea � Eb = 0

|Ea � Eb| = 2|Wab|

|Ea � Eb| = 4|Wab|

Oscillations de Rabi

Et la la probabilité de transition de a vers b :  

 Pa→b = |b(t) |2 =
4 |Wab |2

ℏ2(ω2
0 + Ω2)

sin2( ω2
0 + Ω2t/2)

=
Ω2

ω2
0 + Ω2

sin2( ω2
0 + Ω2t/2)



Remarque 3 :  < ⃗r > = ∫ (a*Φ*a + b*Φ*b ) ⃗r(aΦa + bΦb)d3r = (a*b + ab*) ⃗r12
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Remarque 1 :  on retrouve le résultat perturbatif si  i.e. Wab < < ΔE Ω < < ω0

Remarque 2 :  Si     

on trouve 
 (même principe que précédemment)

⃗E = ⃗E0 ejωt

b = i
Ω

Ω2 + (ω − ω0)2
sin( Ω2 + (ω − ω0)2t /2)eiω0t/2

Wab = − eE0 ⃗rab . ⃗z
1
2

(ejωt + cc)

 à la résonance|b |2 → 1soit   |b |2 =
ω2

Ω2 + (ω − ω0)2
sin2( Ω2 + (ω − ω0)2t/2)



C. Matrice (opérateur) densité et représentation de Bloch, relaxation

En mécanique quantique la principale source de « hasard » est liée à 
l’interaction avec l’environnement (mesure) = projection du paquet d’ondes :  

la probabilité d’obtenir la valeur propre ai est  

où   est le projecteur sur le vecteur propre ( )  

ou plus généralement sur le sous-espace associé à ai et  

pϕ,i = < ϕ |𝒫iϕ > / < ϕ |ϕ >
𝒫i 𝒫i = | i > < i |

< A > = ∑ pϕ,iai

Soit = opérateur densité ̂ρ = |Φ > < Φ | (
ρ11 . . . ρ1n. . . . . . . . .
ρn1 . . . ρnn )

Les  sont appelés cohérences et les  populationsρij ρii

D’où        Tr( ̂ρA) = < A >

< A > = ∑
ij

α*i αjAij = ∑
ij

< Φ | i > < j |Φ > < i |A | j > ∑
j

< j |Φ > < Φ |A | j > = ∑
j

< j | ̂ρA | j >

avec |Φ > = ∑
i

αi | i >
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Cette matrice joue un rôle essentiel dans le traitement  
(propriétés thermodynamiques ) des systèmes à grand nombre 

de particules (voir cours de physique statistique)
S = kBTr( ̂ρln ̂ρ)

mais la matrice densité permet surtout de décrire les mélanges statistique (intriqués) 
d’états avec la probabilité pi et dans ce cas : 

 

|Φi >

̂ρ = ∑
i

pi
|Φi > < Φi |
< Φi |Φi >

= ∑
i

pi𝒫Φi

et donc comme (voir 86)  : 
  est directement relié à l’amplitude du dipole atomique

< ⃗r > = (a*1 a2 + a1a*2 ) ⃗r12

ρ12
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par exemple pour deux états



d ̂ρ
dt

=
1
iℏ

[H, ̂ρ] appelée équation de Liouville von Neumann

·ρ11 = − ·ρ22 = i
Ω
2

(eiωtρ21 − e−iωtρ12) ·ρ12 = i
Ω
2

eiωt(ρ22 − ρ11) + iω0ρ12 = ( ·ρ21)*

et en introduisant  ρ′�12 = ρ12e−iωt

·ρ11 = − ·ρ22 = i
Ω
2

(ρ′�21 − ρ′�12)
·ρ′�12 = i

Ω
2

(ρ22 − ρ11) + i(ω0 − ω)ρ′�12
{

et

L’évolution du système est donnée par

et pour notre système à deux niveaux
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Les équation précédentes s’écrivent alors : 

 ,  et ·u = (ω − ω0)v ·v = Ωw + (ω0 − ω)u ·w = − Ωv

on obtient simplement :    

i.e.  tourne autour de  et sa norme est conservée = vecteur de Bloch

· ⃗S = ⃗Q ∧ ⃗S

⃗S ⃗Q

Et si on défini :  (vecteur de Bloch)  
et 

⃗S = u ⃗i + v ⃗j + w ⃗k
⃗Q = − Ω ⃗i + (ω0 − ω) ⃗k

évolue sur une sphère = sphère de Bloch 
Sa projection sur Oz donne w 

⃗S

Partie réelle du 
terme de cohérence

Partie imaginaire du 
terme de cohérence

inversion de population

u = ρ′�21 + ρ′�12 v = i(ρ′�21 − ρ′�12) w = ρ22 − ρ11 (ρ22 + ρ11 = 1)On note :



Si  (résonance) la rotation se fait autour de l’axe des x  et 

     («-» car )  
on retrouve les oscillations de Rabi (voir 85) : 

 
et l’inversion peut donc dans ce cas bien être totale 

 (si on applique le champ E.M pendant ) 

Remarques :  pour  On obtient une superposition cohérente  

 (= état intriqué) 
« Porte de Hadamard » = base de l’ingénierie quantique (Qubit….) 

ω = ω0 ( ⃗i)
··w = − Ω2w = > w = − cosΩt w(0) = − 1

ρ22 = (1 + w)/2 = (1 − cos(Ωt))/2 = sin2(Ωt/2)

t = π/Ω

t = π/2Ω
1/ 2( |1 > + |2 > )
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Phénoménologie identique pour la  
précession des SPINS  

(voir aussi TD)



Remarque :  on n’a pas tenu compte ici de la possibilité d’une 
émission spontanée (relaxation)

·ρ11 = i
Ω
2

(ρ′�21 − ρ′�12)+

·ρ′�12 = i
Ω
2

(ρ22 − ρ11) + i(ω0 − ω)ρ′�12 − γρ′�12

·ρ22 = i
Ω
2

(ρ′�12 − ρ′�21)−
Transition spontanée  de 2 vers 1

γ =
Γsp

2
+ γcoll

Terme de collision : peu d’influence sur  mais effet important sur la cohérenceρii

Équations de Bloch optique
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Γspρ22

Γspρ22

Et en régime permanent  ( ·ρij = 0)

ρ22 = 1 − ρ11 =
1
2

Ω2γ/Γsp

(ω − ω0)2 + γ2 + Ω2γ/Γsp
<

1
2

Pas d’inversion de population possible 

 et  ρ′�12 =
iΩ(2ρ22 − 1)/2
γ − i(ω0 − ω)

ρ22 =
ΩIm(ρ′�12)

Γsp

soit :
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que peut-on dire de 

| < x > |2 = | < l0,m0|~x|l,m > |2cos2(✓)
|1, 1 >⌘ Y1,1 / sin✓ei� ⌘ |x > +i|y >

|1, 0 >⌘ Y1,0 / cos✓ ⌘ |z >

|1,�1 >⌘ Y1,�1 / sin✓e�i� ⌘ |x > �i|y >

donc ~x 2 D1 et ~x|n, l,m >2 D1 ⌦Dl = Dl�1 �Dl �Dl+1

opérateur vectoriel

et comme les vecteurs appartenant à des représentations irréductibles différentes  

sont orthogonaux entre eux : 

l’élément de matrice                                  est 

 non nul si  l’=l-1 ou l’=l ou l’=l+1

et le cas l’=l est exclu par parité (x est impaire) 

Seuls les transitions vers les états l+1 et l-1 sont possibles 

< l0,m0|~x|l,m >

(Théorème de Wigner-Eckhart)

C. Règles de sélection et règle d’or de Fermi 

| < ⃗P . ⃗E > |2 ∝
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• Si la polarisation du champ est rectiligne (par exemple selon Oz)

|z > ≡ |1,0 >

L’intégrale sur  s ‘annule sauf si φ m′�− m = 0

• Si la polarisation du champ est circulaire (dans le plan Oxy) 
 ̂xcos(ωt) + ̂ysin(ωt) = e−iωt( ̂x + i ̂y) + cc

|x > ± i |y > ≡ |1, ± 1 >

L’intégrale sur  s ‘annule sauf si φ m′�− m = ± 1

En particulier : 

ces transitions sont appelés : transition π

ces transitions sont appelés : transition σ±


