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Pré-requis :

Quanta de lumiére et corps noir
Dualité onde-corpuscule,

Paqguets d’'ondes, Notation de Dirac (bra-ket),
Opérateurs (dont formalisme matricielle),
Principe d’incertitude, Equation de Schrddinger,
Puits de potentiel (V constant) + barrieres
Oscillateur harmonique, Moment cinétique et spin
Atome d’Hydrogéne

Aspects mathématiques :
Transformées de Fourier, Intégrales (multiples)
Espaces vectoriels, Fonction delta
Matrices (valeurs et états propres)

Ne seront PAS traités (voir S2 et S3)
Mécanique quantique relativiste (diffusion) = S2,
Electrodynamique quantique = S3/PSC
Seconde quantification = S3/MQ



Et pour cette année

1.Rappels, symétries et invariances

A. Les postulats de la mécanique quantique (rappels)
B. Générateurs, lois de conservation (Noether)
C. Symétries, dégénérescence (théoréme de Wigner)
Application : systemes périodiques et potentiel central (cas de I'atome d’hydrogene).

2. Méthodes de résolution

A. Théorie des perturbations (1er et 2eme ordre)
Application : corrections relativistes de I'atome d’hydrogéne (structure fine |)
B. Perturbations dépendantes du temps
C. Méthode variationnelle.

3. Hamiltonien sous champ magnétique

A. Quantification des niveaux sous champ magnétique (niveaux de Landau)
B. Couplage spin-orbite (structure fine Il) et Structure hyperfine
C. Diamagnétisme et paramagnétisme des solides (introduction).

4. Atomes a plusieurs électrons

A. Potentiel effectif (corrélations), termes spectraux
B. Interaction d’échange regles de Hund
C. Notions de physiqgue moléculaire

5. Interaction atome/lumiére

A. Diffusion (notion)
B. Oscillations de Rabi, transition résonante
C. Matrice densité et représentation de Bloch, relaxation
D. Regles de sélection (Wigner-Eckhart (notions)) et régle d’or de Fermi



Chap.1

Rappels, symeétries et invariances



A. Les postulats de la mécanique quantique (rappels)

 P1.La connaissance de I'état quantigue (a to) est completement
contenue dans une fonction d’onde complexe = un vecteur d'un
espace de Hilbert de dimension (in)finie

Densité de probabilité de trouver la particule dans un volume d3x :
_ 2
w(z) = |O(z)]

La fonction d’onde peut alors étre décomposée sur une base de
fonctions d’'ondes particulieres (vecteurs propres d'un opérateur donné)

= paquet d’ondes :

—| (I)(ZE) — Zakq)k(aj)

par exemple les ondes planes (vecteurs propres de l'opérateur p)

Dy () = 07D o |0(2) = 1/v2r [ V()i

ou les fonctions de Dirac (vecteurs propres de I'opérateur X) :

P(x) = /CID(:IJ’)(S(:E — 2")dx’




Certains états quantiques (spin par exemple) ne peuvent pas étre défini a partir d’'une fonction
@(x) = généralisation de la notation

Notation de Dirac  espace des «ket» : [ >

A1
()
D >= Z Anln > [@>=| .. = vecteur «colonne» (de dimension (in)finie)
An )
on défini un espace dual = espace des «bra» : < n\

Z An|n >— Z A, < n| = vecteur «ligne» (de méme dimension)
Espace de Hilbert => produit scalaire < n!m >

dans 'espace des positions, ona < ®1|®y >= /(I)’{(:c)Cbg(x)dx

on note |330 > 5(96 — $o) I'état «particule en xo»
et [po >+ 0(p — po) I'état «particule d'impulsion po»
dors < 2| >=B(z) <Pl >=(p) < alp >=1/v2rhe?*/"
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« P2. Atoute propriété observable (position, énergie,...) est associée un
opérateur (A) agissant sur les vecteurs (sous espace) définis en P11

Un opérateur transforme une fonction d'onde (un vecteur) en une autre fonction d'onde (autre vecteur).

a1 a2 ... Q1n

' ' : a a e Qop

en notation de Dirac, A est une matrice nxn A=| 72 T 2
aln a2n e a,nn

Les opérateurs seront toujours LINEAIRES A[a1 P + aa®Pa] = o A[P1] + ap A[P2]

Pour connaitre I’action d’'un opérateur sur n'importe quel vecteur,
il suffit de connaitre son action sur une base.

Opérateur adjoint : < ACI)|\IJ >=< <I>|AT\IJ >

Opérateur Hermitique = auto-adjoint 4 — AT

Un opérateur associé a une grandeur physique mesurable est appelé observable
il est alors hermitique (valeur propre réel, voir suite)



par exemple l'opérateur position CB[(I)(QT)] — T X CI)(LE)
hY

ou l'opérateur quantité de mouvement D& —
1

K2 A

L2 = énergie cinétique ¥ ® p = moment cinétique

—12 4 V(z) = HAMILTONIEN (énergie totale)

[ @ () A[®(x)|dx
[ &*(x)®(z)dx
< O|AD >
< 0D >

MOYENNE (statistique) de I'observable : < A >=

Ou en notation de Dirac < A>=

et la position moyenne de la particule est (PARFAITEMENT DEFINIE) :

IIIII

<x>= /(p 2[®(x)] aa:—/a:|€9(a:)| dx

et la quantité de mouvement moyenne de la particule est :

<p>=h [V R0 = [ @ @) (@)

[/
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« P3. Une mesure de la grandeur physique associée a A ne peut donner gqu’'une
valeur propre de A.

A®, = a, D,

| 'ensemble des valeurs propres forment le spectre de I'opérateur

Dans la base de ces états propres la matrice A est diagonale

aii 0 0
A= 0 ao9 0
0 0 Ann,

Deux fonctions d’'ondes associées a des
valeurs propres différentes sont orthogonales

par exemple (h/i)(0/0x)e*® = hke*® = petk®
donc les ondes planes sont les états propres de I'opérateur impulsion de valeur propres p
de méme xd(x — x9) = xod(x — x0)
donc les fonctions de Dirac sont les états propres de 'opérateur position de valeur propres Xo
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et les énergies sont les valeurs propres de THAMILTONIEN

HY, = F,?,

Les opérateurs ne commutent pas nécessairement A|B[®(z)]] # B[A[®(z)]]

on peut définir le (opérateur) COMMUTATEUR : AB-BA = [A,B]

avec par exemple [CIZ‘, p] - Zh

[A,B]=0 <=> A et B ont un jeu de vecteurs propres commun

Si plusieurs fonctions d’ondes correspondent a une méme valeur propre
on dit qu’il y a dégénérescence

attention la somme de deux vecteurs propres n'est (généralement) pas un
vecteur propre (sauf si valeur propre identique)
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P4. Le résultat de cette mesure est probabiliste. Les grandeurs mesurées
sont soumises au principe d'incertitude
(= écart-type des histogrammes de mesure)

si ® est un état propre de A (P, de valeur propre an)

alors la mesure est parfaitement définie, égale a an

mais si @ n'est pas un état propre de A
P=> ¢, P, et <A>=> aylc,|?

alors la mesure donnera an avec la probabilité

lcnl? = | < @@ > |?

cn = | OF (2)P(x)dx

le résultat de la mesure a ainsi un caractere statistique

= répétition de N mesures sur des états strictement identiques

11



Si on note Aa:\/< A2 > — < A >?

= écart type de la distribution des résultats de la mesure sur un
ensemble de N particules identiques (largeur de I'histogramme)

AaAb > | < [A,B] > |/2

Par exemple : [Zli,p] =1h

= | AxAp > h/2

= Heisenberg

ou h vaut (heureusement) : 6.6210-34 Js

On ne peut jamais connaitre (prédire) exactement le résultat de mesures de
deux quantités physiques associées a des opérateurs ne commutant pas

et inversement si deux opérateurs commutent [A,B]=0 alors les grandeurs physiques associées peuvent
étre déterminées simultanément (sur un vecteur propre commun) [mais pas forcément !]
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Sommerfeld : regle de quantification
(pour tout couple de variables conjuguées de Lagrange E-t,...)

fpxdﬂ? = nh - taille d’un état

T nombre d’états

mais valable que pour les systemes périodigues !

Formule de Weyl : nombre d’états quantiques d’énergie inférieure a E :

E

N(E) = (g(%)d @ .

surféce h

T TTTTTTTT

nh h?
Particule dans une boite (L) p = — — FE,, = n* - ~10eVpourlL ~ 1A
2L 8mL - -
-> stablilité de la matiere
Orbitales atomiques (2xzr)(mv) = nh
mv? A . AQr)(mv) (2rA/h) mv: A E,
—=— - >my'=— -V = === = - —
r r2 nh n " 2 r n?
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p2

Oscillateur harmonique E = o - ka? — B, = nhw
m
< X|®, >= ! e X /2 (— ! )12H,(X)  ouHn est un polynéme d’Hermite,
mwl/4 nl2m

X = \/zx avec A = mw/h
H,(X)=(2X — -%)H,_1(X) avec Hy = 1

avec .
Hy =1
H, = 2X
Hy = 4X2 — 2

1 1

Probabilité de présence < ®,,|®,, >= |®,,|° —— wa =

ma /T (2/a)?

(w,;.dx =2dt/IT)
Energie de «point zero» : E() = hw/2 —> Heisenberg

E = ho( + 1/2)
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 P5. Aprés la mesure, I'état du systeme est projeté dans le sous-
espace engendré par le(s) vecteur(s) propre(s) associé(s) a la valeur
propre mesurée

Ce processus de mesure ne nécessite pas la présence d'un expérimentateur. Il se
produit dés que la particule quantique influence son environnement, et peut donc
se produire aussi bien dans une piéce vide, que sur une ile déserte!

Ce phénomene est en fait incessant et omniprésent, c'est le contraire
qui est plutét exceptionnel : un systeme peut étre considéré comme étant
(approximativement) isolé que pendant un certain intervalle de temps appelé le

temps de décohérence
~ 1us pour une molécule dans un vide de laboratoire a 10-24s pour une poussiéere dans l'air

La mécanique quantique n’a jamais été mise a défauts a I’échelle microscopique
(et méme certain états quantiques macroscopiques comme I’état supraconducteur)

le chat de Schrodinger.... est mort ET vivant

mais devient mort OU vivant
si on ouvre la boite !
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P6. L'évolution temporelle du systeme est totalement déterminée par
I’équation de Schrddinger

H® =1ho® /0t (ou H|® >=in%2>)

en écrivant: ®(t) = Z Cn(t) Py,

(%n

etsi H®, = E,,®,, alors < ®,|H|P,, >= E,,0n.m

et | ®(z,t) = c,(0)e Ent/Np,
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Remarque 1 :
pour un potentiel donné, il existe des fonctions
d'onde appelées ondes stationnaires, dont la « forme » reste invariante (i.e. le
module seule la phase varie). Chaque onde stationnaire a une énergie précise.

Remarque 2 :
toute fonction d'onde conserve sa norme au cours du temps mais en général
les états ne sont pas stationnaires, et leur
forme évolue au cours du temps.

Remarque 3 :
évolution temporelle de la somme = somme des évolution temporelle

= principe de superposition.

Remarque 4 :
I’équation de Schrddinger n’est valable que pour des constituants élémentaires ou
des ensemble de constituants (atomes, molécules) isolés de leur environnement.

Ici isolé = le systeme ne modifie pas I’environnement (ne change pas son état)
Sinon, on peut (doit) se contenter d'une description classique du systeme
Par contre I’environnement peut exercer sur la particule une force F décrite par un potentiel V (x)
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B. Générateurs, lois de conservation (Noether) et symétries (théoreme de Wigner)

Si on connait ®(t), alors pour un un décalage infinitésimale

4 H® H
(t+7) = 0(t) +7— = (1) . — = (1- i@

et on peut donc reconstruire (= générer) I'évolution compléte a partir

d’une transformation exponentielle

B(2,1) >= S(1)|®(2,0) > avec §=eap(— )= 3 Ly

Pour des exemples : voir la page web de Frédéric Faure
http://www-fourier.ujf-grenoble.fr/~faure/enseignement/meca_g/animations/

Remarque : |¥(t) >= S(¢)|¥(0) >= (1 — itgl — tQIh_IQ +..)|¥(0) >
< W(0)|¥(t) >= (1 — @% < W(0)|H|¥(0) > —% < W(0)|H2[W(0) > +...)]
< VO)E) > P = (1 - oy < [H ) + (5 < [H| >)

Si une fonction d’onde évolue en fonction du temps alors

| < ®(0)|@(t) > |2 =1— (t/AL)? + o(t3) avec At = H-




S(t) = opérateurs unitaires vérifiant :
S(t1+t2)=S(11)S(te), ST(1)=5+(1) [=S(-1)] et S(0)=1
lls foment un groupe (de Lie de dimension 1)

dont le générateur est le Hamiltonien H = groupe d’évolution dans le temps

De méme, pour une translation dans lI'espace réel

O(x—N) = P(z) — A2 + ’\72227(12) + ... = exp(—iE \)

on peut donc définir 'opérateur translation tel que

D(x— ) >=T(N)|P(x) >

et le générateur du groupe des opérateurs de translation est
'opérateur impulsion p = 2.2

i Ox
T'(\) = exp(—iz A)

(et de méme -x est le générateur des translation en impulsion)
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et pour une rotation (autour de Oz) :

o
O(p — a) = ©(9) — a(d/dp)®
le générateur de ce groupe de rotation est donc
f =7 A ? Lz — 2 9 _moment cinétique (selon 2)

i Op
[Lz, LZ] = () Fonctions propres communes,= harmoniques sphériques

LY =1+ D)A*Y" e LY =mhY"

—[<m <]

Y/ = 07(0),(¢)

N

Polynbme de Legendre Ner:

eme
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\
. l'..\_ IO.\\ /“..‘\

‘\ — A T_: ~\. _'," '_' > \. /' A TT 1A ’“..")

- I | m | Harmonique sphérique Y}, (6, ¢)
)y — T
- O 0 YE),O (47’(’)1/2
. $) 3\1/2
. 1| 0 Yio=(2)"" cos(h)
R Z _ 3\1/2 . +
BT +1 Vi =F(2) sinfe*”
- 1/
- \’.\.“ 21 0 Yoo = (72=)"" (3cos?d — 1)
” 1/2
— < /:\ +1 | Your = F (L)% sin 0 cos fetie
eI M [ 42| Vaiy = (22)"?sin® fet2i
- ’-; ,.-.\‘ ) 4 . S\ /‘ .\
—— '.\:'.\;, \:0/"..'
~— - /:‘.. .-..‘. 4.\ T .\ TT1) \
—.’ - ~ : ) '\-..' '\; , \‘.,,‘"'”
- '.,J ,’:0‘ 4:\,‘ :a?\\ ,..\ Z\% ,
2t At TRt AN ST

B(p — ) >= R.(a)|@(p) > | Ra(a) = exp(—ikea)

Comme pour E-t, on peut écrire un incertitude « angle-moment cinétique »

AQAL, ~ h
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Remarque : dans I'espace des spins
Pour un spin 1/2 on note |+ > et |— >

h
les vecteurs propres de valeurs propres i§
1 0 0 1 0 —
sona(d 0 )osmma(0 s, —ma( 0 )
t t t

matrice de Pauli

[S;, S;] = ihSk et [S;,5%] = 0| = regles de commutation des moments cinétiques

2 a2 2 2 o2 1 0
sostesprstman( 1 0)

R,(0) = exp(—iS,0/h) = cos(0/2).1d — isin(0/2)0,

il'y a un angle de 180° entre +z et -z dans |'espace réelle
mais dans I’espace de spins :

|+ > et |— > sont ORTHOGONAUX

rotation de 0 dans I’espace réel = rotation de 6/2 dans I’espace des spins



Soit A le générateur d’'un groupe (de symétrie de parametre A)

et si [H,A]=0 alors : — conservation de < A4 >
< A> (1) =< ®(t)|A|P(t) >=< ®(0)|STAS|®(0) >=< ®(0)|STSA|P(0) >
=< ®(0)|5(—1t)S(t)A|P(0) >=< A > (0)

d<A> i

Remarque, on a : o > < [H,A] > (si Anedépend pas explicitement de t)

Comme H commute avec lui méme, I'énergie se conserve !

Théoreme de Noether : a toute invariance d’un systeme est associée
une grandeur physique conservée = valeur propre du générateur

par exemple si le systeme est invariant par translation, le potentiel est constant
et H commute avec p : la quantité de mouvement se conserve

invariance par rotation dans I'espace [potentiel central] <= moment cinétique
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En présence d’un champ électromagnétique F — —ﬁ(U) _ 94 ot B = rotA

ot
m@— [E + T A B H:L["— ff]2—|— U

I'Hamiltonien est alors bien invariant par le changement de Jauge

1 1 1 — 9]
A A =A4+V(x) et U— U =U — %X

et la fonction d’'onde (définie a une phase pres) peut étre « changée » (voir TD) en

D(F,1) = B/(.1) = eap(—ig})B(. 1)

invariance de Jauge {=> conservation de la charge (q)

Remarque : cette invariance de Jauge est intimement liée au fait que les photons ont
une masse nulle (dans les équations de Maxwell) et la supraconductivité est une
transition de phase dans laguelle I'invariance de Jauge est brisée

=> |les photons acquierent une masse.....
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Le spectre en énergie et la norme de la fonction d’onde sont donc
invariants par ce changement de jauge MAIS
la présence d’une phase peut donner lieu a des phénomeénes
d’interférence qui n’ont bien entendu aucun équivalent classique

La conséqguence surprenante de cette
Dl\v ! expérience, est qu'un champ
3 Z'[q =~ magnétique B peut influencer le
gf;;;g;ov % mouvement d'électrons qui ne le
Df ’ traversent méme pas. (Mais dont la
e fonction d'onde le contourne).
[=|®, + D, > = I)(1 + cosQad/D,)) Effet Bohm-Aharonov (voir TD)

de méme en physique des particules, ’'Hamiltonien (interaction faible/forte) est
invariant par une « transformation de jauge » impliquant la conservation de /a
couleur, du nombre baryonique et/ou leptonique qui permettent de déterminer
les « transformations » autorisées des particules
(voir physique des particules)
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C. Symétries, dégénérescence (théoreme de Wigner)

Comme [H,A]=0, on peut chercher le spectre de H dans
les sous-espaces (dit irréductibles) Ha de I'opérateur A
(associées aux differentes valeurs propres an, H = ®,Ha )

Remarque : si le groupe engendré par A est commutatif, les sous-espaces sont de
dimension 1 = non dégénéré
brisure de symétrie => levée de dégénérescence

quelgues exemples :
pour V= 0 (ou plus généralement V=Vp) H=p2/2m
d = Ae Pr/h 4 BePr/h
n'est PAS un état propre de H car ce n’est PAS un état propre de p

(|®|? doit &tre indépendant de x, invariance en translation)

Si V(x) = V(=X), [H,P]=0
(ou I'opérateur P est 'opérateur parité)
P(I)(:E) — q)(—aj') 2 atoren —_—_//ﬁ:kuz/.—\;: %ﬁz

et la fonction d’onde est soit paires soit impaires
26



Dans un cristal le potentiel (et donc I'Hamiltonien) sont invariants par toute
translation Tr d’un pas du réseau (a) (et non pas translation infinitésimale)
[ou angle fini pour les orbitales moléculaires, par exemple benzene]

Tr(HY) = H(r+ R)Y(r+ R) = H(r)y(r + R) = H(TrY)
TrTr) =Tr(r + R') =¢(r+ R + R) = Tpyr¥p

pour R = niai + noas + ngaz C(ﬁ) = C(a1)™ C(az)™C(a3z)™

C'(a;) est un complexe que I'on peut écrire sous la forme eI
en écrivant k = x1b1 + x2b2 + x3b3 on a donc C(R) _ kR

—

ou a_%bj = 27’(’57;]'

les vecteurs b; définissent le RESEAU RECIPROQUE (voir physigue du solide)

— —

U(r + R) = c(R)Y = e™)(r) = y peut se mettre sous la forme P(r) = eiEFuE(T)

avec up(r+ R) =uz(r) THEOREME DE BLOCH
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Cas du potentiel central :

si H est invariant par rotation, [H,Li]=0*, les sous-espaces propres de H
sont les représentations irréductibles du groupe des rotations (les D))

(groupe de Lie de dimension 3 [noté SO(3)]) engendré par les Yim

al 0 0
H peut s’écrire 0 al O Yim(0,0) =< 0,0|l,m >
0 0
—_—— —— ——
Do D;

Les (trois) rotations « primaires » ne commutent pas

ET DONC LE SPECTRE DE H est dégénéré en m, 2I+1 fois

A

2 2 2 82 20 L2

r2tany Op + r2sin2p 002 T jr2 t orl” n2r2

K2 02 +28]+[ L2
2m -or?2 = r Or 2mr?

+V(r)]

RAI(L+1)
2mr?

O(r,0,¢) =V(r)Yi,m(0,¢) avec Verr=VI(r)+

* L2 commute avec tous les générateurs du groupe, c’est un opérateur dit de Casimir du groupe



Exemple : V(1) = mw?r?/2 — E,;=hw@2n+1+ 3/2)

et dans le cas de I’'atome d’hydrogene

Vers = Gl Gt N Y(r, 0, p) = Rn,l("")n,m(ga ©)

2ur?  Armeyr
Polyndbme de Laguerre
R, (r) = exp(—yr) x r* x v(r) v2 = —2mE/h?
Rip e /% Rgg o< (1 —7/2a0)e"/?% Rz o (3 — 6r/ag + 2(r/ag)?)e /3%
Ry, o (r/ag)e™"/2% R31 « (2 —r/ag)(r/ag)e /3%

R3 2 o (r/a0)2e_"'/3a°

3l R R . Avec :

; 3 210 u:p ;Z

5 : _ _1_e* 1 _ _ 136

s 2 2 En = 2 dwegag n? n2 eV

k) ‘ 3d  3p 5

SROA < le spectre est degéneré en m (invariance par
I T e rotation) mais aussien /?
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Cette seconde dégénérescence découle d’une autre invariance :

la_conservation du vecteur de Runge-Lenz.

En effet, pour les force en -k/r2, on peut montrer en mécanique classique
que hormis I'énergie et le moment cinétique
le vecteur A= 1(FAL—LAp)—mki, estconservé (« loi de Képler »),
pour nous (mécanique quantique) [A, H] = 0

et cette seconde regle de commutation conduit a la dégénérescence en |.
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Chap.2

Meéthodes de résolution



A. Théorie des perturbations (1er et 2eme ordre)

( 7 Zq*

2m;  4dmegr;

v v

soluble (atome hydrogene) insoluble et pourtant fondamentale !

un certain nombre de problémes peuvent étre résolus numeériquement ou
utilisation de méthodes d’approximation (solution approchée mais suffisante)

H = Hy+ \H,
Voo

soluble  perturbation = correction faible
Holn >= E%|n> et <n/|Hy|n > connus

E E3 On cherche En sous la forme
A E, =E’ 4+ \E} + A\2E2 ..
E2 correction d'ordre 1, d’ordre 2,....

et |®, >=|n > +Ap, > +A2|p2 > +....

A
/\ Etats NON DEGENERES
E

|

- )+ corrections relativistes + spin/spin + spin/orbite + efe + efions + .....



On "norme” |®,, > en imposant < n|®, >=1 alors < n|p’ >= 0

(Ho + M H)(Jn > +A|ol > +...) = (B2 + AED(In > +A|pl > +...)

et en identifiant les termes d’ordre 1 (termes en A)

Holpr > +Hq|ln >= EX|p. > +E|n >

et donc

E! =< n|Hi|n >

o >= D In' ><nlpy >= ) In' ><nlpy, >

n’

n'#n

relation de fermeture

<n’|H1|n>
on >= ) —— n' >

E/O
n’#n
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et en identifiant les termes d’ordre 2 (termes en A2)

Holgz > +Hilp, >= Eplps > +E, |0y, > +E2|n >

soit  Ej =<n|Hilp), >= Y  <n|lHin' ><n|¢) >
n’#n

| < n|H1|n > |2
l.e. _< 2 : _ EO©
n’'#n n’

par exemple pour une correction en ¢xP de 'oscillateur harmonique

pour I’état fondamental
EY =1 et < 2]0 >= Wexp(—ﬁﬂaz) avec 0 = \/h/mw

Eln>=+/n/2ln—1>+/(n+1)/2In+1> avec { = z/o

pour p=1, le premier ordre est nul par parité,
pour le second ordre seul le terme n = 1 est non nul

avec B3 = —c?0? /2hwg = —c? /2k

remarque : dans ce cas on trouve le résultat exact donc les corrections suivantes s’annulent
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ourp=2
& n >=/n/2[(/(n —1)/2|n — 2 > +/n/2|n >] + /(0 + 1)/2[\/(n + 1)/2|n > ++/(n +2)/2|n + 2 >]
avec B = co?/2
pour le second ordre seul le terme n=2 est non nul

avec B2 = —c?0? /4hwy

remarque : dans ce cas on retrouve :
Ey = h/(k+2¢)/m/2 = (hwo/2)(1 + 2¢/k)Y? = (hwo/2)(1 + ¢/k — (¢/k)? /2 + ....)

Eo /hw Exact (numérique)

ourp=4 o
Ej = 3cot /4 "I
0.4

Eg — —210208/8hw0 i

0.2

perturbation
2eme ordre

0.1~

e b b b b b b b B
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 /8

efc....
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Exemple : corrections relativistes de I'atome d’hydrogene (structure fine)
2

mc ) my ., P m(v/c)
T = — mc et p= SOoIt — =
V1= (IcR /1= (/) ¢ /1= lc)p?
2 4
ot H=T+V=me(|(Lr+1-D+v=Lyv-L 4 .
mc 2m 8m3c?
E = — E,/n* perturbation 1erordre
1 EY  2on 3
El = — <n|p*ln>=-—H — )X EY
" 8m3c2 P7 mec2 [+1/2 2 "

nE

~——~ 107
105

Voir aussi terme de Darwin (voir TD) = fluctuations de position de

h
I’électron par rapport a son « orbite » : or ~ — — oV ~ 0.1 meV
mc

et couplage spin-orbite (voir suite)



Etats DEGENERES

maintenant on doit écrire

Dégénérescence E,
N
& E,. [@n >= (D ailn,i >)+ Mgy, > +X%0n > +....
” 1=1
E2,2 l
E 7 7 Ve 7 7 .
€ 21 état n, dégénéré N fois

A eten identifiant les termes d’ordre 1 (termes en \)
/’\/ El N N
Holey, > +H1 () auln,i >) = Eplol, > +ELN>  ailn,i>)

1=1 1=1

puis en projetant sur chacun des vecteurs |n,j > on
obtient un systeme de N équations du type

N W11 —E}L ng WlN

. . L 1 Waoq Woo — E%J Won .
z :Oz@ < n7~]|H1|n7Z >) T Enaj Wk:k:_E}l =0
1=1 W1 Wina WnN — E}l

les N valeurs de En' s’obtiennent en annulant le déterminant de ce systeme
et la résolution du systeme (+ normalisation) permet de calculer les a;
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en particulier : interaction électromagnétique (dipolaire) H{ = qu’.E — qErcos¢

la présence d’'un champ électrique (effet Stark, voir TD) introduit doc une
perturbation du type

et pour le niveau n=2 de I'atome d’hydrogéne (4 fois dégénéré)

0 ¢ 0 0 Firtyo
, v 0 0 0
<n|H1n">= 0 0 0 0 avec y = -3eao
0O 0 0 0

barycentre de la charge -
(électron) n’est plus

%\/5(‘1’200 + Wa10) ‘ + 8 TP “ confondu avec le
d I sekiag barycentre de la charge +
j— Porret ¥y ‘ et ‘ (proton au centre)
_ = apparition d'un
_ P «
V200 = Vo) @ 8 l moment électrique
(induit)

En brisant une symeétrie la perturbation leve (partiellement) la dégénérescence
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B. Perturbations dépendantes du temps : H=Ho+H1(t)

—iEY
eton cherche |®(t) >= Z k> e R e (t)

k évolution sous Hgp inconnu

On suppose qu'a t=0 le systéme est dans I'état [n > i.e. cx(0) = dg.n

S e By (t) + ihdey(t) [0t |k >= Y e ERt ey () x {EQlk > +Hilk >}
k k
et en projetant sur I'état |m >

ihe tEmt/h Ocm (t) /0t = Z e_iE’gt/hck(t)x < m|Hy|k >
k

ihOc,, (1)/0t = Ze_i(E’g_Egn)t/hx <m|H|k > ¢} = e~ UBn—Ep)t/h m|H1|n >

k
> Pnm

soit P = |eh (D° = gz fy €t <mlHy(t)|n > at'|> | ™

probabilité de transition entre I'état n et I'état m n

cette approche perturbative est valable pour TOUT Hi(t) [<<Ho]



si H1 = constant (pour t<tp=0)

P . (1) = = sin*(w, 12 Sl 0
() 5 1= s @l nm
Q% - _

== siw,,, =0

et pour un champ électromagnétique (interaction dipolaire) H1 — qF.E — qETCOS¢

— — . 2<n ?rc0s9m>2
Avec E = E,e/" P, (1= | L9 0h2 | |

F(t, w,,, — o)

Ap. (1) a la résonance la probabilité de
/ résonance pour Wnm=w transition est

/ proportionnelle a t2

AWl / mais cette approche n’est valable

(By — Ea) — h? / que pour P <<1
/ (voir plus loin)

h/|(Es — Eq) — hwl

si wo>0 (réciproquement <0) : 'atome gagne (resp. céde) de I'énergie de 'onde EM
en langage « quantique » : absorbe ou émet un photon d’énergie hw



E=E,+TTo — == Continuum
Transition vers un continuum
p(E) = % = densité de niveaux du continuum Transition
Densité d’états (en physique du solide)
E, = Fondamental

On suppose | < n|Hi|m > | constant autour de Ej,

P = / P,ydn = /Pabp(E)dE avec dF = hdw et F(t,w) — 2wd(w)t
continuum

P, cont = ,O(Eb)%’ < n\H1|m > ‘2?5 car f_JF;O F(t,w)dw = 27t

si (Bp— E,) — hw << AE

regle d’or de Fermi

Dans ce cas la probabilité devient linéaire [comme pour une onde EM est incohérente
= superposition d’'onde de fréquence difféerence] et non plus quadratique
(taux de transition dP/dT = constante)

Application a l'ionisation des atomes et/ou LASER
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C. Méthode variationnelle.

Cette méthode est basé le fait E<<(I)‘H’(I)>
ette méthode est basé sur le fait que S
. ! < PP >
la méthode consiste a choisir une famille de fonction Eu
d'essai déependant d’'un parametre p \/
on calcul alors :
E %
E, Mt [ oo
u = :
<®,|®, >

et on minimisa cette énergie en « espérant » se rapprocher le plus prés possible de Eo
Ce minimum sera d’autant plus proche de Eo que I'on a su choisir la « bonne » famille d’essai

2

1
Par exemple H=2X 1 §/~cx2

2m

<&, |®, >=1.770
< z|®, >= exp(—2?/207)

< &, |z%|®, >= 0.890°
2 2

x L <<1>032ﬁ>:—0.89
2F
2 2
E—h +ka -4-;,-'2.;/5;53'4
7 4mo?2 4 , . .
_ R {70 —
T T Omin — W et Emzn — 5 —EO

cinétiqgue potentielle 42 car « bonne » fonction d’essai



1 . .
<P >= 5 /o) Lorentzienne <z|®, >=1+£(x/o) triangle
< P, |P, >= 1570 < P, P, >=20/3
< &, |2?|®, >= 1.5503 < O, |22|®, >=03/15 T
a1F
020, 020,
< CI)J|W >= —077/0' < ®J|W >= —2/0' N >
4TI s S e R R T R
X/02 2 2 2 xlo
ko h ko
E, = 0.4 — . E, = —
2ma2>< 9 + 5 % 0.99 2m02><3—|— 5 x 0.1
2 _ h _ hw 2 _ h _ hw
Onin — e x 0.70 et Emzn — 5 X 1.4 Onin — e X 5.5 et Emzn — 5 x 1.1
. 2 2 ko?
et si <[Py >= (z/0)(1 — (x/0)%)  E=7—x107+=—-x033
mo
02 = - x 1/10.7/0.33 et Epin = %2 x (2v/10.7%0.33) = & x13.8
2
P2 1., . X\ 0] 01 1 10 100
H=—+ —-kx AT
2m + 2 + Eeract 0.5 ] 0.55915 | 0.8038 | 1.5050 | 3.1314
1 Eoriat. 0.5 ] 0.5603 | 0.8125 | 1.53125 | 3.19244
< 2P, >= (oD 1A exp(—z”/207) 0F = Eyy — Foyaet | 0| 0.0012 | 0.0087 | 0.026 0.06
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Chap.3

Hamiltonien sous champ magnetique



A. Quantification des niveaux sous champ magnétique

1 s si B est constant (//Oz), on prend prendre :
H=—[p—qAP?+qU
o P~ 44T i ( By B
2 2
2 242
p g — — — —.  qA
H= — A4+ A .p)H+ (U=0)
2m 2m(p P) 2m
2 2,.2 32
@H:p——WoLszLqr Yo =q/2m
2m &m

le terme en r2 < oscillateur harmonique

les solutions sont donc

E, = [0, + =)+ (n, + )] i T he
= [(n,+— n,+—)nhw < o =— c
" ) ) 2m __I 2
avec 2w = w¢ = qB/m = fréquence cyclotron
ho, -
E =n+1)

2

45




qB hw
Et —<plB>=-—<L,>=-n
2m

c

avec N’'=-n,-n+2,.....n-2,n

et un électron c’est également un SPIN

qui se couple également au champ exterieur

—_— —>
— Hy,,, = 8gnB . S,
g = facteur de Landé = -2,002 pour un spin 1/2

A/

E, = n"hw, Niveau de LA NDAU

n+n+1=x1
2

avec n’ =

= effet Paschen-Back : S; et L; sont traités ici indépendamment
(restent de bons nombres quantiques, fonction d’onde = états produits)
mais a faible champ on doit tenir compte du couplage SPIN-ORBITE (voir plus loin)



electrons libres

electrons dans un potentiel périodique (a)

(V=A=0) (A=0)
h? k2 R E
b = 9 m Appariton de BANDES T
(voir physique du solide Il)
(® = onde plane)
- E = Egcos(k.a) ™|
(liaisons fortes = couplage '
aux plus proches voisins) _
_______ - -
electrons en présence d’un champ B electrons en présence d’un champ B constant
constant (V=0) ET d’un potentiel périodique (carré, a)
- E

B, = hw(n +1/2)
+ correction (hyper)fines
avec w = fréquence cyclotron qB/m

Niveaux de Landau DISCRETS
(une dégénérescence est liée a la symétrie
de révolution autour de H)

Papillon de Hofstadter A
(fractal) |
() Ba?

o = =
(I)O h/e

On retrouve des bandes
(plus étroites)
pour a = rationnel
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B. Couplage spin-orbite et Structure hyperfine

dans le référentiel de I'électron, le noyau décrit une orbite et crée donc un champ magnétique

—

On peut montrer que ce champ interne est « L

- . , . —_— — —_— —*
— HSO — ﬂSO(r)L , Se (on devraitécrire L .S, =L ®S,)
lp > = |1, m; > = vecteurs propres de L2 et L, = orbitales atomiques (partie angulaire)
|+ >,| — > = vecteurs propres de Se (de valeurs propres +h/2)

comme pour la composition des deux spins 1/2 note |J, m; > les états propres de
J2 (et Jz) : construit a partir de |, m; > @ | s, m, >

- espace vectoriel = produit tensoriel (de dimension 2x2=4)

engendrée par |+ > ®[+ >, [+ > @|- >, |- > @[+ > et |- > ®|— > notés |+, + > etc...

4+, + >, |-, — >et (|+,— > +|—,+>)/vV2 = Sror=1etetms=1,-1et0
(+, = > ~| =+ >)/V2 = Sror=0 et me=0

*(A® B)(Jlu>®|v>) = (Alu >) @ (Blv >)



de facon générale pour toute composition de moments J1 et J2 (spin et/ou orbital)

J=|J1+J2|

D o

J=|J1—J2|

|J’mj> — ZC(jamj7j17j2’m1’m2)|J1’m1 > ® |J2am2 > :DJ1 ®DJ2 —

les C sont appelés coefficients de Clebsch - Gordan (cf wikipedia)

2 J J
Notation: M
1/2)(1/% +_ ‘ . _ my m,
I+1‘¢+: /2 ’ w:J ‘:\ 2)(1/ +5 5/2 3/2 m.m, Coeffidents
. H +1/2 =172z 174 1 bz +1/2 1 |3/2 4372 . .
Par exemple ' 2 Splns 1/2 hl‘i 2 "" 1/2-1/4-1 +2 =172 1/5 ars| s/2 32
-1/2-1/2] 1 +1 +1/2] 4/5-1/5}1
L= 3
~ 0 -1/
H>@+> [+>0—-> |->®+> |- > > 1:?/? c2/0[572
L= 1 0 0 0 sz B=— Bag[ 0.0
Rl Bl e [F372 s172] 1]+ + T
1,0> 0 1/\/5 1/\/5 0 _gis] i +3/2 -1/2[1/4 1 S
+1/2 +1 /4 — a
0,0 > 0 1/\[2 —1/\[2 0 I2XI +3 L 3/2x1 2-1/2|1 /2
+2 +1] 1]+ Gz 3 1/2-172) -
11,-1> 0 0 0 1 ¥z 0f/3 A
1 +112/3 +1 +1 3/5 +1/2 + 2 +1/2) 1/4-
- + 1/15 ,:' +3 2/5 I
1 14 1l I +1 =3/ 1 +1 1/15 /2
s 2 1 ( 1 0 £ -8/15 - -1/2 —1/2
[+ i)+ +2 = = = = -
+1 2 172 0 5 2 -1 /15 ol =
202=361 i 332 [BiiaHm
+1 -1 1 -1 /2 -1]1 3
0 0 -1/ - il 3 0.1 245 =
+1 1 -2 +1 -2 - l
= 2/3 1/
=== -

voir aussi TD - isospin

I—P
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J=L-S5=1/2

L J=L+5=3/2




—

<H,>=<n,l,m|A,(r)|n,l,m> <f.Se >

I I

> > —
Intégrale sur sur 'espace (réel~1/r3) avec J = [, + Se

P=L’®Id+2L,®S,+L,®S,+L. ®S)+1d®S> noté L2+2L .5 +S5°

R 2 12 Q2 N 72
LS:J L2 S <L.Se>=7(j(j+1)—l(l+1)—3/4)
En? n o
On peut montrer que < Hgp > = [GG+ D=+ 1) —3/4]

mc? I(1+1/2)(1+ 1)
~ 1meV => contribution a la structure FINE

Et en incluant les corrections relativistes (voir chapitre précédent) et avec

2
j = 1% 1/2 on obtient Hle — i@ pik )

2mc? _j+ 1/2

ces corrections hyper fines ne dépendent que de j (pas de )

Remarque : une différence d’énergie entre les état 2s12 et 2p12 a néanmoins été
observé par Eugene Lamb en 1947. Ce décalage de Lamb est du aux fluctuations du
vide (du champ électromagnétique, non traitées ici)
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8¢ —»

et avec le SPIN du noyau = moment dipolaire /717 = WSP (gp ~ 5.6)
14
//l —_— SO\ = —_—
B = (3, P — )
//lo — = —— — —
Hy = 2g,u,ug = [3CS, . F)(S, . 7) = 5,51 = 4,7)S, . S,

—

< Hpye > = <n,L,my| el n, I, m > <§l;.Se >

3101 = Se 5 g o3 Sy =0,1
) ) —— ) < th > = _(STOT - _) TO0T — ’
S2r = S2 425,85, + S 2 2

—/E | 1,m >
=_ AE = —5.87.10%V =4 =21cm

i 100 (état fondamental I=0) Terme HYPERFIN
0 >

tous les 10 milions d’années le spin d'un atome se retourne
et il y a émission d’une raie caractéristique a 21 cm

At ~ h/AE ~ 107 ans

Hydrogéene = 90% des atomes du milieu interstellaire 0.3 atome/cm3 en moyenne (He = 10% restant)
matiére essentielle pour la formation des nouvelles générations d’étoiles.

Remarque : spin nucléaire souvent note |, voir TD pour plus de détails



Retour sur les niveaux de Landau :

- =

5 guB 3B

Hspin — _/jB — _T
gupB qB o,
Hypin, = —95=0, = hwoo, pour B||0Oz avec wy = - — = —

Ix(t) >= S(t)|x(0) > avec S(t) = exp(—iHgspint/h)
S(t) = cos(wot) X Id — isin(wot) X o,

X >= al+ > +b|— >
B a(t) = ape” ™0t et b(t) = boe'o!
PRECESSION a la fréquence (de Larmor) 2w, = w,

57
Lt b L — —
SO P De méme L précesse autour de B
; \ / <> avec une frequence deux fois plus faible
ils peuvent étre traités séparément

—

J = L + Snestici pas conservé




—

mais le couplage spin-orbite => L et § tournent I'un autour de I'autre (et autour de J')

avec une fréquence Ag,L i

‘%Q

et si B < Agphly, alors on doit faire un traitement perturbatif sur les |J, m; >

<H, >=<Jm|H,|J,m >

— — — N N . o ) 2 g2
onpose L +25 =g, 7 glt=(L+25).T=P+5.T=r+s+L.5== +§ -
<Hyua>=—18 <J.>B=—augB  (BOz)  EffetZeeman

3G+ 1) +s(s+1) =1+ 1)
2j(j+ 1)

avec Qay=m;g8;=ny

Par exemple si I=1, s=1/2 :
> J=L-5=1/2 gJ=2/3, my=1/2,-1/2 ay=-1/3,1/3
32=2604
L J=L+S=3/2 @u=4/3, my=-3/2,...,3/2 =-2,-2/3,2/3,2



— — M: M
M, 3/2 S=1/2, 1=1 t Ms
1/2 1/2 1, 1/2 L+2s =2
-1/2 -1/2
-3/2

as.2 // 0,1/2 L+2s =1

2/3 /
ﬁ 2Ps» 2/3 —1,172 | L+2s=0

2
P12 1,-1/2 | L+2s=0
as=1/3 2 \

0,—1/2 | L+2s=-1

—1,—-1/2| L+2s=-2

Clebsch-Gordan

(|d,my>) états produits

Effet Zeeman Effet Paschen-Back

Pour les champs intermédiaires : on utilisera la théorie des perturbations dégénérées

(ou diagonalisation exacte) en utilisant soit les [J,my> soit les états produits



Remarque 1 : si <0|J|0>=0 on conserve une réponse paramagnétique

au second ordre en perturbation = paramagnétisme de Van Vleck

|<O|J|n>|
HY = 78,8 Y,
n#0

d< 7> <[],H]>

Remarque 2 : = " relation d’Ehrenfest :
l
d<J, > ,
” =18&B.<Sy>=w<J,> B (<[ >+i<j>)O)=e"(<J >+i<j,>)0)
d<7 > .
(et =0-conservation de la composante le long de B)

dt

Ce couplage donne bien lieu a une précession du moment autour du champ

Remarque 3 :Il faudrait également tenir compte du
couplage de B avec le spin nucléaire I.
Voir TD pour I'influence de B sur la structure hyperfine
(effet Back-Goudsmith)

55



C. Diamagnétisme et paramagnétisme des solides

Finalement PHAMILTONIEN s’écrit

p2 q 7"2B2
2m 8m

D’un point de vue magnétique, le terme en r2 correspond a la loi de Lenz (le
systeme cherche a crée un champ (= des orbites) s’'opposant au champ
qu’on lui applique) = diamagnétisme de Larmor

—

Il apparait un moment magnétique ﬁ’et I’énergie associée a ce moment vaut — ﬁ’ B

qz <r’> CIZBRz <«——~ rayon de Bohr ap
< Ugip>=—0<H>0B=- B=—
4dm 6m
< . 9 ag 2.10—21 Up Pour B=1T, %vec Us = magneton de Bohr
Haia = = HB 2008 ™ B4 10-15 ™ 1000000 AP 02
4 2m

« Rayon » magnétique

le champ total (induction magnétique) dans le solide B=H. + M

ext
(ou H oxt €St le champ appliqué et 'aimantation M moment/unité de volume)



Et yo(f + 2?) = paramagnétisme (de Curie)

< Hara > = Yomy + 2mg)h @ haut champ

< Hpara > = Yo8ymyN a bas champ

mais dans les solides = ensemble d’atomes, on doit faire une moyenne statistique

moyenne sur tous les angles (voir fonction de Langevin)

voL B
[Let dr | (ro LB
< Hpara > =V <L, > =1 =

en’)‘gBdT 3ksT
B (y()pR)2B B q2BR2 y p2 B q2BR2
 3ksT 6m 2kaTT 6m

=1 équipartition (2D=orbite planaire)

En mécanique classique : M, .. + M., = 0 (Bohr (1911) & von Leeuwen (1922))

para

a piece of metal in electric and thermal equilibrium will not possess any magnetic properties



Mais il faut tenir compte de

la quantification des niveaux selon Oz et la présence du SPIN

< Upyra > = g X B (upBIkT)

fonction de Brillouin

PO A DO S SRS B
O VA YR Y R

Bj(x)

Bins fonction de Langevin

2

spin orbite non negligeable

< Hpara > depend de J

Pour les faibles valeurs de x, B(x) «x x et < pp,, > ~ —B

T

Avec C = ?J(J + 1) (par atome), loi de Curie

4u
B
HB
< Hpara = ~ m

58

et pour B=1T et T=100K



Remarque et pour les états etendus

la contribution paramagnétique (Pauli) est alors de 'ordre de

Hp
10000

pp X [8(EF) . pigB] ~ Pour B=1T | voir : Physique du Solide S7
A

Densité d’état ~ 0.1 état/eV.atome

Ces électrons délocalisées ont également

une contribution diamagnétique ~ p,,.,/3 (Landau)

Sauf SUPRACONDUCTEURS M = -B
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Diamagnétisme

Paramagnétisme

Electrons
localisées
(couches atomigues)

LARMOR
o Hp
Hdia ™ = 7000000

a 1T, indépendant de T

CURIE (ou Van Vleck)

Hp
/’tpara ~ 100

a 1T/100K ~1/T

Electrons
délocalisées
(métaux)

LANDAU
Haia ~ — :upara/ 3
(sauf supraconducteurs)

PAULI
N Hp
Hoara ™ 70000
a 1T, indépendant de T

Les interactions™* entre spins peuvent donner lieu a I'existence d’'un moment méme
en I'absence de champ extérieur
. champ interne = (anti-)FERROmagnétisme

de Curie-Weiss pour les états de coeur et Stoner pour les électrons délocalisés

* nous reviendrons sur l'origine microscopique de ces interactions plus loin



Chap.4

Atomes a plusieurs électrons



A. Corrélations (potentiel effectif), termes spectraux

Les particules élémentaires : leptons (non soumis a I'interaction forte)
= électrons, muons, neutrinos,... et quarks (soumis a toutes les interactions)
sont toutes de spin demi-entier,
on les appelle ces FERMIONS

on appelle BOSONS les particules de spin entier = bosons de jauges
= intermédiaires des interactions fondamentales
(photon = interaction électromagnétique, gluons = interaction forte,
Zo,W = interaction faible et... le boson de Higgs)
ou des bosons composites : He4, les électrons d’une paires (de Cooper)
dans les supraconducteurs, les excitons....
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| ’'Hamiltonien des N particules (INDISCERNABLES) est invariant par permutation
H(rl,rz,..ri,...,rj,..rN) =H(rl,rz,..rj,...,ri,..rN)
|H, Pl-j] = ( et la fonction d’onde est donc également un état propre de

'opérateur permutation P;; : et Pijz. =Id

PijCI)(rl,rz,..rl-,...,rj,..rN) =/ICID(rl,rz,..ij]-,...,ri,..rN)
donc A2 = 1,4 = = 1. La fonction d’onde est donc
soit symétrique = bosons (4 = + 1),
soit antisymétrique = fermions (1 = — 1)

On ne peut pas mettre deux fermions dans le méme état quantique
(= tous nombres quantiques : n,I,m... ET spins identiques)
= principe d’exclusion de Pauli

par contre il peut étre énergétiguement favorable de placer tous les bosons dans le
méme état = condensation de Bose-Einstein (voir physique statistique)
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p-2 Ze? e?
Pour N électrons : H o = Z — — Z )+ Z -

; i 472'60(7'1' — R]) i£] 477:607"1']'

v

interaction efions
périodique
fonctions de Bloch
(voir Solide 1)

v

Corrélations
Calcul trés délicat pour les électrons (délocalisés) des couches externes
=> bandes, voir seconde quantification : « Hartree-Fock » M2-MQ

Pour I'atome d ‘hélium (Z=2) on pourrait s’attendre a ce que I'’énergie du
fondamental soit : -22*13.6*2=-109eV mais en réalité -79eV

pour le fondamental on peut faire une approche variationnelle

en cherchant la fonction d’onde sous la forme
(D(Z*, 7’1, 72) — CI)Z*(FI)(I)Z*(FZ)
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ou @,(r) est la fonction d’'onde du fondamental d’'un atome hydrogénoide (a 1e) et Z* est une charge
« effective » du noyau (variable) qui tient compte de l'écrantage par 'autre électron.

h? = .
cela revient & écrire: H ~ Z(—2—Vz' + Verr(7i))

5 m
1

Potentiel effectif (écrantage) = charge effective vue par I'électron se trouvant a r;

mais pour connaitre Ve il faut connaitre la structure de I'atome mais c’est justement ce que I'on cherche...

par I'approche variationnelle. On trouve
(En minimisant < ©(Z*, 1, ry) | Hy5 | P(Z*, 7, 1,) > )
/* =/-5/16=1.69 (Z=2, voir TD) etE ~ -77 €V (2% d erreur)

Vett reste un potentiel central mais plus en 1/r

= on conserve la dégénérescence en m mais PAS en = En,l

wnlml — Rnl(r)Yzml (‘97¢)

Voo

Partie radiale dépend de Ve
pas facile a calculer !

Harmonique sphérique
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En « gros » on remplit les couches en n croissant et l
d’abord les couches a | faible pour lesquelles les /
électrons sont plus proche du noyau : interaction S—3p

(négative) plus grande ///
Regle de Klechkovski /// /

Exemple du carbone Z=6 : 1s22s22p? 6c 65 ed
2 ¢électrons (S12=1/2) occupent la couche 2p : L12=1 7/ /

En fait chaque électron a 6 états possibles
(Sz,L2)=(1/2,-1), (1/2,0), (1/2,1); (-1/2,-1),....

Lror=L=0,1,2 Stor=S=0,1

On note 28+1X |es niveaux correspondants = termes spectraux
ou X=S (L=0), X=P (L=1), X=D (L=2),....

donc ici a priori 6 niveaux possibles 1S, 3S, 1P, 3P, 1D, 3D
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(172,-1) | (1/2,0)  (1/2,1) | (-1/2,-1)  (-1/2,0) = (1/2,1)

Ces niveaux sont associés a 6x6=36 possibilités R
= 21 possibilités  indiscernabilité (X) (112,0)

(1/2,1)

- 15 possibilités Exclusion de Pauli (X)

(-1/2,-1)

(-1/2,0)

(1/2,1)

i 3
le niveau 35 1.1 >
(IL1>®|1,-1>—-[10>x 10>k |11 >®|1,-1>)/3 ® (1T, 1>+]1,1>)/2

|1, 1>

fait appel a la configuration L;1=L,0=0 et S;1=Sz0=+/-1/2
ce qui est interdit par le principe d’exclusion
de méme pour 3D (Lz1=L,o=1 et S;1=S,2=1/2 est interdit)

mais 3P est possible car |1,0 > ® | 1,0 > intervient pas

(10> |1,-1>—-|1,-1>®|1,0>)/2 [1,1>
elle est dégénérée 9 (2Liot+1).(1Si0t+1)=9 fois
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(1/2,-1)
(1/2,0)

(1/2,1)

(-1/2,-1)

(-1/2,0)

(-1/2,1)

1P est interdit par symétrie (les fonction radiale ET de spin sont antisymétrique)

(1/2,-1)

X

(1/2,0)

(1/2,1)

(-1/2,-1)

et les 15 configurations restantes
correspondent aux termes spectraux :
1S (1),3P (9), 'D ()

(-1/2,0)

(-1/2,1)

3P X X X X X
3P 3P X X X X
D | PD | ®sD | X X X
3P D | 1S1D | P,'D | 3P X X
3p,18,D | 3P,1D 1D 3p 3p X

3D : interdit par Pauli

3P : OK

38S : interdit par Pauli

D:OK

P . interdit par symétrie

1S: OK

t ]
]
HEE
t ]
NN
HE

les interactions inter-électrons lévent alors la dégénérescence entre ces niveaux



Energy (cm~!)

C(1s*25*2p%)

électrons sans
interaction

p 1
/
|
!
]
I
I
/
I
!
|
I
[ 'D
l’ g
y
I / S
e
I,
I’
\
\
\
\
\
\
\
\ P

interactions e-e

termes spectraux

1

lDz

5
S e, o

la dégeénérescence des

3 7 niveaux est finalement levée
1 7 par le champ magneétique

T (effet Zeeman)

couplage spin-orbite
niveaux 28+

J=|L-S|, [L-S+1],... L+S ici J=0,1 ou 2

état fondamental = 3P ): pourquoi cet ordre ?



B. Interaction d’échange (ferromagnétisme), regles de Hund

(1/2,0) (-1/2,0)

Retour sur le I'hélium 1s2
(1/2,0)

terme spectral 1So

(-1/2,0)

Comme les deux électrons occupent le méme état orbital : la fonction
d’'onde de spin doit étre antisymétriqgue

p(ry, 1) :¢S(r1)€0S(r2)®(| Ti{>—-111>)

cette fonction est délicate a calculer (=> approche variationnelle : voir TD)

de fagcon générale pour Interaction entre 2 spins, la fonction d’onde
doit étre ANTISYMETRIQUE soit en spin, soit en orbital

Pas(r1, 1) = @1(r)@a(ry) — @ (1) py(17) @511, 17) = @1(r)@a(ry) + @1(1)y(17)
la partie spatiale est antisymétrique la partie spatiale est symétrique
SPIN TOTAL = symeétrique (triplet) SPIN TOTAL = antisymeétrique (singulet)
S=1 S=0
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| 2
soit  H = Hl +H2 +H12 avec Hy, = ¢ 1 |

drey |1 — 1y |

Si on note respectivement Es et Eas les énergies des configurations S et AS

On peut alors ré-écrire Hiz sous la forme : Hy, = S1-9,
X
— = §?=3/2
Et — 14 — 51~52=T —» 3/4 — ES
et en ramenant l'origine des énergies a (Es+3Et)/4 Hy,=— Jfl) , §2)

avec J=E —E,
Onnote L=<@,|p, >

V=< @), p,(r) | Hip | ()@ (ry) > interaction Coulombienne directe
X = < @(r), 92(ry) | Hy | 02(r)@(r5) > interaction Coulombienne d’échange

Purement quantique = antisymétrie de la fonction d’onde

V—-X E = <o H,| >_V+X
112 s — S Ps| | Pg _1+L2

Eys= < @us| Hiplas > =

E =Vsi ¢1= P



X - VL?

et J=E —-E =2
S 5 1—L4

si J>0 I'état de plus basse énergie est Sq1||S2 (triplet) < Ferromagnétisme (Heisenberg)

Lorsque LT, J peut devenir négatif = antiferromagnétisme

|'écart d'énergie Es-Eas détermine donc l'alignement antiparalléle (S =0) ou parallele
(S = 1) des spins mais il faut bien noter que cette « interaction magnétique » est en
fait purement électrostatiques (échange)

I'interaction dipolaire ,uB/r ~ 0.01meV (pour 1nm) est ici totalement négligeable

En particulier pour deux 2 états (intra-atomiques) orthogonaux : =0, J=2X>0
= alignement des spins (en « évitant » r=0 'état AS minimise I'interaction Coulombienne)

Le remplissage des différentes couches pour un atome a N électrons suit alors

les regles de Hund
le terme de plus faible énergie est celui maximisant le spin total
(premiére régle de Hund)

. . Eas =V-X~0 . . Es = (V+X)/2 ~ V
(Es = V4+X ~ 2X) (Eas — oo (Pauli))



et pour un spin total donné, le terme de plus faible énergie est celui de
plus grande valeur de Z L, (=mi)

= deuxieme regle de Hund : si tous les électrons tournent dans le méme
sens, ils se « rencontrent le moins souvent »

couched(l = 2) :

nlil.=2. .1 0, -1, -2 l S = IZIZHE ) Symbole
1 l {‘ 172 2 | 3/2 *Dspa
2 i l | ]. 3 2 s =N . 3F2
3 T =78 3p(f = =S g,
4 b - b de s o] 22 |0 "Dy
5 N A N R °Ssi2
6 woot oottt 422 |4 D,
7 [ 320 3 a2l _ ;. Fopz
S S S S N E N A T A (e i
9 - Y | 1/2] 2 52 Ds;s
10 R i R LR T S

pour les remplissages <1/2 les états de plus basse énergie correspondent a
J=|L-S| et pour remplissage >1/2 a J=L+S
(troisieme regle de Hund = minimisation du couplage spin-orbite)

Remarque : ceci est valable pour les éléments légers (Z<40 : Russell-Sanders) pour lesquels

spin-orbite < interactions e-e. § et L restent de bons nombres quantiques et on peut alors
définir un L, = Z LietS, = 2 S; puis faire J = L + § mais pour les éléments lourds il

faut calculer 7; pour chaque élément puis faire J—to; = Z 7; (couplage J-J)



C. Notions de physique moléculaire

., i
2]\% +Zi: gm +V({a}, {Q;}) = Tn + Holpi, ¢i; Q)

ou V contient toutes les interactions : ef/ion - e/e et ion/ion

La premiere approximation (de Born-Oppenheimer) consiste a supposer que M; = oo
etaresoudre : Ho®(q;; Q;) = E(Q;) ®(qi; Q)
ou les Q] paramétrisent a la fois les fonctions d’onde et le spectre en énergie;
Comme nous 'avons évoquer cette résolution reste TRES délicate car elle contient le terme de
corrélation (voir Solide Il pour le traitement de l'interaction efion).

Mais une fois cette étape franchie on peut ré-introduire les ions en écrivant

U(gi, Q) = > xn(Q)) ®nlai: Qj) avec (T + Ho)¥ = EW

—

Exn®n — Z L(Pk(pn) (ﬁan> — (In®n) Xn]

Z (TN Xn) Pn + En(Qj)an)n] = Z M,
n k

n

et en projetant sur @* (et en passant en notation de Dirac)

TN(Q)) + En(Q)] xm) = Elxon) = 3 <<<1>m|TN|<I>n> + Z@m%m P) X
k

n



L'approximation adiabatique consiste alors a négliger* le terme

Z (<(I)m|TN|(I)n> + Zk: <(I)m‘%|q)n> ﬁkz) [Xn)

n

il ne reste alors qu’a résoudre [In(Qj) + En(Q;)] Ixm) = E|xm)
et (g Q;) = xm(Qj) Pimlgi; Q;) = V2P (g5 Q)

Si Em(Qj) présente un minimum en Q].O la liaison est dite liante et la molécule est stable.

. 0’E,
A voisinage de ce minimum [Ty, + Em(Qj )+ — >
l 2 OQJ-

~ 1 Im(Q7)* ~ eV J "
= énergie de liaison (solide covalent) h /m(Qj)

|

oscillateur harmonique = vibration des ions

E,, = ho(n+ 1/2) avec iw ~ fLZ/\/mM(QjO)2 ~ 50 — 500meV

(Qj — QJO)Z])(m(Q]) = E)(m(Q])

* pas facile a justifier... mais cela revient a supposer que les électrons (Iégers) s’adapte instantanément
aux changements lents de configuration des ions



Tn contient des termes de translation (non pertinent) mais

également des termes de rotation

L2
H =— avec I ~ M(0O%?
= Q%)

- A+ 1)
rot — 21

~ hz/M(QjO)Z ~ lueV

Signal ionique
c.a.d. 10mK ou 1GHz » (unités arbitraires)

=2

atomes froids Cs; L'AWA .
. LM s\ —
Laboratoire A.Cotton - Orsay - N et

0 | 2 v {(GHz)

h2
mR?

onadonc Ey, ~ (m/IM) . E, < <E ~+\mIM.E, <<E, ~

/6



Chap.5

Interaction atome-lumiére



A. Diffusion (notions) [VOIR COURS MQR en S2 et M2]
(anglais = scattering, diffusion « chaleur)

/
A Ly .
/ masse réduite o
7 2. me
P o —

A4 Ny
e o i
\\K/l/ \/(;,,)
Collision entre 2 particules e V@%E I
. . s [T H= 0 //—LL>
Ou Interaction rayonnement matiere onde rdidete %\A o amorioe

On suppose gue le potentiel
d’interaction ne dépend que de xi-xo
et que V est nulle (tres faible) pour

loin de O (champ lointain)
on cherche la solution sous la forme :

X1-X2 grand
1 .
V(&) = o(— I et !
(@) = ol 0@ = e ) () 40 ()
winc A -~ -
T Yaiff
Onde sphérigue sortante

Onde plane entrante £(k,0,0) = f(lg’) avec o — k%

(selon Oz)

/8



f

particules diffusées/temps courant de probabilité incident :
(sans interaction) particules/temps/surface

centres diffuseurs supposés
indépendants
Ve punfue Atda (pas de diffusion multiple)

angle solide

L
dn(Q) = K x (|.J;|NdQ)
1

ou on a introduit a section efficace définie par do = KdS)

et de méme : dn(Q) = ‘Jd:ff’NT2dQ

. 1=
et en utilisant J = Re{@*(—%V(I)} on obtient :

—

—

J; = @ et szff —
m

ﬁlf(k )I2

—

k/

d —
on a finalement : 2 ‘f( /)’

dQ
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et dans approximation de Born (V faible, perturbation, voir MQR)

N 7
orn 1 iN.Z - = 2 ]\‘ 194
f (kﬁ,s@) = fB (k,9,¢) — _E ATy (ZIZ/) d> avec U = h_n;V A V/
1 Born 1 > . V
et pour un potentiel central : f (A) = rsin (Ar) U (r) dr !

=/ 0
e

0 2k
_2m / | fBorn (A)}2 AdA | avec A = 2ksin(6/2)
0

o8 (k) = o

e—r/a

par exemple : U = U = Yukawa = interaction électrostatique ecrantee

/'fl
2 - D
Ug U, 0 CL4 S N

/e + A%2 (L4 RGha)sin(02P)? S

~ (e
<

Born|2 __
| F77 =

)
-~

angle d'ouverture : en accord avec le principe
A A r . .
a=A0~ l/ka P———JﬁOlfi"‘/*)rf‘ d’'incertitude P,a ~ h

nUga? 1
k2 1+1/(2ak)?

Born __

o — A/E pour E ~k2grand Diffusion Rutherford
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et pour l'interaction avec une onde électromagnétique....
(milieu neutre non magnétique)
Les équations de Maxwell s’écrivent :

! ] ~>
e - = _:D‘D £ > P
dwD = O ot & o % R oolansabion
= R OO =)
O//Lf 5 ks 3 D 3 =-'/Uo

pE s ot SE 5
—D mae L Sy o A
;M

—
/OIO/ded/wo (&am/pno/;,,ale‘ /eponse o7 /7767/6’/7621{-

- , °r, - —
et le principe fondamental (on suppose le noyau fixe) : m y 28 =qgE + F,,
!
v
supposé indépendant de 7 car
. , . > o
enlinéarisant F,, = —Kr, A~ 600nm>>r, ~ A
d2

—_— e -
on obtient : (— + w?)7, = — E avec w? = K/m
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eky/m

etavec E = Eye/ ¥ =Ty¢/ onar, =

w§ — w?
. A ] ] — 5 — ez/m
et il apparait un moment dipolaire : P = Ner = Na(w) E avec a(w) =
w§ — w?
et donc un champ rayonné : 1 sinf w? .
- SO 9= — po ")
(voir rayonnement dipolaire) Areg 1 C?

f(e) ei(wt—k’r) E

et donc en écrivant Ey = — o On obtient :
T

o = [| f(0)1?dQ = 0* X (Lw)zfrsm%e)zmm(e)de

dreyc

0
I '
diffusion Rayleigh /3
(ciel bleu)

\{

Résonance pour ® =

Puissance diffusée _ section efficace Puissance incidente
(Poynting) —\ (de diffusion) X (par unité de surface)
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Remarque 1 : lintensité s’atténue en fonction de la distance z parcourue
dans la matiere : I(z) = I e No@)

Remarque 2 : On n’a pas tenu compte des effets d’absorptions (inélastiques)
— dr

On peut les introduire en rajoutant une terme « de frottement » : Fy, = — b?
5

dans le principe fondamental

a devient complexe avec un terme d’atténuation (= partie imaginaire)

Ne? p

a(w) = X avec f = b/2m = « largeur » (de la Lorentzienne)
egme  (wy — w)? + 2
= taux de collision

alw) 7

83



C. transition résonance : oscillations de Rabi

Evolution temporelle de la fonction d’onde

H=Ho+H1

le systéme est initialement dans I'état |a>

H=Ho FF (état propre de Ho)
=L ey x : :
E=Ea | Comment I’état évoluer-t-il sous I’action
, de Hi: transition a—b
E=Ep
E=E>

Dans le cas d'un systeme a 2 niveaux, on peut faire le calcul exact

on suppose que Waa = Wpp =0, par parité dans le cas d’'une interaction dipolaire :

—_— —

W, = P.E>=—¢eEyr,.7 avecr, =<al|r|b>

ab —

pour un champ électrique constant (dans un premier temps)

o | . . | Ei = 3(Ey+ Ey) + 3\/(By — Ey)?2 + 4W3,
N trouve pour Ies solutions stationnailres
& By = YEu+ By) — L\/(Ea — Eo)? + 402,

ou Hpla >= FE,|la > et Hylb >= Ep|b >
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évolution temporelle : our simplifier les écriture on prend l'origine des énergie en
Ezetononpose hwy= AE =E,
On cherche les états propres sous la forme
| >=a)|a>+b)|b>etonnote nQ =-2W,

et '’équation de Schrédinger donne
ina = Wb etihb = AEb + W, a,

a

soitdonc b + iwgh + Q%b/4 = 0

et avec b(0)=0 et a(0)=1 on obtient finalement :

b(t) = Beiwo“sm(\/ wf + Q21/2) | avec B = 2Wba/ih\/ W} + O

Et la la probabilitée de transition de a vers b : [P B, B, =0
41W,,|?
P_,=|b@)|* = C—sin*(y/ o + Q*1/2) | N\ = 2wl
¢ hz(a)g + Q?2) 0,51
02 0,2:_ fo e X AN
= sin®(y/wg + Q*1/2) - Oscillations de Rabi AR AY A
2 92 0 — Ny NI N
Wy + ; .




Remarque 1 : on retrouve le résultat perturbatif si W, < < AEie. Q < < w,

Remarque 2 : Si E = Eoreja” W, =—eET, . Za(eja” + cc)

on trouve b Q
n . H 4 4 =1
(méme principe que précédemment) \/Qz + (@ — wp)?

sin(y Q2 + (@ — g P112)e "

15| o

- Qz + (60 - 0)0)2

Soit

sinz(\/g2 + (0 — wy)*t/2) | b |2 — | alarésonance

Remarque3: <7 > = {(a*CI);k + b*DNF(a®, + b®,)dr = (a*b + ab*)T;

d_o_’ (a#) = a%8c0%s o L What?s - xﬁgj‘ (064 + g, a) _ _ ‘\Wada‘z*%—‘:‘ wy, (1B/_ Jaf?)
&

o
ot d* (a#s). - Wyta%s, Lo iy ( 15/ /o) ,L;:_'p% (lnsg (157 to/¢ )
- ' & - e S N =
sl 2 9P - i o Pty 1y (B lof) B V€ 1507 €)= [ WEmat] 9¢
dée o 7 4 L_Jf‘:; m
= = adme/-?uec,i resulbat
G/asgzgue



C. Matrice (opérateur) densité et représentation de Bloch, relaxation

En mécanique quantique la principale source de « hasard » est liée a
I'interaction avec I'environnement (mesure) = projection du paquet d’'ondes :
la probabilité d'obtenir la valeur propre gjestp,; = < ¢|Pp > 1 < p| ¢ >

ou P, est le projecteur sur le vecteur propre (9, = |i > < i|)

ou plus généralement sur le sous-espace associé a aiet <A > = Zp(p ia;

A Pii -+ Pin

Soit p = | D > < @ | = opérateur densité

Pn1 --+ Pmn

Les p;; sont appelés cohérences et les p;; populations

<A>= Y atgA;= ) <®li><jld><ilA]j> ) <jlO><®A|j>= ) <jlpAlj>

ij i J J

avecl(I)>=Zal-|i> D'ou TF(ﬁA)=<A>
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par exemple pour deux états

< 05¢ol 0 = <EI(1a 180< L Lo 193¢0 8% 1 5¢4 1, 0,018,500,

/@//e gé P.213 /ae/ej P’“ =i 0402*/ PQI: Oed,fﬂg

AA

el
et donc comme (voir 86) < 7 > = (a¥a, + a;af) 7y, :

p1, est directement relié a 'amplitude du dipole atomique

mais la matrice densité permet surtout de décrire les mélanges statistique (intriqués)
d’états | D; > avec la probabilité pi et dans ce cas :

p= ZP;‘ 2> < D] = Zpig)d)i

Cette matrice joue un rble essentiel dans le traitement
(propriétés thermodynamiques S = kzTr(plnp)) des systemes a grand nombre
de particules (voir cours de physique statistigue)
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L’ évolution du systéme est donnée par

dp/\ 1 1y Pil
— = —|[H, p] appelée équation de Liouville von Neumann ¢ °
dt lh le ;{)zl
et pour notre systéeme a deux niveaux )
Jwk _le: e‘)w{: _ou V
e e 47 Ao (g€ o 07 A2 () putws
s ! {_ ot done [H, Pl = an i
- e Gt __%ﬁ e (@u-PzL_) ¥ ‘Q[-Cuog)l ni (e p«e—e PL:)
2 ! Z
. . . Q iwt —iwt . : Q it . < \k
Pr11= —Pn= z?(e P21 — € P et P12 = lje (P22 = P11) + iwpp1p = (p21)

et en introduisant pi, = pye

7

. . Qo ,
{ P11 = — P = ZE(le —P12)
P12 = iE(Pzz — p11) + ilwy — w)py,
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Onnote: u=py +p, v=1Upy —pPp) W=pp=pP11 pptpn=1

; ; !

Partie réelle du Partie imaginaire du inversion de population
terme de cohérence terme de cohérence

Les équation précédentes s'écrivent alors :

U= (@—wyv,v=QQw+ (wy—w)uetw =— Qv

—

Et si on défini© S = ui + vf+ w? (vecteur de Bloch)
et §= —Q?+(a)0—a))k

on obtient simplement: S = O A S

—

—
i.e. § tourne autour de Q et sa norme est conservée = vecteur de Bloch

_)
S évolue sur une sphére = sphére de Bloch
Sa projection sur Oz donne w
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Draw the spin state
Phenoménologie identique pour la on a Bloch sphere.

précession des SPINS
(voir aussi TD)

‘+\’ 51\)“ J/7 14,2
N

1= €s)

Si w = w, (résonance) la rotation se fait autour de I'axe des x (i) et

Ww=—QW=>w=—cosQt («»carw0)=—1)
on retrouve les oscillations de Rabi (voir 85) :

Py =1 +w)/2=( —cos(Q))/2 = sinz(Qt/2)

et I'inversion peut donc dans ce cas bien étre totale

(si on applique le champ E.M pendant t = 7/2)

Remarques : pour ¢ = 7/2£2 On obtient une superposition cohérente
1/\/§(| 1 >+|2>) (= étatintriqué)

« Porte de Hadamard » = base de l'ingénierie quantiqgue (Qubit....)
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Remarque : on n’a pas tenu compte ici de la possibilité d'une
émission spontanée (relaxation)

Equations de Bloch optique

. . Q / /
P11 = l?(le — Pt Fspp22

. . Q ’ ’
P = l?(Plz = Pa)— 1—‘spp22

7

P1

I—(pyy — p11) + Uwy — ®)p1, — 1P Yy =

— Transition spontanée de 2 vers 1

Q Fsp

2 2

+ Yeoll

Terme de collision : peu d'influence sur p;; mais effet important sur la cohérence

Et en régime permanent (p'l-j = 0)

o iQR2py = 12 QIm(pi,)
P12 = : Upn =
Y — l(a)O — a)) 1—Wsp
| 1 Q%IT,, 1
soit: P22 P11 2 (w— wo)z + },2 + Q2},/Fsp 2

Pas d’inversion de population possible
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C. Régles de sélection et regle d’or de Fermi

que peut-on dire de

D
|<P.E>Px|<U,mZ|l,m > |*cos*(0) E\eﬁ
11,1 >= Y1, o sinfe'® = |z > +ily > @

11,0 >=Y; 9 x cost = |z >
1,-1>=Y ; x sinfe™" = |z > —ily >

donc ¥ € D,

et f]n,l,m >ce D1 D =D 1®D; B Djyq

opérateur vectoriel
et comme les vecteurs appartenant a des représentations irréductibles différentes
sont orthogonaux entre eux :
'élément de matrice < I, m/|Z|l,m > est
non nul si I’=I-1 ou I’=Il ou I’=l+1
et le cas I'=I est exclu par parité (x est impaire)
Seuls les transitions vers les états |+1 et |-1 sont possibles
(Théoreme de Wigner-Eckhart)
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En particulier :

e Sila polarisation du champ est rectiligne (par exemple selon Oz)

1z>=1]1,0> o
T ol et T = L=
K n T
L'intégrale sur @ s ‘annule sauf sim’—m = 0
e & 4
ces transitions sont appelés : transition - © ( A=

» Sila polarisation du champ est circulaire (dans le plan Oxy)
xcos(wt) + ysin(wt) = e (X + iy) + cc

lx>xily>=|1,£1>

T \

Lintégrale sur ¢ s ‘annule saufsim’ —m = = 1

" , " +
ces transitions sont appeles - transition o
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