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Chap.1 

Fonction d’onde à N particules



Mécanique classique = espace des phases E(x,p). Une particule classique est 
donc totalement définie par x et p. 

Mais en la « première »  quantification repose sur l’attribution aux variables 
physiques (x et p) des opérateurs. 

x[�(x)] = x⇥ �(x) ̂p[Φ(x)] =
ℏ ⃗∇ (Φ(x))

i

Qui vont agir sur une fonction d’onde complexe = un vecteur d’un espace de Hilbert de 
dimension (in)finie = la connaissance de l’état quantique (à t0) est complètement 

contenue dans cette fonction d’onde (et non plus x et p)

Attention la mécanique quantique ne permet PAS de déterminer   
= c’est la »condition initiale » de la mécanique classique

Φ(x, t = 0)

H� = i~@�/@t
mais l’évolution temporelle du système est totalement déterminée par l’équation de Schrödinger

�~2�
2m + V (x) = HAMILTONIEN (énergie totale)



Comme toute autre grandeur x set p sont soumis au principe d'incertitude

�a =
p

< A2 > � < A >2 �a�b � | < [A,B] > |/2 [x, p] = i~

Si l’espace est fini  ceci conduit à la (première) quantification de l’énergie 
et des états propres associés  

MAIS l’Hamiltonien de départ était lui « classiquement » continu.  

(Δx ≠ 0)

Mais cela devient problématique lorsque l’on a affaire à plusieurs  
(un grand nombre de) particules car les interactions entre ces particules sont 

elles directement quantifiées : c’est la seconde quantification.  
Les fonctions d’ondes elle-même deviennent alors des opérateurs…

La « position » des différentes particules déterminent directement le potentiel 
(d’interaction) et chaque particule se déplace dans le « paysage » crée par 

les autres = champ (quantique). 
Attention ce n’est pas ici un nouveau postulat de la mécanique quantique 

mais juste une difficulté naturelle liée à la résolution d’un problème complexe. 



Interactions électron-électrons

(corrélations) = problème à N-corps

LIQUIDE de FERMI

+
1
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Ici les R sont connus (position des ions) et 
pour l’électron on se retrouve à faire la 
somme de N problèmes à 1 corps
(en incluant le principe d’exclusion)

≡
N

∑
i=1

ℏ2 ∇2
i

2m* =  masse effective

la difficulté provient du fait que pour 
résoudre les équations de Schrodinger 
afin de déterminer les fonctions d’onde 
(« trouver ri »)  il faut… connaître ces 
fonctions d’ondes (« connaître rj ») !
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Et l’indiscernabilité fait que     

On ne va donc pas déterminer N fonctions d’ondes pour chacune de N particules mais 

N fonctions d’ondes « globales » décrivant « collectivement » les N particules car les 

particules peuvent «s’échanger » (= dégénérescence d’échange)

Φ(r1, r2, . . . . rN) ≠ Φ1(r1)Φ2(r2) . . . . . ΦN(rN)

Dans notre problème à N-corps l’Hamiltonien va donc agir sur une fonction d’ondes 
« globale »  Φ(r1, r2, . . . . , rj)

L’Hamiltonien est invariant par permutation 
 

 et la fonction d’onde est donc également un état propre de 
l’opérateur permutation  : 

 et  donc 

. La fonction d’onde est donc  
soit symétrique  , soit antisymétrique  

H(r1, r2, . . ri, . . . , rj, . . rN) = H(r1, r2, . . rj, . . . , ri, . . rN)
[H, Pij] = 0

Pij

PijΦ(r1, r2, . . ri, . . . , rj, . . rN) = λΦ(r1, r2, . . rj, . . . , ri, . . rN) P2
ij = Id

λ2 = 1,λ = ± 1
(λ = + 1) (λ = − 1)



Et les BOSONS = particules de spin entier sont : 
soit des bosons de jauges : intermédiaires des interactions fondamentales 

(photon = interaction électromagnétique, gluons = interaction forte,  
Z0,W = interaction faible et... le boson de Higgs) 

soit des bosons composites (atomes He4), des excitons (phonons)…. 

Ces particules sont associée à  :  

fonction d’onde symétrique par permutation

λ = 1

Comme toutes les particules élémentaires : leptons (non soumis à l’interaction forte)  
= muons, neutrinos,... les électrons ont un spin demi-entier = FERMIONS

(c’est également le cas des quarks, soumis à toutes les interactions)  

Ces particules sont associée à  :  

fonction d’onde antisymétrique par permutation

λ = − 1
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On ne peut pas mettre deux fermions dans le même état quantique 
 (= tous nombres quantiques : n,l,m... ET spins identiques). 

En effet si  alors  
C’est le principe d’exclusion de Pauli

ϕi = ϕj |Φ > = 0

9

la fonction électronique doit être ANTISYMETRIQUE soit en spin, soit en orbital

|Φ(r1, r2, . . . , r3, s1, s2, . . . , sN) >± = S±[ |ϕl1 ⊗ ϕl2 ⊗ . . . ϕlN > ⊗ |s1 ⊗ s2 ⊗ . . . . sN > ]

Produit tensoriel
(A⌦B)(|u > ⌦|v >) = (A|u >)⌦ (B|v >)

Fonction d’onde à 1 particule

Par exemple à 2 particules :  si symétrique ou 

 si anti-symétrique et à 3 particules : 

ϕ1(r1)ϕ2(r2) − ϕ1(r2)ϕ2(r1) |spin >

ϕ1(r1)ϕ2(r2) + ϕ1(r2)ϕ2(r1) |spin >

  ϕ1(r1)ϕ2(r2)ϕ3(r3) − ϕ1(r1)ϕ2(r3)ϕ3(r2) − ϕ1(r2)ϕ2(r1)ϕ3(r3) − ϕ1(r3)ϕ2(r2)ϕ3(r1) + ϕ1(r2)ϕ2(r3)ϕ3(r1) + ϕ1(r3)ϕ2(r1)ϕ3(r2)

π = 0 π = 1 π = 1 π = 1 π = 2 π = 2

Spin

S+ =
1

N! ∑ Pπ S− =
1

N! ∑ (−1)πPπet où  est l’ordre de la permutationπ



|ΦN > = Dl1,...lN(r1, . . . , rN) =
1

N!

ϕl1(r1) . . . ϕl1(rN)
. . . . . . . . .

ϕlN(r1) . . . ϕlN(rN)

De façon générale pour N particules la fonction d’onde des fermions peut être écrite comme

Déterminant de Slatter

= choix des fonctions d’ondes à une particule 
(généralisable si on rajouter le spin li = espace ou spin)

{li}

en prenant tous les jeux de  possibles avec {li} N =
∞

∑
i=1

li

les « choix » possibles pour les  sont (a priori) infinis (mais tous différents) … 

avec    [relation de fermeture]

ϕli

∑
n

ϕ*n (x)ϕn(x) = δ(x − x′￼)
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Remarque :  pour des bosons on peut avoir :   
Et, en l’absence d’interaction si  est l’état propre du fondamental à 1 particule, cette 
condensation (de Bose) permet d’obtenir l’état fondamental du système à N particules. 

Ce n’est si simple en présence d’interactions : voir superfluidité et théorie BCS (TD). 

|n,0,...,0 > = |ϕ0 ⊗ ϕ0 ⊗ . . . ϕ0 >
ϕ0

Jusqu’à présent le nombre le nombre de particules était conservé.  

Mais pour avoir une description d’un système avec un nombre de particules 
variable on peut passer de la représentation des (xi,pi) à un nouveau type de 

représentation : “la représentation de nombre d’occupation”  

et écrire  

ou le rang fait référence à l’état  correspondant avec 

|ΦN > = |n1, n2, . . . . , ni, . . . , n∞ >

ϕi ni = 0,1
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Mais si on rajoute une (N+1)e particule avec l’état  

 

et il s’agit d’ajouter une ligne et une colonne au déterminant car le nouvel état devient 
« accessible » pour toutes les autres particules du fait de la dégénérescence d’échange

ϕN+1

|ΦN+1 > ≠ |ΦN > ⊗ |ϕN+1 >

|ΦN+1 > =
1

(N + 1)!

ϕ1(r1) . . . ϕ1(rN)
. . . . . . . . .

ϕN(r1) . . . ϕN(rN)
ϕN+1(r1) . . . ϕN+1(rN) ϕN+1(rN+1)

ϕ1(rN+1). . .
ϕN(rN+1)

C’est extrêmement lourd…
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On doit trouver une représentation…. plus « pratique »



On introduit un nouvel opérateur : l’opérateur création (et annihilation) :  ( )c†
i ci

qui vérifie : pour les fermions, c’est le principe d’exclusion(c†
i )2 = (ci)2 = 0

La fonction d’onde peut alors s’écrire :   

ou est l'état du vide avec    

et les  sont les « choix » de l’état à 1 particule pour la particule i :

|Φn > = c†
l1
c†

l2
. . . . c†

ln
|0 >

|0 > ci |0 > = 0
li

i.e. on crée une particule i dans le système avec l’état   

(on ne crée pas la particule i dans l’état )

ϕli

ϕli

Cette représentation est bien adaptée aux calculs d’un ensemble (grand 
canonique) pour lequel le nombre de particule n’est pas fixé. 



|Φn > = |n1, n2, . . . . , n∞ > =
∞

∏
i=1

(c†
li
)ni |0 >

où les  valent 0 ou 1 (pour des fermions) nl

et cic†
j + c†

j ci = δij
pour conserver la norme de  

la fonction d’onde 

c†
i c†

j = − c†
j c†

iPour les fermions : et de même cicj = − cjci

On peut donc écrire : 

En effet  

et  

< x1 |c†
l1

|0 > = ϕl1(x1)

< x1, x2 |c†
l2
c†

l1
|0 > =

1

2
(ϕl1(x1)ϕl2(x2) − ϕl1(x2)ϕl2(x1)) = − < x1, x2 |c†

l1
c†

l2
|0 >
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et (c†
l cl)2 = c†

l clc†
l cl = c†

l (1 − c†
l cl)cl = c†

l cl − (c†
l )2(cl)2 = c†

l cl

mais ces deux fonctions d’onde ne diffèrent que par leur signe c’est bien entendu le même état 
Dans la suite on « classera » (par convention) le  de gauche à droite pour les i croissantc†

li



où  est le nombre d’états occupés (= permutation à faire) pour  

Cet état est nul si  pour les fermions (double occupation impossible) 

νl l′￼< l
nl = 1

et donc 
 c†

l cl |n1n2, . . . . n∞ > = nl |n1n2, . . . . n∞ >

15

et , on retrouve bien clc†
l | . . . nl > = (1 − nl) | . . . . . nl . . . > clc†

l + c†
l cl = 1
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Remarque : Si on prend un état quelconque alors 

 et 

comme  vaut 0 ou 1 :  = « moyenne »

|Φ > = ∑
{nl}

A{nl} |{nl} >

< Φ |c†
l cl |Φ > = ∑

{nl}

|A{nl} |2 < {nl} |c†
l cl |{nl} > = ∑

{nl}

|A{nl} |2 nl

nl 0 ≤ < Φ |c†
l cl |Φ > ≤ 1

Les états sont donc des états propres de   avec la valeur propre 0 ou 1|n1n2, . . . . n∞ > c†
l cl

  est l’opérateur « nombre d’occupation »c†
l cl

Ces états sont donc également état propre de l’opérateur  

« nombre de particules »  N̂ = ∑
l

c†
l cl

et



cas des bosons : 

[c†
i , c†

j ] = 0

(remarque : les opérateurs sont souvent notés  et ) a†
i ai

et le carré n’est pas (nécessairement) nul  

car le nombre d’occupation peut prendre n’importe quelle valeur (entière positive ou nulle)

et c†
l | . . . . nl . . . > = nl + 1 | . . . . nl + 1.... > cl | . . . . nl . . . > = nl | . . . . . nl − 1.... >

et dans ce cas  

soit :  

clc†
l | . . . nl . . . . > = (1 + nl) | . . . . nl . . . . >

clc†
l − c†

l cl = 1

on a toujours : c†
l cl | . . . . nl . . . > = nl | . . . . nl . . . . >
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|n1, . . . . nl, . . . . > =
(c†

1)n1 . . . . (c†
nl
)nl . . . .

(n1! . . . . nl! . . . . )1/2
|0 >

les opérateurs doivent désormais satisfaire à une règle de commutation afin de 
rendre la fonction d’onde symétrique



Chap.2 

Seconde quantification



U = oscillateur harmonique ( ), potentiel central,…k x2

2

 n = Nne
��x2/2

Hn(
p
�x)

Polynômes d’Hermite

avec  et λ =
mω
ℏ

ξ = λx

Relations de récurrence : 

Création c†
n

1p
2
(⇠ � @

@⇠
) n =

p
n+ 1 n+1

Annihilation cn

1p
2
(⇠ +

@

@⇠
) n =

p
n n�1et

c†
ncn |Ψn > = n |Ψn >

ici bosons donc n quelconque

Principe d’incertitude ( )[ξ, ∂/∂ξ] = − 1

c†
ncn =

1
2

(ξ2 − (∂/∂ξ)2 + [ξ, ∂/∂ξ]) =
1
2

(ξ2 − (∂/∂ξ)2 − 1)

H =
ℏω
2

(
kmx2

ℏ
−

ℏ∂2

km∂x2
) =

ℏω
2

(ξ2 −
∂2

∂ξ2
)

L’Hamiltonien peut donc se récrire : H = ℏω(c†
ncn + 1/2)

<  n|H| n >= ~!(n+ 1/2)



    et       Ψ†( ⃗r ) = ∑
λ

ϕ*λ ( ⃗r )c†
λ Ψ( ⃗r ) = ∑

λ

ϕλ( ⃗r )cλ

On va chercher à généraliser cette nouvelle 
écriture pour tout opérateur (pertinent)

il faudrait à chaque étape vérifier que 

on ne le fera pas…
ancienne notationnouvelle notation

La « première quantification » consistait à introduire des opérateurs à partir des 
coordonnées  et  de l’espace des phases (classique) et dans cette « seconde » étape 

on va donc introduire des opérateurs à partir des fonctions d’ondes elle même…. 
⃗r ⃗p

Soit, pour commencer 
(on reviendra sur la signification)

Et réciproquement (en projetant sur les états ) on a  ϕl c†
l = ∫ d3 ⃗rϕl( ⃗r )Ψ†( ⃗r )

cl = ∫ d3 ⃗rϕ*l ( ⃗r )Ψ( ⃗r )
20



∫ ρ( ⃗r )d3r = ∑
λ,λ′￼

c†
λ c′￼λ ∫ ϕ*λ ϕ′￼λd3r = ∑

λ

c†
λ cλ = N̂

car la base est orthonormée

on retrouve le NOMBRE de particules

 est donc l’opérateur densité de particules au point  (de spin )Ψ†( ⃗r )Ψ( ⃗r ) ⃗r |s >

Soit l’opérateur ρ( ⃗r ) = Ψ†( ⃗r )Ψ( ⃗r )

Remarque : 

Et en introduisant la relation de fermeture 

[Ψ( ⃗r ), Ψ†( ⃗r′￼)]+ = δ( ⃗r − ⃗r′￼) δσ,σ′￼

et   [Ψ( ⃗r ), Ψ( ⃗r′￼)]+ = [Ψ†( ⃗r ), Ψ†( ⃗r′￼)]+ = 0



la moyenne de la densité de l’état est donc  

 (resp. ) est l’opérateur champ 

qui permet de créer (resp. annihiler) une particule en un point  

de l’espace (avec un spin ). 

|u > δ(r − r0)
Ψ†(r0) Ψ(r0)

⃗r0

|s >

soit |u > = Ψ†(r0) |0 >

< u |ρ |u > = < 0 |Ψ(r0)Ψ†(r)Ψ(r)Ψ†(r0) |0 > = < 0 |Ψ(r0)Ψ†(r)(δ(r − r0) − Ψ†(r0)Ψ(r)) |0 >
=0

= < 0 |Ψ(r0)Ψ†(r0) |0 > δ(r − r0)
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et donc  
< u |ρ |u >

< u |u >
= δ(r − r0)



Expression des opérateurs en seconde quantification

Pour des articules sans interactions, soumises au même potentiel, ne dépendant que de r

L’expression classique de ce potentiel est  ̂f = ∑
i

f( ⃗ri ) = ∫ f( ⃗r )ρ( ⃗r )d3 ⃗r

où la densité s’écrit classiquement :  ρ( ⃗r ) = ∑
i

δ( ⃗r − ⃗ri )

et en seconde quantification : F = ∫ Ψ†( ⃗r )f( ⃗r )Ψ( ⃗r )d3 ⃗r = ∑
λ,λ′￼

c†
λ c′￼λ ∫ ϕ*λ ( ⃗r )f( ⃗r )ϕλ′￼( ⃗r )d3 ⃗r

     avec    F = ∑
λ,λ′￼,σ

fλ,λ′￼c†
λ,σcλ′￼,σ fλ,λ′￼= < ϕλ | f |ϕλ′￼>

(cette expression est bien sur valable si )f( ⃗r, ⃗p)

Remarque :  si l’opérateur dépend du spin : F = ∑
σ,σ′￼

∫ Ψ†
σ( ⃗r ) < σ | f( ⃗r, ⃗p, ⃗s ) |σ′￼> Ψσ′￼( ⃗r )d3 ⃗r

création d’une particule au point r avec un spin σ
23
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par exemple pour l’Hamiltonien Ĥ = ∑
n,m

Hnmc†
mcn avec Hmn = ∫ ϕ*mHϕnd3x

et si  les Ei sont les valeurs propres de Hi et 
 sont les opérateurs création sur les états propres de Hi, 

  

c†
i

Ĥ = ∑
etats−occupes

Eic†
i ci

avec = (∑
i

Ei) |Φ > = E |Φ > E = ∑
i

Ei

∑
i

Eic†
i ci |Φ >



comment prendre en compte les interactions ?

 

 

V =
1
2 ∑

i≠j

v( ⃗ri , ⃗rj ) =
1
2 ∫ d3r∫ d3r′￼v( ⃗r, ⃗r′￼)∑

i≠j

δ( ⃗r − ⃗ri )δ( ⃗r′￼ − ⃗rj )

=
1
2 ∫ d3r∫ d3r′￼v( ⃗r, ⃗r′￼)[∑

i, j

δ( ⃗r − ⃗ri )δ( ⃗r′￼− ⃗rj ) − ∑
i

δ( ⃗r − ⃗ri )δ( ⃗r′￼− ⃗ri )]

=
1
2 ∫ d3r∫ d3r′￼v( ⃗r, ⃗r′￼)ρ( ⃗r )[ρ( ⃗r′￼) − δ( ⃗r′￼− ⃗r )]

En écrivant :



F =
1
2 ∑

λ1,λ2,λ3,λ4

Vλ1λ2λ3λ4
c†

λ4
c†

λ3
cλ2

cλ1

Remarque : si l’opérateur V ne dépend pas du spin  
l’état de spin est préservé lors des « transfert 1->4 et 2->3  

On trouve finalement

F =
1
2 ∑

λ1,λ2,λ3,λ4

Vλ1λ2λ3λ4
c†

λ4,σ
c†

λ3,σ′￼
cλ2,σ′￼cλ1σ

et sinon cela se généralise en 
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Cas particulier pour lequel   

dans ce cas il peut être intéressant d’utiliser la base des ondes planes  

v( ⃗r, ⃗r′￼) = v( ⃗r − ⃗r′￼)

ϕk =
1

Ω
ei ⃗k. ⃗r

Ce processus peut être vu comme une collision 
au cours de laquelle une impulsion q est 

transférée d’une particule à l’autre

Pour la répulsion Coulombienne  et  v( ⃗r − ⃗r′￼) =
1

4πϵ0

e2

| ⃗r − ⃗r′￼|
ṽ( ⃗q) =

e2

ϵ0Ωq2
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vk1k2k3k4
=

1
Ω ∫ d3r′￼′￼v( ⃗r′￼′￼)ei( ⃗k3− ⃗k2) ⃗r′￼′￼

1
Ω ∫ d3rei( ⃗k1+ ⃗k2− ⃗k3− ⃗k4). ⃗r = ṽ( ⃗k3 − ⃗k2) . δ ⃗k1+ ⃗k2, ⃗k3+ ⃗k4

Transformée de Fourier ⃗q
avec ⃗r′￼′￼= ⃗r − ⃗r′￼ conservation de l’impulsion



En résumé    avec  H = ∑
i

h(i) +
1
2 ∑

i≠j

v( ⃗ri − ⃗rj ) h = −
ℏ2

2m
Δ + Vions( ⃗r )

Il est alors « facile »  de diagonaliser h en prenant  
les états anti-symétrisés construits à partir d’une base complète des  

états propres (orthonormés) à 1 particules
(les fonctions de Bloch dans le crystal périodique, en sommant alors sur tous les k de la première ZB 

et l’ensemble des bandes)

et le premier terme devient alors :  et h = ∑
σ,λ

ϵλc†
σ,λcσ,λ E0 = ∑

σ,λ

nlϵλ

28

mais malheureusement ces états ne permettent PAS de diagonaliser le terme d’interaction…

()



Chap.4 

Approximation de Hartree Fock



 En présence de ces interactions, H n’est donc plus (aisément) diagonalisable 
à partir des états propres à 1 particule quelconque et les éléments de matrice 

anti-diagonaux n’ont a priori aucune raison d’être négligeables 

En théorie les nouveaux états propre peuvent toujours s’écrire  |Ψ > = ∑
{nl}

A{nl} |{nl} >

mais le calcul du coefficient A{ni} est irréalisable….

L’approximation de Hartree-Fock consiste à supposer qu’il existe une base d’états à une 
particule (à déterminer…) pour laquelle les éléments anti-diagonaux sont bien négligeables 

Cela consiste à considérer que les états ne se couplent qu’à eux-même|nl >

donc que les interactions ne modifient PAS les nombres d’occupation  de ces étatsnl
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donc pour les termes à 1corps  (le terme à un corps est diagonal) 

et pour les termes à deux corps   

OU  (dans ce cas de même spin) 

et  

 

λ = λ′￼

λ4 = λ1, λ3 = λ2

λ4 = λ2, λ3 = λ1

H = ∑
λ,σ

< λ |h |λ > c†
λ,σcλ,σ +

1
2 ∑

λ1λ2σ,σ′￼

[vλ1λ2λ2λ1
c†

λ1σ
c†

λ2σ′￼cλ2σ′￼cλ1σ + vλ2λ1λ2λ1
c†

λ2σc†
λ1σ

cλ2σcλ1σ]

= ∑
λ,σ

< λ |h |λ > c†
λ,σcλ,σ +

1
2 ∑

λ1λ2σ,σ′￼

[Uλ1λ2
− δσσ′￼Jλ1λ2

]c†
λ1σ

c†
λ2σ′￼cλ2σ′￼cλ1σ

31

valeur moyenne de l’énergie de répulsion 
Coulombienne entre deux distributions
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L’intégrale de Coulomb est l’interaction directe entre deux distributions de charges mais le 

principe d’exclusion de Pauli interdit à deux particules de même spin de se rapprocher et 

la valeur moyenne de leur répulsion Coulombienne se trouve diminuer d’une quantité 

égale à l’intégrale d’échange

H = ∑
λ,σ

< λ |h |λ > c†
λ,σcλ,σ +

1
2 ∑

λ1λ2σ,σ′￼

[Uλ1λ2
− δσσ′￼Jλ1λ2

][c†
λ1σ

cλ1σc†
λ2σ′￼cλ2σ′￼− δλ1λ2

δσ,σ′￼c†
λ1σcλ1σ]

nul car Uλλ = Jλλ

donc finalement   H = ∑
λ,σ

< λ |h |λ > c†
λ,σcλ,σ +

1
2 ∑

λ1λ2σ,σ′￼

[Uλ1λ2
− δσσ′￼Jλ1λ2

]c†
λ1σ

cλ1σc†
λ2σ′￼cλ2σ′￼

= ∑
λ,σ

< λ |h |λ > nλ,σ +
1
2 ∑

λ1λ2σ,σ′￼

[Uλ1λ2
− δσσ′￼Jλ1λ2

]nλ1σnλ2σ′￼



Cette approximation dite de champs moyen consiste donc à remplacer les termes à 2 corps 

par des termes à un corps (comme pour les particules sans interaction) pour une particule se 

déplaçant dans un champ effectif moyen crée par les autres particules sans le modifier

valeur moyenne de l’occupation notée   
(= inconnue du problème) 

n̄λi

Et donc finalement

(le facteur 1/2 a disparu car les deux premier termes ont la même contribution) 

un nombre et non plus un opérateur

si on note alors A′￼i = c†
i ci − < c†

i ci > = Ai − < Ai >

AiAj = Ai < Aj > + < Ai > Aj − < Ai > < Aj > + A′￼i A′￼j

et si les effets de corrélation sont faibles  

et on peut alors négliger le quatrième terme (dont la valeur est nulle) et ne conserver que 

< A′￼i A′￼j > ≈ < A′￼i > < A′￼j > = 0



où = potentiel moyen crée par les électrons occupant les états v̄el( ⃗r ) = ∫ d3r′￼v( ⃗r − ⃗r′￼) ∑
λ′￼σ′￼≠λσ

n̄λ′￼σ′￼|φλ′￼( ⃗r′￼) |2 φλ′￼

(avec probabilité d’occupation )= terme de HARTREE n̄λ′￼

H ≈ E0 + ∑
λ,σ

< λ |h + v̄el + v̄ech,σ |λ > c†
λ,σcλ,σ

heff,σ

même spin

et cet Hamiltonien à un corps diagonalisé peut se ré-écrire 

et     est appelé potentiel d’échange< λ | v̄ech,σ |λ > = − ∫ d3rφ*λ ( ⃗r ) ∑
λ′￼≠λ

n̄λ′￼σφλ′￼( ⃗r )∫ d3r′￼φ*λ′￼(
⃗r′￼)v( ⃗r − ⃗r′￼)φλ( ⃗r′￼)

opérateur intégral agissant sur φλ(r′￼)

En écriture « première quantification » diagonaliser ce terme revient à chercher les états propres  vérifiant 

  

mais on a besoin des  pour cela ! c’est toute la difficulté du problème…

φλ

∑
λ′￼≠λ

n̄λ′￼σφλ′￼( ⃗r )∫ d3r′￼φ*λ′￼(
⃗r′￼)v( ⃗r − ⃗r′￼)φλ( ⃗r′￼) = ϵech

λ φλ(r)

φλ′￼

et on peut montrer (… après « un peu » de physique statistique) que   n̄λσ =
1

E(ϵλσ−μ)/kT + 1

= terme de FOCK 



plus explicitement les  sont donc les états propres de l’ensemble des équations couplées : φλ

sont appelés équations de Hartree-Fock et permettent donc de trouver le spectre  ϵλσ

par exemple : modèle du Jellium

N électrons dans un volume V

la neutralité assuré par une distribution homogène d’ions de densité ρions =
N
Ω

      Vions(r) = − ∫ d3r′￼ρionsv(r − r′￼) = −
N
Ω ∫ d3r′￼v(r − r′￼)

d’où     V̄ 0
el = ∑

λ′￼σ′￼≠λσ

n̄λ′￼σ′￼∫ d3r′￼|φ0
λ′￼|

2 v(r − r′￼) =
N − 1

Ω ∫ d3r′￼v(r − r′￼)

et  lim
V→∞

[Vions + V̄0
el] ∼ 1/R → 0

Ces équations ne peuvent être résolues que NUMERIQUEMENT par itérations successives

 et on prend à l’ordre zéro φ0
λ (r) =

1

Ω
exp(iλr)
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Les ondes planes sont donc des solutions exactes (à tous les ordres) 
et elles sont également les états propres de l’opérateur « énergie cinétique » 

Il reste à résoudre :  −
ℏ2

2m
△ φ1

λ + < r | v̄0
ech(σ) |φ1

λ > = ϵλ(σ)φ1
λ

λ′￼ = k′￼

équation admet en fait pour solution φ(1)
⃗k

= φ(0)
⃗k

=
1

Ω
exp(i ⃗k ⃗r )

         où  est la TF du potentiel d’interaction ϵk =
ℏ2k2

2m
− ∑⃗

k′￼≠ ⃗k

n̄ ⃗k′￼̃v( ⃗k′￼ − ⃗k) ṽ

-



A T=0 la sommation se fait sur les états occupés 
(et on peut oublier la condition   lorsque N et V tendent vers l’infini)⃗k′￼ ≠ ⃗k

Et avec un potentiel en 1/r : ṽ( ⃗q) =
e2

4πϵ0
TF(1/r) =

e2

ϵ0Vq2

ϵk =
ℏ2k2

2m
−

e2

(2π)3ϵ0 ∫
kF

0

d3k′￼

| ⃗k − ⃗k′￼|2
=

ℏ2k2

2m
−

e2

2π2ϵ0
kFF(k /kF)

sur les états occupés à T=0 (de spin )σ

(un peu de…) calcul intégral donne avec F(1)=0.5F(X ) =
1
2

+
1 − X2

4X
Ln |

1 + X
1 − X

|

∑⃗
k′￼≠ ⃗k

n̄ ⃗k′￼̃v( ⃗k′￼ − ⃗k) =
V

(2π)3 ∫ d3k′￼̃v( ⃗k′￼ − ⃗k)

et EF =
ℏ2k2

F

2m
−

e2kF

4π2ϵ0

Remarque 1 : : le niveau de Fermi est le même pour les deux sous-bandes de spin

 avec kF,up = kF,down = kF k3
F = 3π2N/V

OU  avec kF,up + kF,down =
me2

2π2ϵ0ℏ2
k3

F,up + k 3
F,down = 6π2N/V

Donc :

On peut montrer que la solution de plus basse énergie correspond bien à  : 
l’effet fondamental est donc à priori  NON MAGNETIQUE

kF,up = kF,down



Remarque 2 :  en sommant (intégrant  sur) les  on peut trouver l’énergie totaleϵ( ⃗k) ⃗k

où  avec  et  est le rayon de Bohrr0 = re/a0 V/N = 4πr3
e /3 = 3π2/k3

F a0

(avec un facteur 1/2 pour ne pas compter 2 fois 
l’échange entre deux électrons de même spin)

Etotale est minimale pour  r0 = 2.4 (cohésion des métaux), néanmoins 
même si la valeur numérique est satisfaisante, elle n’est pas 

universelle (comprise entre 2 et 6 = limite du traitement champ moyen, 
il faudrait prendre de « vraies » fonctions d’ondes et non pas les ondes 

planes car densité non homogène)
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le potentiel est alors de la forme  et sa TF  

: la divergence en q=0 est levée,  = longueur d’onde de Thomas-Fermi :  

e−k0r /r ∝
1

q2 + k2
0

2π /k0 k2
0 = e2g(ϵF)/ϵ0

mais le potentiel d’interaction est en fait écranté  
(par la présence des ions et des autres électrons) 

Cette singularité rendrait le développement de Sommerfeld non valide  

et Ce/T ne serait pas indépendant de la température (contrairement à l’expérience). 

Elle provient de la divergence à q=0 de TF(1/r) ∝ 1/q2

Remarque  4: La nouvelle relation de dispersion (prenant en compte les interactions) 
a une caractéristique « pathologique » : ∂ϵ/∂k |ϵF

∝ vF → ∞

Remarque 3 : L’énergie cinétique ne dominerait que pour les très fortes 
concentrations électroniques (r0<<2), ce qui n’est PAS le cas. Les 

corrélations jouent donc un rôle essentiel en physique du solide moderne, 
à l’origine des comportements « exotiques » des métaux… 

le traitement exact de ces corrélations reste un effet complexe…
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électrons libres

φk(r) = uk(r)eikr
états de Bloch

structure de bandes

Ue−ions = ∑ UKeiKr

potentiel périodique 
pas de corrélations

densité uniforme de charges 
(jellium) : pas de périodicité 

(donc pas de bandes)

φk(r) = eikr

seul le terme d’échange contribue

potentiel périodique

corrélations ?
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on passe de j à i 
(premier voisins)

intégrale de saut  
(= la structure de bande)

occupation du site i par  
2 électrons de spin opposé

Répulsion Coulombienne directe (Hartree : ) 
Hamiltonien de Hubbard

λ = λ′￼= i

dans le cadre d’un modèle de liaisons fortes 
il est plus pertinent de prendre les orbitales atomiques comme base 

et on peut montrer que le terme d’échange décroît dans ce cas beaucoup plus rapidement avec r 
que l’interaction directe et on peut écrire (par exemple) : 

41

Une solution numérique a été récemment (2022) été obtenue pour… 3 orbitales :  

{ }={Cud, Opx et Opy} et i,j sont les noeuds de la maille CuO2 α, β

H = ∑
ijαβσ

tαβ
ij c†

iασcjβσ + U∑
i

nid↑nid↓

donnant des résultats encourageants pour 
la compréhension des supraconducteurs à 

haute température critique
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Vous verrez (« états quantiques de la matière ») que l’interaction électrostatique peut être 
écrite sous la forme d’un Hamiltonien de spin (avec ) :   (Heisenberg)J = 4t2/U ΣJij

⃗Si . ⃗Sj

dont la résolution est (généralement) loin d’être trivial pour .  
Ici on se limitera à remarquer que pour ce faire on peut être amené à définir des l’opérateurs  

de création d’une particule spin up au point i ( ). 

Cette quasi-particule « exotique » (qui ne porte pas charge* !) est appelée SPINON  
et on peut alors ré-écrire les opérateurs de spin (par exemple) :  

Etonnement l’opérateur  peut être fermionique (on parle de fermions d’Abrikosov)  
ou** bosonique (on parle de bosons de Schwinger). 

Et en champ moyen l’opérateur d’Heisenberg peut se mettre sous la forme :  

J > 0

f +
i↑

2Sz
i = f +

i↑ fi↑ − f +
i↓ fi↓

fi

HMF = ∑
<i, j>

χij( f +
i↓ fj↓ + f +

i↑ f +
j↑) + ηij( fi↑ fj↓ − fi↓ fi↑) + cc

terme de couplage des spinonsterme de saut des spinons

Les excitations (retournement d’un spin) peuvent alors conduire à l’existence de  spinons 
qui pourront se « découpler » et se déplacer indépendamment dans la chaîne… 

* des excitations de charge sans spin (holon) peuvent également exister. 
** en respectant dans les deux cas les règles de commutation des opérateurs moments cinétiques



Chap.5 

Couplage électron-phonon



On cherche à déterminer l’Hamiltonien décrivant le phénomène de 
diffusion d’un électron avec annihilation (ou la création) d’un phonon. 

On note  le nombre initial de phonon de vecteur d’onde  ν ⃗q ⃗q

et Ve−ions = ∑
n

u(r − Rn) = ∑
n

[u(r − R0
n) − (Rn − R0

n)∇(u(r − R0
n)) + . . . ]

en séparant les intégrales sur les électrons et les phonons 

et

Ue−ph = ∑⃗
k, ⃗k′￼

< ⃗k′￼, νq − 1 |Ve−ions | ⃗k, νq >

où on a utilisé la notation a pour l’opérateur annihilation des bosons et  
                                                              (à un vecteur du réseau réciproque près, voir plus loin)

⃗q = ⃗k′￼ − ⃗k
W

= 0

position d’équilibre des ions vecteur déplacement  (= phonon)⃗un

c†
k′￼
ck

1
νq

aq
norme

et en se rappelant que  et a†
q =

1

2
(ξ −

∂
∂ξ

) aq =
1

2
(ξ +

∂
∂ξ

) avec  et λq =
Mω(q)

ℏ
ξ = λ(q)x

déplacement
44



on obtient la vecteur déplacement ( ) : ≡ x

première zone de Brillouin

 polarisation (vecteur unitaire = direction du déplacement)⃗eq′￼

⃗un =
ℏ

2M ∑⃗
q′￼∈PZB

⃗eq′￼

ω(q′￼)
(a†

q′￼e
−i ⃗q′￼ ⃗R 0

n + aq′￼ei ⃗q′￼ ⃗R 0
n)

phase

et comme :

il nous reste : < νq − 1 | ⃗un |νq > =
ℏ

2M
⃗eq

ω(q)
νqei ⃗q ⃗R 0

n

donc : W = −
ℏνq

2Mω(q)
⃗eq . ∑

n

< ⃗k′￼| ⃗∇ U( ⃗r − ⃗R 0
n) | ⃗k > ei ⃗q. ⃗R 0

n
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le déplacement d’un ion n est la superposition de tous les phonons

et finalement pour des ondes planes

on a :



et après une intégration par parties, en tenant compte du fait que  pour U → 0 ⃗r → ∞

soit en introduisant la transformée de Fourier :   Ũ( ⃗q) =
1
Ω ∫ U( ⃗r )ei ⃗q. ⃗rd3r

W = i
ℏνq

2Mω(q)
⃗eq . ( ⃗k − ⃗k′￼)Ũ( ⃗k − ⃗k′￼)∑

n

ei( ⃗q+ ⃗k− ⃗k′￼). ⃗R 0
n

facteur de structure du réseau de Bravais

=1 si  (noeud du réseau réciproque), 0 sinon ⃗q + ⃗k − ⃗k′￼ = ⃗K

et première zone de Brillouin⃗k, ⃗k′￼ ∈

46

et donc on obtient finalement

Ue−ph = i
ℏ

2M ∑
⃗k, ⃗k′￼∈PZB, ⃗K

⃗eq . ( ⃗k − ⃗k′￼)Ũ( ⃗k − ⃗k′￼)
1

ω(q)
c†

k′￼ckaq = ∑
⃗k, ⃗k′￼∈PZB, ⃗K

gqc†
k′￼ckaq

⃗q + ⃗k − ⃗k′￼ = ⃗K



Remarque 1 :  pour les modes 
transverses qui ne donnent donc lieu à un 
couplage e-phonon que pour les processus 

dit umklapp pour lesquels 

⃗eq . ⃗q = 0

⃗K ≠ 0⃗
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et il faut également prendre en compte le processus faisant intervenir  
la création d’un phonon, soit finalement

Ue−ph = i
ℏ

2M ∑
⃗k, ⃗k′￼∈PZB, ⃗K

⃗eq . ( ⃗k − ⃗k′￼)Ũ( ⃗k − ⃗k′￼)
c†

k′￼ck(aq + a†
−q)

ω(q)
⃗q + ⃗k − ⃗k′￼ = ⃗K

Hamiltonien à 1 corps 
(structure électronique)

phonons diffusion e-phonon 
(annihilation )

diffusion e-phonon 
(création)

Hamiltonien de Frohlich
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Remarque 2 : L’interaction électron-phonon est un processus essentiel intervenant 
dans la resistivité (en plus de l’interaction avec les défauts, voir transport). 

Il sera important de calculer la probabilité de transition de l’état  à l’état  
Celle-ci est donnée par la règle d’or de Fermi :

⃗k ⃗k + ⃗q

conservation de l’énergie = diffusion élastique

Pannihilation
⃗k→ ⃗k+ ⃗q

=
2πt
ℏ

g2
q(1 − fk+q)fkνqδ(E( ⃗k + ⃗q) − E( ⃗k) − ℏω( ⃗q))

a T=0  donc  νq = 0 Pannihilation
⃗k→ ⃗k+ ⃗q

= 0

et  est également nul à T=0 car tous les états sont occupés pour 

E<EF et  donc  

Pcreation
⃗k→ ⃗k− ⃗q

E( ⃗k − ⃗q) = E( ⃗k) − ℏω( ⃗q) < E( ⃗k) fk−q = 1

Pcreation
⃗k→ ⃗k− ⃗q

= =
2πt
ℏ

g2
q fk(1 − fk−q)(νq + 1)δ(E( ⃗k − ⃗q) − E( ⃗k) + ℏω( ⃗q))et de même :

et   pour T=0P ⃗k→ ⃗k+ ⃗q = 0



Interactions electron-electron

répulsion Coulombienne directe (sans phonon)

=

(pour des ondes planes)

On a vu que

Uee =
1
2 ∑

k1,k2,q

Vk1k2qc†
σ,k1−qc

†
σ′￼,k2+qcσ′￼,k2

cσ,k1

et

et avec échange d’un phonon (virtuel)

On conserve la forme

Uee =
1
2 ∑

k1,k2,q

Vk1k2qc†
σ,k1−qc

†
σ′￼,k2+qcσ′￼,k2

cσ,k1

pas de phonons

puisque



mais le calcul de l’élément de matrice se fait « en deux temps »

et au premier ordre en perturbation :   < Hel−ph > = 0

1

2

3

4
et au second ordre en perturbation

< H(2)
el−ph−el > = ∑⃗

k1, ⃗k2

(2∑⃗
q

|gq |2 {
1

E(k1) − (E(k1 − q) + ℏω(q))
+

1
E(k2) − (E(k2 + q) + ℏω(−q))

})

1 32 4
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et en utilisant la conservation de l’énergie   E(k1) + E(k2) = E(k1 − q) + E(k2 + q)

 E(k1) − E(k1 − q) = E(k2 + q) − E(k2) = ΔE

H(2)
el−ph−el = ∑⃗

k1, ⃗k2

∑⃗
q

4 |gq |2 ℏω(q)
(ΔE)2 − (ℏω(q))2

c†
k1−qc

†
k2+qck2

ck1

où on a écrit

et pour les supraconducteurs ⃗k2 = − ⃗k1 ∈ SF

et en prenant  on obtientℏω(q) ∼ ℏωD H(2)
el−ph−el ≈ − ∑⃗

k, ⃗q

4 |gq |2

ℏωD
c†

k−qc
†
−k+qc−kck

négatif : l’interaction est ATTRACTIVE

et  ΔE ∼ 0
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|gq |2 = (
Ze2

ϵ0Ωq
)2 ℏ

2Mω(q)

  avec  pour un potentiel en 1/r  

et  pour des modes longitudinaux, 

gq = i
ℏ

2Mω(q)
⃗eq . ⃗qŨ( ⃗q) Ũ = −

Ze2

ϵ0Ωq2

⃗eq . ⃗q = q

soit finalement :
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Vk,q < 0 Hamiltonien BCS voir TD

« fréquence plasma » des ions

Hel−ph−el(q, ω) = ∑
k,q

e2

ϵ0Ωq2
× [−

2(Ze)2/ϵ0ΩM
ω(q)2

]c†
k−qc

†
−k+qc−kck

interaction Coulombienne 
médiée par les phonons

constante diélectrique relative négative  
= « super-écrantage »  
⇒ supraconductivité

répulsion Coulombienne

∼ ∑
k,q

−
e2

ϵ0Ωq2
× [

ωP

ωD
]2c†

k−qc
†
−k+qc−kck = ∑

k,q

Vk,qc†
k−qc

†
−k+qc−kck

Remarque : la valeur de q est ici peu pertinente (même si en fait le couplage varie d’un q à 
l’autre). Il existe une seconde option :  qui consiste à « échanger » les deux 

électrons. Cette situation est particulièrement intéressante s’il existe des grande partie de la SF 
en regard (= nesting). C’est le cas des composés 1D pour lesquels toutes les électrons se 

couplent via un seul phonon  pour former une onde de densité de charge ( )

k2 = k1 − q

q = 2kF ω(q) → 0


