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Chap.1

Fonction d’'onde a N particules



Méecanique classique = espace des phases E(x,p). Une particule classique est
donc totalement définie par x et p.
Mais en la « premiére » quantification repose sur 'attribution aux variables
physiques (x et p) des opérateurs.

Qui vont agir sur une fonction d’onde complexe = un vecteur d’'un espace de Hilbert de
dimension (in)finie = la connaissance de I'état quantique (a to) est complétement
contenue dans cette fonction d’onde (et non plus x et p)

AV (D
2[@(z)] =2 x B(z) | piow)] = W)

Attention la mécanique quantique ne permet PAS de déterminer ®(x, t = 0)

= c’est la »condition initiale » de la mécanigue classique

mais I'évolution temporelle du systeme est fotalement déterminée par I'équation de Schrédinger
H® = iho® /0t

— A | (z) = HAMILTONIEN (énergie totale)




Comme toute autre grandeur x set p sont soumis au principe d'incertitude

Aa,:\/<A2>—<A>2 ACLAbZ‘<[A,B]>‘/2 [ZC,p]:Zh

Si I'espace est fini (Ax # 0) ceci conduit a la (premiére) quantification de 'énergie
et des états propres associés

MAIS I'Hamiltonien de départ était lui « classiguement » continu.

Mais cela devient problématique lorsque I'on a affaire a plusieurs
(un grand nombre de) particules car les interactions entre ces particules sont

elles directement quantifiées : c’est la seconde quantification.

Les fonctions d’ondes elle-méme deviennent alors des opérateurs...

La « position » des différentes particules déterminent directement le potentiel
(d’interaction) et chaque particule se déplace dans le « paysage » crée par
les autres = champ (quantique).

Attention ce n’est pas ici un nouveau postulat de la mécanique guantique
mais juste une difficulté naturelle liee a la résolution d’'un probleme complexe.
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Ici les R sont connus (position des ions) et
pour I'électron on se retrouve a faire la
somme de N problemes a | corps
(en incluant le principe d’exclusion)

h*V?
o Z D *

= masse effective

1 e?
"3 Z 75 — 15
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Interactions électron-électrons
(corrélations) = probleme a N-corps
LIQUIDE de FERMI

la difficulté provient du fait que pour
résoudre les équations de Schrodinger
afin de déterminer les fonctions d’'onde

(« trouver ri») il faut... connaitre ces

fonctions d’ondes (« connaitre rj ») !



Dans notre probleme a N-corps I'Hamiltonien va donc agir sur une fonction d’'ondes
« globale » D(ry, 7y, ....,T;)

Et lindiscernabilité fait que @ (r|,7,,....1y) #F O (r)Py(1ry) ... .. D, (ry)
On ne va donc pas déterminer N fonctions d’ondes pour chacune de N particules mais

N fonctions d’'ondes « globales » décrivant « collectivement » les N particules car les

particules peuvent «s’échanger » (= dégénérescence d’échange)

L'Hamiltonien est invariant par permutation

H(ri,ry, .. 15 ...,F ..rN)=H(rl,rz,..rj,...,rl-,..rN)

ja
|H, Pl-j] = ( et la fonction d’onde est donc également un état propre de
'opérateur permutation Pl-j :
PZ-J-CID(rl, Fps oo Figenes s e ry) = AD(ry, 1y, . . Fiyeovs s e s ry) et Pijz. = Id donc
2?2 = 1,1 = = 1. La fonction d’onde est donc
soit symétrique (1 = + 1), soit antisymétrique (1 = — 1)




Comme toutes les particules élémentaires : leptons (non soumis a l'interaction forte)
= Mmuons, neutrinos, ... les électrons ont un spin demi-entier = FERMIONS
(C’est également le cas des quarks, soumis a toutes les interactions)

Ces particules sont associée al = —1:

fonction d’'onde antisymétrique par permutation

Et les BOSONS = particules de spin entier sont :
soit des bosons de jauges : intermédiaires des interactions fondamentales
(photon = interaction électromagnétique, gluons = interaction forte,
Zo,W = interaction faible et... le boson de Higgs)

soit des bosons composites (atomes He4), des excitons (phonons)....

Ces particules sont associéeald =1

fonction d’onde symétrique par permutation



la fonction électronique doit étre ANTISYMETRIQUE soit en spin, soit en orbital
|CI)(7‘1,I”2,...,7‘3,S1,S2,...,SN) >i —_ Si[|¢ll®¢lz®“'¢lN> ® |S1 ®S2® SN> ]

. T

Produit tensoriel Spin
(A® B)(Jlu>®|v>) = (Alu >) ® (Blv >)

Fonction d’onde a 1 particule

1 1
S, = W Z P.et S_= = Z (—1)"P, ou & est 'ordre de la permutation

N
Par exemple a 2 particules : ¢(r))@,(ry) — ¢(ry)p,(r;) si | spin > symétrique ou
¢(r)h,(ry) + ¢ (r5)h,(1)) si | spin > anti-symétrique et a 3 particules :
$1(r) @y (r)h3(r3) — 1 (r) Py (r3)h3(r2) — 1 (1) Py (r)d3(r3) — @1 (r3)Pa(r)p3(r1) + 1 () Pa(r3)p3(ry) + Py (r3)ha(r)p3(r,)

=0 =1 =1 T=1 T=2 T=2

On ne peut pas mettre deux fermions dans le méme état quantique
(= tous nombres quantiques : n,Im... ET spins identiques).
En effet si ¢, = ¢; alors | > =0

C’est le principe d’exclusion de Pauli
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De facon générale pour N particules la fonction d’onde des fermions peut étre écrite comme

1 2D (ry)
|(DN>=Dll,,,,lN(r19""rN)=— « o e P .« e e
VN (@ (r) .. @y (ry)

{L.}= choix des fonctions d’ondes a une particule
(généralisable si on rajouter le spin /i = espace ou spin)

Déterminant de Slatter

les « choix » possibles pour les ¢b; sont (a priori) infinis (mais tous différents) ...

avec Z PEx)Pp, (x) = 6(x —x') [relation de fermeture]

0
en prenant tous les jeux de {/;} possibles avec N = Z l;
i=1

Rasmanque 2 - desne datrinmimands de SEhira Wm&-[)fww,,mgguwwl\lm&m
/&22 ..... QNIJMWMW&TM&WMW/WWQQWW%MW
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Jusqu’a présent le nombre le nombre de particules était conserve.

Mais pour avoir une description d’'un systeme avec un nombre de particules

variable on peut passer de la représentation des (x, ;) @ un nouveau type de

représentation : “la représentation de nombre d’occupation”
etécrire | @y > = |n,ny,....,0;,...,0 >

ou le rang fait référence a I'état @, correspondant avec n; = 0,1

Remarque : pour des bosons on peut avoir : |1,0,....,0 > = [y @ Py R ... Py >

Et, en 'absence d'interaction si ¢, est I'état propre du fondamental a 1 particule, cette
condensation (de Bose) permet d’obtenir I'état fondamental du systéme a N particules.
Ce n’est si simple en présence d’interactions : voir superfluidité et théorie BCS (TD).

11



Mais si on rajoute une (N+1)e particule avec I'état ¢

| Pyyy > 7 [Py > @ | Pyyg >

et il s’agit d'ajouter une ligne et une colonne au déterminant car le nouvel état devient

« accessible » pour toutes les autres particules du fait de la dégénérescence d’échange

1 G1(r) o di(ry) || D1 (rgy)

\/(N+1)! ONT) oo NN || PN (Tygr)
|¢N+1(”1) oo O (ry) Dy (i)

| Py > =

C’est extremement lourd...

On doit trouver une représentation.... plus « pratique »
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On introduit un nouvel opérateur : 'opérateur création (et annihilation) : CJr (

C;)

qui verifie : (C;r)2 — (Ci)z =0 pour les fermions, c’est le principe d’exclusion

La fonction d’onde peut alors s'écrire ;|| D, >

.
_611C12"”Cln|0>

ou |0 > est I'état du vide avec ¢; |0 > = 0

et les [; sont les « choix » de I'état & 1 particule pour la particule i :

Cette représentation est bien adaptée aux calculs d’'un ensemble (grand

canonique) pour lequel le nombre de particule n’est pas fixé.

Poun canackininan chawm don etabs @, , 0 ,mﬁw&o@@&@u«i’mch;mwwﬂ’
K N .

B nafit & imdigunn qoaallin sonk fon N walhonn distimetin £, £y, By da Rlimdicn £ qud omt WA
MM&W),&»N&%QWMwm@Cme&Q&mMﬁ

ok alonn econpin do mamiine imdircanmall pan b N postiolan . EE £ formalinma do o

. . R - . f- . iy .
Heconda Mmbm comninte o« )u.f\nn.h%k&x L "ihak ¢’QABZ""'0N / MMXWM Jan J"—Aj\or.mk
& P'emnanmlle dan N «?qmmm

.e. on crée une particule / dans le systéme avec I'état ¢,
l

(on ne crée pas la particule i dans I'état qﬁli)



On peut donc écrire :

(6.0)
@, > =|n.ny.....ng > =[] ()10 >

ou les n; valent O ou 1 (pour des fermions)

Pour les fermions : C;CJ.T = — CjJ(C'iJf etdememe C;(; = — Ci(;

En effet < x; |clT |0 > = ¢, (x))
1 1

1
et < Xy, X | c;;clf 10> = —=(¢, (x))p(x2) — Py (x2)py (X)) = — < Xy, X, | leclz |0 >

NG

mais ces deux fonctions d’onde ne different que par leur signe c’est bien entendu le méme état

Dans la suite on « classera » (par convention) le clT de gauche a droite pour les i croissant

i

Yaole e et il

et T + C 5 = ZD/Cn.--- Cz(4—€¢+C4)CZ+._.. C‘,,‘%)
= (Olcn--' C;Cz*-"‘ C/l*> = /O/C};.... [,‘1“6:’ Cz+..... (‘,,.,&/0>
pour conserver Ia norme de CXV AV AV
la fonction d’onde e O N T L R R

n_____._l
I C,L g[—on/PCOmmfﬂ& =y 10/07 i

et (c, fep)? = cchlc;cl = cT(l - ¢ fee, = c — (¢, N2(c)? =

14



.D

+ 2
C{ o oy ey My e S = CED) ,’A - [y m e M A oeemme Mg >
Y
£
CQ ‘m),mz'.......,m{....--.mo°> = (-4) [m:e |mA,m2. ...... ! n-b_.,( ........ m_>

ou v est le nombre d'états occupés (= permutation a faire) pour I' < [

Cet état est nul sin; = 1 pour les fermions (double occupation impossible)

€y Cp Iy mo>=(=4)* ﬁ Cp 1My myt ey >
- (_4)“% [~ (=) 2 AT my g ey >
I Tl Iwioy) B
et donc
c;fcl | nn,, N, > = n;|nn,, Ny, >
et clclTl omy>={0=-n)|..... n;... >, onretrouve bien clclT + c;cl =1

15



Les états |nyn,, ....n, > sont donc des états propres de cTcl avec la valeur propre O ou 1

[

cfcl est 'opérateur « nombre d’occupation »

Remarque : Si on prend un état quelconque |® > = ZA{nz} | {n;} > alors
{n;}
2 2
<®|cfe|@> =Y [A,, 1P < (m}ciel{n) > =) A, *net
{n} {n;}
comme n;vautOou 1:0 < < (I)lc;cllcb > < 1 = « moyenne »

+4
et Zc.c ........ :-.Zm.
2 22 “t‘mz m°°> L 2

Ces états sont donc également état propre de I'opérateur

« nombre de particules » N = Z c;fcl
l
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cas des bosons ;

(e ... (. ...
l
|n1,....nl,....>= |O>

(remarque : les opérateurs sont souvent notés a; et a;)

les opérateurs doivent désormais satisfaire a une regle de commutation afin de
rendre la fonction d’onde symétrique

Pt —
l¢;,¢/1=0

et le carré n’est pas (nécessairement) nul

car le nombre d’occupation peut prendre n’importe quelle valeur (entiére positive ou nulle)

c;fl....nl...>=\/nl+1|....nl+1....>etcl|....nl...>=\/ﬁl| ..... nm—1..>

on atoujours:c;fcll....nl... >=mnl....n....>

etdanscecasclc;fl...nl....>=(1+nl)|....nl....>

soit : clc;f — c;cl =1

17



Chap.2

Seconde quantification



U = oscillateur harmonique ("7’“2), potentiel central, ...
hw \kmx? ho?

hw
H= 2( - _Maﬂ): 2(<§ 652) avec/l——etf \/_x

2
W, = Npe ™ /2H, (V)
Polyndémes d’'Hermite

1 0
| ' (= )W, =10,
Relations de récurrence : \/5(5 8§> n +1
Création ¢ — cic,|¥, >=n|¥Y, >
1 0
et v, = v, _ icib d I
\f(f + 85) N ici bosons donc n quelconque

Annihilation ¢, Principe d'incertitude ([&, 0/0&] = —

1Ch = %(52 — (0/0&)* + [£, 0/0¢]) = %(52 —(0/08)* — 1)

'Hamiltonien peut donc se récrire:  H = ha)(C;Cn + 1/2)

< U,|H|¥,, >=hv(n+1/2)



On va chercher a généraliser cette nouvelle

écriture pour tout opérateur (pertinent)

il faudrait a chague étape vérifier que

+ + + /
o|<C ... GCc c ... c oy = ¢ D 42, ..N)|6G | D (4,2,--N)D
< 'CeN (ie;g e’ e e;fl >=< geﬁ...ac' 1S elel. . 0n

" 1
nouvelle notation ancienne notation

on ne le fera pas...

La « premiére quantification » consistait a introduire des opérateurs a partir des
coordonnées 7 etﬁ de I'espace des phases (classique) et dans cette « seconde » étape
on va donc introduire des opérateurs a partir des fonctions d’'ondes elle méme....

Soit, pour commencer  Pi(7) = Z (p;k(?)c/;f et  YF) = Z ¢,(F)c,
A

(on reviendra sur la signification) 2
Et réciproquement (en projetant sur les états ¢b) on a clT = Jd37qbl(7)‘PT(7)

¢ = Jd#@*(?)?(?’)

20



Soit l'opérateur p(7) = W(F)P(¥)

[p(?)cﬂr = 2 c}cﬁ[cquﬁﬁd% = Z C;c/1 — N on retrouve le NOMBRE de particules
LA
car la base est orthonormée

PT(7)¥(7) est donc I'opérateur densité de particules au point 7 (de spin | s > )
Remarque : /@) - /m, 2, . 772
<pZ O e o S
’5 )
- Z 5’ ?) P l?) <¢5/cﬂ ey 19>

. T/ B, N
(4,00 ¥ ] = B gD ]

Et en introduisant la relation de fermeture % f—PA(?o C?:‘:(?L’) = §(R-%)
[(PF), Y ()], =86F— 1) 04
et [W(F),¥Y(r)], =[¥Y'(F),P(r)],=0



soit |u > = ‘PT(rO)|O >

<ulplu>=<0|Pr) P NPEHY (7)) |0 > =< 0|PF)¥ ()6 — 1) — PT(r)) P(r)) | 0 >

=0
= < 0| YT )P (1) |0 > 6(r — 1)
<ulplu>
et donc = o(r — ry)
<ulu>

la moyenne de la densité de I’état | u > est donc 6(r — 1)
‘PT(;’O) (resp. ¥(7,)) est I'opérateur champ
qui permet de créer (resp. annihiler) une particule en un point 70’

de I'espace (avec un spin | s > ).

22



Expression des opérateurs en seconde quantification

Pour des articules sans interactions, soumises au méme potentiel, ne dépendant que de r

Lexpression classique de ce potentiel est f = Zf(?;) = Jf(?)p(?)d37
]
ou la densité s'écrit classiquement : p(r) = Z S(F—=1;)
i
et en seconde quantification : F' = J‘{‘T(7)f(7)‘P(7)d3_’ = Z cjcﬁjgbf(?)f(?)gbﬂ/(?)f?
Py
(cette expression est bien sur valable si f(7, p))

F: Zﬁ,ﬂlcj’gcﬂl,ﬁ avecC ‘f;{’/{/= < ¢ﬂ|f|¢ﬂ/>

A0

Remarque : si 'opérateur dépend du spin : F = Z J"PZ(?) <o|f(F,p,5)| o > ¥ (F)d°F

0,0’ T

création d’'une particule au point r avec un spin ¢

23



par exemple pour 'Hamiltonien | H = Z HnmC,j,lCn avec H, = [¢§1H¢nd3x

et si les E;j sontles valeurs propres de Hiet
cl.Tsont les opérateurs création sur les états propres de Hi

H = Z El-c;c

etats—occupes

ZEC D> - Z G'; ;7’ lo >
wpprmufﬁ//ans JUSyUJ /{,.j
- Zé (’)cdg S A o>

'-—w
A- G el c o

Loty Aaans
= ,(Z.t: {..1) 14'(;' ik f’/ f!‘ [/‘V"/U>

= )W* Gl o
- ;ff*/o —(2E)|CI>> E|®>avecE= ) E

i ]
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comment prendre en compte les interactions ?
1 = 7 -  — - N
# i]

- %strjdsrfv(z I ZJ: 57 —THo(r —T) - 2 SF=TH5(r = )]

= %Jd3rjd3r’v(7, 7)p(?)[p(7) — 5(7 —7)]

o 3¢ on replace alps OCF) ar (YR
- 4 fd%:’d“ CF 7 [7”( FCIPR)E ) J(F’F’)/’f’(r))'/(?")j

- ijdg‘"od} VIt J)/vw(;)[ﬂf’r')_ %*/FJ/W(f}]w{F/ . (5(//)7/*0) S”/r")}
< 4 [BFEF V@)V VIRV o L[ de ot ¥ )0 v i)

Sea Ly C C+ 4 CA fdj’d (/* ‘)97 (r/)V(r/*ﬂf (,-)%(,,

LT i
En écrivant :
>/ >/
RGP NCOLNIE FICC Pt A O L
A A A 2 2 2
+ ¥ >, + + > S * > c+
P THG G o wh=Tahe



On trouve finalement

1
_ T AT
F = o) Z V11/12/13/14C/14C/13C/12C/11

AsAgsAzady
_ J,3 J.3 / ¥* >y > >/ >/ Z
s = JER R IR R R g
4 3 2 4 &4 3 2 4

Remarque : si 'opérateur V ne dépend pas du spin

I'état de spin est préservé lors des « transfert 1->4 et 2->3

F = l Z |4 cl el e e
o) MAxAzdy 44,6 13,0 Ay,6"" 410

Ay g As,dy
i A A | = 4 + + /e: )\
et sinon cela se généralise en Fag 2 ) %zua S % y = (A )
2421234 432 4 ¥ 3 2 4
* C % / / > >
Py, = SO QAN T > 4,60 4,0
ee 00 A X *2 p
4324
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. . - - -
Cas particulier pour lequel v(7, ') = v(r — r’)

. N — 1 .
dans ce cas il peut étre intéressant d’utiliser la base des ondes planes ¢, = ——e'*"
Q

: ! I — k). 8
— _’__’_,7 emd —>_—>_—> S— ‘7 _ 5= —— —
vk1k2k3k4 —— Jd3ruv( r”)e’(k3 k)r'" _—_ [d3r€l(k1+k2 kys—ky).r ( 3 2) K+t k,

—_ N — . 3 .
avec r'"'=r—r conservation de I'impulsion

_)
Transformée de Fourier q

~ . 2 > / 2 >
Ce processus peut étre vu comme une collision | %+9, % -9, 7
~ >
. . V(q)
au cours de laguelle une impulsion gest | O __ €mm e
>
transférée d’'une particule a I'autre . 1 R
kv’ R, -
— . U . ’
Pour la répulsion Coulombienne v(r — ') = — et V(q) = >
4re 17— 7| €o€2q



o N ] = = h? S
Enrésumé H = Zh(l) +52v( r; — T;) avec h = —%A + V. . (7)

I I#]
H= 2 <>\/|P\|x> c't c +AT

NN Ao Ao Lk i

2\ AAAN AT AV AV ANV
24 L 2 A

3 3 / * > ¥ >/ > >/ >/ >
anec : A = IJ.’LJJ.JL L.F)\(n) (—f}\(n) v (i~ ) L.?)\(n) (.,fx(n.)

)P N NN
4L 3 2 4 4 3 2 .

Il est alors « facile » de diagonaliser h en prenant
les états anti-symeétrisés construits a partir d’'une base complete des
états propres (orthonormés) a 1 particules
(les fonctions de Bloch dans le crystal périodique, en sommant alors sur tous les k de la premiéere ZB

et 'ensemble des bandes)

et le premier terme devient alors : A = Z G/IC;’ACG,X et by = Z ne,
O-,/1 0’/1

mais malheureusement ces états ne permettent PAS de diagonaliser le terme d’interaction...
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Chap.4

Approximation de Hartree Fock



En présence de ces interactions, H n’est donc plus (aisément) diagonalisable
a partir des états propres a 1 particule quelconque et les éléments de matrice

anti-diagonaux n'ont a priori aucune raison d’'étre négligeables

En théorie les nouveaux états propre peuvent toujours s’écrire |¥ > = ZAW | {n;} >
{n}

mais le calcul du coefficient Ay est irréalisable....

L'approximation de Hartree-Fock consiste a supposer qu'il existe une base d’états a une

particule (a déterminer...) pour laquelle les éléments anti-diagonaux sont bien négligeables

donc que les interactions ne modifient PAS les nombres d’'occupation n;, de ces états

Cela consiste a considérer que les états | n; > ne se couplent qu'a eux-méme
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+
donc pour les termes a 1corps A = A’ (le terme & un corps est diagonal) ¢ > | R | 2> C}\ C)‘
v v

et pour les termes a deux corps 4, = A, 43 = 4,

OouU 4, = 4,, /13 = A, (dans ce cas de méme spin)

— cl el el et
et H = Z < /1|h|/1 > C C/lO'+ Z [Vl /12/12/11 Ao /12 Cﬂ O'/C/10'+ v/lz/l Aoy /1260/1160’1260/110-]
A, /11200

_Z</1|h|/1>c Cﬁa+_ Z [Uﬂﬂz Jﬂﬁ] Ao /12 Cﬂza’cxlla
/1/1200

on appalle imbaanalar da Goullmly fon imbiggallo

leur moyenne de I'énergie de repulsion
U = = (| () &3 va : NN
J J |q l | q’ l Coulombienne entre deux distributions

2 A
>/ > >/ >/ >
T = = |dn|d n () ()P (>t
PR m;\>\>\>\ )LJ nCY( )(’F ) q)s )LPX )
A 2 24 24 2 A
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+ =_cc (8 _ _de G 8 &
0, %" % 0 0 e, T e 0% )0, T %, %%, %,
1
H=Y </1|h|,1>ciacﬂ,a+5 Y U, -6, L[] CiaC) = 811,850, C110]
1,0 M,0.0'
nul car l]/uL = J/u
_ T
donc finalement H = 2 <Alh|A> c Cho + Z U2, = 96602, Aldcﬂlgcﬂza,cﬁza,
A, /1/1200
Z</1|h|/1>n/16+_ Z [U/Iﬂz "]/11/12]”/116’/’%26,
MA,0,0'

L'integrale de Coulomb est 'interaction directe entre deux distributions de charges mais le
principe d’exclusion de Pauli interdit a deux particules de méme spin de se rapprocher et
la valeur moyenne de leur répulsion Coulombienne se trouve diminuer d’'une quantité

égale a l'intégrale d’échange
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sionnote A/ = c;cl- - < c;cl- >=A,— <A, > alors
et si les effets de corrélation sont faibles < A/A; >~ <A/> <A;>=0

et on peut alors négliger le quatrieme terme (dont la valeur est nulle) et ne conserver que

+ + + + o+
€ €, S S, S 4 (S, C, > e c cr
g e ™~ ¢ & 2 R, e, e, <% 2 "8 > <% >

Cette approximation dite de champs moyen consiste donc a remplacer les termes a 2 corps
par des termes a un corps (comme pour les particules sans interaction) pour une particule se

déplacant dans un champ effectif moyen crée par les autres particules sans le modifier

C+C +C>+<CC < C c, C
g e, ¢, %, 2, ee—< p><92>

v v

valeur moyenne de l'occupation notee 71,

E=_4 > <u _85 T )K ™
: N ° T (TYFATN AN vv’ A
(= inconnue du probleme) * .

Et donc finalement un nombre et non plus un opérateur
He E 4 2 NRIAS ¢ 2 (u ) =y ¢
° Ao TS N (# M) AN v-'r x>~ Cal xr Av-

(le facteur 1/2 a disparu car les deux premier termes ont la méme contribution)



1

et on peut montrer (... aprés « un peu » de physique statistique) que 71, , = FeT 1 1
Ao +

et cet Hamiltonien a un corps diagonalisé peut se re-écrire

HzE0+z <Alh+V+ Vool A > CJ’GCM

A0
l > méme spin
heff,a
2
2 U m = (g Xy [Py 2 =, |9, (R) = 5NN
)\/v‘l(#)\v) AN NS I CP)\ J )\’T’C#)‘V.) e P | I Cr)\ < I o_ﬂl >

- - - -_— — - 7 7 z
ouv,(r) = [d3r’v(r - 1) Z My | @ (1) |* = potentiel moyen crée par les électrons occupant les états @)

Ao'#io (avec probabilité d’occupation 7i,,)= terme de HARTREE

et < AlVepold >=— Jd3r¢j’<(7) 2 ﬁﬂ,ago/ll(?))[d%’qojf(?)v(? — 7)%(7) est appelé potentiel d’échange
A'#EA = terme de FOCK
opérateur intégral agissant sur ¢,(r")

En écriture « premiére quantification » diagonaliser ce terme revient a chercher les états propres ¢, vérifiant

Z 7,,0,(F) [d3r’(pjf( rw(r — re,(r') = efCh¢/1(r)
A#A

mais on a besoin des ¢, pour cela ! c’est toute la difficulté du probleme...



plus explicitement les ¢, sont donc les états propres de 'ensemble des equations couplees

2
___ACf(n).*.{m (n)+c\r (n)}({’(n)_z H, cf (n)jdn.q) (n.) n.r(n n.)cf(n)—& (.P(n
2m >‘(¢)) Av

sont appelés équations de Hartree-Fock et permettent donc de trouver le spectre €,

Ces équations ne peuvent étre résolues que NUMERIQUEMENT par itérations successives

par exemple : modeéle du Jellium

N électrons dans un volume V

N
la neutralité assuré par une distribution homogeéne d’ions de densité p, . = —

’ N 3 ’
Vions(r) = rpionsv(r -r)=- E d’rv(r—r")

et on prend & l'ordre zéro ¢y o) = exp(idr)
PR 70 ~ 3.71,.,012 / N-1 3. ’
dou V) = Z |l 477 | @] v(r—r)=T d>r'v(r —r')
AMo'£Ao

[ ]

et lim [Vigps+ VO] ~ 1/R = 0

ions
Voo




2
s _ 1 -0 1o — 1
Il reste a résoudre .—% A\ @, +< rlvech(a) | P, > = €6

-2 >7 57
.ol 2 . >
(o) ik.n 3y _4.&.’1—

> @)
2 . ) _ .:'_. Z —"T_l- o 51,,_ e nr(;)g__n_’> C‘F (;—)z_/)
<l u.R.*rlcF’) 2 S>>, > e E

/’l/zk/

équation admet en fait pour solution gog) = gog)) = ——exp(ikr)
\V Q
f&}r/ 8 {E/r\q/ . J,Wf‘?j (£_> e '(Wj ﬁ)(ﬂ -
Yo 3) e A -Ea)r] I35 gt : r-r’)
LD D S
L g s > +<
= e 1T U(P) oue V(@) - [P (@)e 9
Les ondes planes sont donc des solutions exactes (a tous les ordres)
et elles sont également les états propres de 'opérateur « énergie cinétique »

VY ot
Ep @

J a R Dy TV e
e ) ¢cR r
<m B A 1 < =

h’k>
€k — -

Z npV(k" — k) Jou ¥ estla TF du potentiel d'interaction
Kk

2m
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EfE%

A T=0 la sommation se fait sur les états occupés

(et on peut oublier la condition k" # k lorsque N et V tendent vers I'infini)

\

Vi

k/k/F

i (k' — k) = Jd%'v@” — k)

d 27)3
k' #k (2m) 02 2
Et avec un potentiel en 1/r: ¥(g) = ——TF(1/r) =
dre €oVq?
h2k2 62 kp d3k/ h2k2 62
_ = _ = k. F(k/k
T o (27)3¢g L K-k |> 2m 2r% PFEIKe)
: I
sur les états occupés a T=0 (de spin o) ‘
- 1 1-X> 1+X
(un peu de...) calcul intégral donne F(X) = — + Ln]| | avec F(1)=0.5
2 4X 1-X

%2 ek

et £, =
F 2m

2
471' €0

Remarque 1 : : le niveau de Fermi est le méme pour les deux sous-bandes de spin

Donc : Kpup = kpgown = kpavec ki = 37*NIV

me
2ﬂ2€oh2

avec k> = 672NV

— 3
OU kF,up + kF,down - F,up + kF,

down

On peut montrer que la solution de plus basse énergie correspond bien a kg up = kg down :

I'effet fondamental est donc a priori NON MAGNETIQUE



Remarqgue 2 : en sommant (intégrant e(k) sur) les k on peut trouver I’énergie totale

2, >
E 0 = 2 2 k4 -4 2 = (k) (avec un facteur 1/2 pour ne pas compter 2 fois
4 g £k o ? B v I'’échange entre deux électrons de méme spin)

Fe Fo
£
Fo 2.2 2 2
- > [ R e R F ( k ) s R db
T (Q.TT)B S 2 4 rr'l&o Fo B’FV‘

i, no

" _ N{ 31:"3: ~ et B } _ N{ a.ia B 0.946} Rl?)&ma
ot ry = r,lagavec VIN = 4xr)/3 = 3n°/k} et a, est le rayon de Bohr

Etwotale €St minimale pour ro = 2.4 (cohésion des métaux), néanmoins
méme si la valeur numérique est satisfaisante, elle n’est pas
universelle (comprise entre 2 et 6 = limite du traitement champ moyen,
il faudrait prendre de « vraies » fonctions d’'ondes et non pas les ondes

planes car densité non homogéne)
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Remarque 3 : | 'énergie cinétiqgue ne dominerait que pour les tres fortes

concentrations électroniques (ro<<?2), ce qui n'est PAS le cas. Les
corrélations jouent donc un rOle essentiel en physique du solide moderne,
a l'origine des comportements « exotiques » des métaux...
le traitement exact de ces corrélations reste un effet complexe...

Remarque 4: | a nouvelle relation de dispersion (prenant en compte les interactions)
a une caractéristique « pathologique » : 06/6k|€F X Vp = 00

Cette singularité rendrait le développement de Sommerfeld non valide
et Ce/T ne serait pas indépendant de la température (contrairement a I'expérience).

Elle provient de la divergence a g=0 de TF(1/r) l/q2

mais le potentiel d’interaction est en fait écranté
(par la présence des ions et des autres électrons)

1

le potentiel est alors de la forme e " [retsa TF o« ———
2 4 k2
q- + K

- la divergence en g=0 est levée, 2z/k, = longueur d’'onde de Thomas-Fermi : k3 = e*g(ez)/¢,

39



électrons libres

. densite uniforme de charges
S (jellium) : pas de périodicité ’
& (donc pas de bandes)
> e,
P (r) = e
seul le terme d’échange contribue ]
Wellen?/ektor k A

"

' ' ' '
a 0.z 0.4 o.s 0.8

L .

Ueions = ), Uxe™™ | états de Bloch

—_ ikr

potentiel périodique P(r) = (e potentiel périodique
pas de corrélations structure de bandes

corrélations

» ?
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dans le cadre d’un modéle de liaisons fortes
il est plus pertinent de prendre les orbitales atomiques comme base
et on peut montrer que le terme d’échange décroit dans ce cas beaucoup plus rapidement avec r
que 'interaction directe et on peut écrire (par exemple) :

H= tY (c,ciotcl,cio)+UY mnitniy
<i7j>70' T v I

onpassedejai occupation du site i par
! (premier voisins) | 2¢lectrons de spin opposé
intégrale de saut Répulsion Coulombienne directe (Hartree : 4 = A" = i)
(= la structure de bande) Hamiltonien de Hubbard

Une solution numérique a été récemment (2022) été obtenue pour... 3 orbitales :
{a, f}={Cud, Opx et Opy} et i,j sont les noeuds de la maille CuO2

— aff .
H= Z tij Ciaacjﬂﬁ * UZ nidTnidl U
i

ijafic AN

donnant des résultats encourageants pour
la compréhension des supraconducteurs a
haute température critique
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Vous verrez (« états quantiques de la matiére ») que l'interaction électrostatique peut étre
écrite sous la forme d’'un Hamiltonien de spin (avec J = 4¢2/U) : ZJZ-J-E.E; (Heisenberq)
dont la résolution est (généralement) loin d’étre trivial pour J > 0.

Ici on se limitera a remarquer que pour ce faire on peut étre amené a définir des I'opérateurs
de création d’une particule spin up au point / (f}).

Cette quasi-particule « exotique » (qui ne porte pas charge* !) est appelée SPINON

et on peut alors ré-écrire les opérateurs de spin (par exemple) : 25~ =[x fT —fi fl

Etonnement 'opérateur f; peut étre fermionique (on parle de fermions d’Abrikosov)

ou** bosonigue (on parle de bosons de Schwinger).

Et en champ moyen I'opérateur d’'Heisenberg peut se mettre sous la forme :

HMF - Z )(zj f ) + ﬂlj(ﬁTﬁl _ﬁl\fl:T) +cc
<i,j> T T
terme de saut des spinons terme de couplage des spinons

Les excitations (retournement d’'un spin) peuvent alors conduire a I'existence de spinons

qui pourront se « découpler » et se déeplacer indépendamment dans la chaine...

* des excitations de charge sans spin (holon) peuvent également exister.
** en respectant dans les deux cas les regles de commutation des opérateurs moments cinétiques

42



Chap.5

Couplage électron-phonon



On cherche a déterminer I'Hamiltonien décrivant le phénoméne de | g
diffusion d’'un électron avec annihilation (ou la création) d’'un phonon. E’
On note vz le nombre initial de phonon de vecteur d'onde q ;

1

U

e_

4y

Vg «—— norme

_ T P T
ph = Z < k,,l/q— 1|Ve—ions|k’yq> C ,Ck
kK

w
— -
ol on a utilisé la notation a pour 'opérateur annihilation des bosonsetg = k' — k

(& un vecteur du réseau réciproque prés, voir plus loin)

&t Vo ions = D, u(r—R) = Y [u(r—R%) — (R, — ROV (u(r—R)) + ...]

: ! !

position d’équilibre des ions  vecteur déplacement ﬁn (= phonon)

et <% \)_Alu(n_R° |& >=<z’|u(ﬁ_—§f°’)|&)(0%_4|v’>>
i 1 9

en séparant les intégrales sur les e’/ecz‘rons et les phonons =0
Maw(q)
et en se rappelant que a! = —(cf — —) eta, —(5 —) avec 4, = PR & =+/AMg)x
V2 oo % V2 oo %

déplacement
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¢ Polarisation (vecteur unitaire = direction du déplacement)

!

- h gq'
on obtient la vecteur déplacement ( = x) : u — Z

T p0
37 (a'e™4 7R 4 ¢ ' Rn)

e Vo@) ! !

premiere zone de Brillouin phase
le déplacement d’un ion n est la superposition de tous les phonons

+
etcomme: <%-Ala |V, >=0, ¥3 o |v,—4]a |\>> S .. [,
9 3’ ) 9 9 11 )
. . noe o
il nous reste : < v, — 1ii,|v, > =1/ ! \/u_qelqRo
M \/a(q)
hv

donc: W= — 4/ ———— <K |VUG - ROk > 4
ZMw(q)qZ | VUG- RY

et finalement pour des ondes planes

> 3 A(?{_&) >
"L '& :_/'_ P2y vu(r_ >
<% | vu( R )| > _O_S ( )
o
> > > >
> LRCRY R L LRy AT
ona: <& |VU(n_R<°’)|&>=AHe "“J'd.n'e vu(n’)
O
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et aprés une intégration par parties, en tenant compte du fait que U — 0 pour 7 = oo

> > -S> Nice
> ;&_&/ .R<o) , 4 £ _ ,
(ﬁ_—;{/)e.( ) m ju(;)t)e_( : d3n

AN

<E’| vu(?L_R ’y |«Q>—

. . . , . - 1 T
soit en introduisant la transformée de Fourier : U(g) = ) U(r)e'd" d’r

hy
W=iqy|—t,.(k— KOk~ K z' G+k—F).K,
l 2Mw(q) - i )

facteur de structure du reseau de Bravais
=1 s Z] + % — P = f(noeud du réseau réciproque), 0 sinon
et %, P & premiere zone de Brillouin
et donc on obtient finalement

‘/ h Z e .(%—P)ﬁ(z—?) : clj,ckaq= Z gqc]j,ckaq
%? V@(9)

€PZB,K wiq k. k' €PZB,K




et il faut également prendre en compte le processus faisant intervenir

la création d’'un phonon, soit finalement

7 : - — —
h s — Gela,+al)) >
Up =iy = O &, (= k)G — )L g+k—k'=K
o M Vo @)
k,k'ePZB,K

Remarque 1 : ¢,.q = 0 pour les modes

. .
[
transverses qui ne donnent donc lieu a un é_,g /( N
% IR FIR YN

—¥

couplage e-phonon que pour les processus *

dit umklapp pour lesquels K =+ 0 3

Pramiing moma do Brilllowim Prammisne ngoms da Brillowim

H = Z e(k)c};,ack,(, + Z hwqb};bq + Z 9(k, q) [c};qu,achk,a + c;rc_q,abj;ck,g]
q

k,O’ ka‘]ao-
Hamiltonien a 1 corps phonons diffusion e-phonon diffusion e-phonon
(structure électronique) (annihilation ) (création)

Hamiltonien de Frohlich
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Remarque 2 : L'interaction électron-phonon est un processus essentiel intervenant

dans la resistivité (en plus de I'interaction avec les défauts, voir transport).

I sera important de calculer la probabilité de transition de I'état k a I'état k + Q’

Celle-ci est donnée par la régle d’or de Fermi :

annihilation __ 2nt 2 1 5 E% Sy E% _ 7 R
k—k+3 78q( ~ JirgiVO(E(k + g) f ) w(q))

conservation de I'énergie = diffusion élastique

et de méme :  PSeation — — ﬁ = fi ), + DS(Ek — §) — E(k) + har(§))

k—k—q

a T=0 y — 0 donc Panmhllatlon —0
k—k+g

et nge%ﬁi“ est également nul & T=0 car tous les états sont occupés pour
—k—q

E<Eret E(k - §) = E(k) — ho(§) < E(k) donc fj_ g = 1

et P _; = O pour T=0
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2%
|
~a Yy

Interactions electron-electron

-> 7 . . .
% *':1) répulsion Coulombienne directe (sans phonon)
> 2
1 On a vu que
----- oo U 1 V i i
- ee 5 Z klkZCICO',kl—qCO'/,k2+qC6/ak2C0-7kl
& ky.ky.q
2 > > P > > e_'x
et (‘&2-}— ,&—-‘]I > p I&o&z>: .‘_>o
| nn I € .D.c’

(pour des ondes planes)

fﬂm z+;]’ et avec échange d’'un phonon (virtuel)
2
-; ® On conserve la forme
1
S T T
Z Vee = 2 Z Vk1k2qcff>k1—qcff’,kz+qcal’kzc"’k1
z kl’k2’q
> >
|£’>—|%A I‘Qz+‘1lo—>>
puisque > >
is=1% , B o, > L
| MY ; pas de phonons



mais le calcul de I'élément de matrice se fait « en deux temps »

+ + +
@%_)C_; s Q+'®%+C’> ->C->CL->
1 &4——1) &4 1 ~1 ﬁ?_+«1 R, 1

et au premier ordre en perturbation : < H,_ _ph > = 0

care ] lo. 'o_>> o_)lfq._>|o_)>::o
‘1 1 9 1 9 9
2, % L5 % EESILY RN
et au second ordre en perturbation ST R P @
N2l
PYRYE =183 ey
@@ ] 3]
1 1
H®
<H >= 3 2) lg 1 + Iy
el-ph-el kz]:‘ Zq: U E(ky) = (E(k — @) + ho(q))  E(ky) — (E(k, + 9) + ho(=q))
1-72
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et en utilisant la conservation de I'énergie E(k,) + E(k,) = E(k; — q) + E(k, + q)

2
HO =YY 4| g, " naw(g) RN
el —ph—el (AE)2 — (ha)(q))z ki—q ky+q ky~ky

— — -

ki ky d

ouonaécrit E(k)—E(k; —q) = E(k, + q) — E(k,) =

et pour les supraconducteurs E = — E eSF etAE~OQ

418,
et en prenant iw(q) ~ hwy, on obtient Hel_ph_elN ‘ E heon Cp g C—kCk
k,g

!

négatif : I'interaction est ATTRACTIVE

/ h s 0@ U ze” tentiel en 1/
=1 e . avec = — our un potentiel en 1/r
8 2Mw(q) ? 17 €0€2g> P g

eté,.q = q pour des modes longitudinaux,

) Ze? , h
soit finalement : |gq| = ( )
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interaction Coulombienne « fréquence plasma » des ions

médiée par les phonons t
o (0. ©) e’ : 2(Ze)2/€0£2M] b
el—ph—elld> W) = Z —— X|L— Cr— o€ — kg€ —kCk
o €02 w(q)? Kma Tk
répulsion Coulombienne constante diélectrique relative négative

= « super-écrantage »
= supraconductivité

~ ——X[—]ZT f o c= ) Vi e
Z €0€2q* @p ~k+q KTk kZ kG~ k—q —k+q —k"k

q
V1., < 0 Hamiltonien BCS voir TD

Remarque : la valeur de g est ici peu pertinente (méme si en fait le couplage varie d’'un g a

"autre). Il existe une seconde option : k, = k; — g qui consiste a « échanger » les deux
électrons. Cette situation est particulierement intéressante s’il existe des grande partie de la SF
en regard (= nesting). C’est le cas des composés 1D pour lesquels toutes les électrons se

couplent via un seul phonon g = 2k pour former une onde de densité de charge (w(g) — 0)
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