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Cohérence de phase et d’amplitude dans les  
supraconducteurs à haute température critique 

 
 

La transition entre l’état normal (N) et l’état supraconducteur (S) peut se décrire à partir 
du formalisme de Ginzburg – Landau. La différence de densité d’énergie libre entre ces 
deux états s’écrit alors (pour le système « supraconducteur + bobine ») : 
  

 
 
1) Rappelez comment α est relié à la longueur de cohérence ξ.  
On écrit   

€ 

Ψ =Ψ∞ f (! r )eiθ (
! 
r ) où f est une fonction comprise entre 0 et 1, à quelle autre longueur 

€ 

Ψ∞

2est-elle relié ? Exprimez β en fonction de ces deux longueurs. 
 
 
2) Montrez que pour T<Tc 

 
où Hc est le champ critique thermodynamique [dont on précisera l’expression et la 
signification physique] et Φ0 le quantum de flux. 
 
 
3) On s’intéresse tout d’abord à la structure d’un vortex et, en coordonnée cylindrique (r,ϕ,z), 
on suppose que f ne dépend que de r, θ = ϕ, et   

€ 

! 
A = A(r)! u ϕ . Montrez que la 1ere équation de 

Ginzburg - Landau peut alors s’écrire1 : 

€ 

f = f 3 − ξ2( f ' '+ f '
r
) +

ξ2

r2
(1− Φ

Φ0
)2 f     où le flux Φ = 2πA(r).r  

 
4) Pour r tendant vers 0 (centre du vortex), on peut négliger Φ. On suppose que f (r) ~ rγ, 
montrez que γ=1 est alors une solution acceptable pour l’équation Q3. 
 
5) En multipliant la 1ere équation de Ginzburg - Landau  par ψ*, montrez que 

  

€ 

(αΨ 2
+ βΨ 4

+
1
2m

(!
" 
∇ 
i
− q
" 
A )Ψ

2

∫∫ )dS = 0, en déduire que 

€ 

Φ0Hc1 = 2πµ0Hc
2 (b2 +

1
2∫ (1− f 4 )rdr  avec 

€ 

b = B / 2µ0Hc  

On peut alors montrer (après plusieurs intégrations par parties et en introduisant   

€ 

! 
B = r! o t

! 
A ) que 
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Hc1 =
2πµ0Hc

2

Φ0
r(1− f 2)

0

∞

∫ dr  [on ne cherchera pas à démontrer ce résultat] 
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Dans le cas de supraconducteurs « exotiques » tels que les supraconducteurs à haute 
température critique, on peut supposer que les variations spatiales de l’amplitude et de 
la phase du paramètre d’ordre ne sont pas déterminées par une seule longueur ξ mais 
deux : notée 

€ 

ξ (pour l’amplitude) et 

€ 

ξ⊥ pour la phase. On pose 

€ 

s = ξ⊥/ξ  
 

6) L’équation déterminée en Q3 devient alors : 

€ 

f = f 3 − ξ2( f ' '+ f '
r
) +

ξ⊥
2

r2
(1− Φ

Φ0
)2 f .  

Quelle en est la conséquence sur la valeur de γ. On suppose que f(r)=1 pour r > 2ξ (justifiez 
cette supposition). Tracez schématique l’évolution de f en fonction de r/

€ 

ξ puis r/

€ 

ξ⊥ pour s = 1 
et s = 0.1. Reportez également sur ce graphe la distribution du champ B associée au vortex.  
 Montrez (à partir de l’équation donnée en Q5) que Hc1(s << 1) ~ s * Hc1(s = 1). 
 
 
7) Au voisinage de Hc2, on peut prendre, en coordonnées cartésiennes (pour un champ 
parallèle à Oz), f=f(x), θ=k.y et Ay=µ0H.x (Ax= Az= 0). Que devient la 1ere équation de 
Ginzburg - Landau dans ce cas pour s=1. Par analogie aux questions Q3 et Q5 que devient 
cette expression pour 

€ 

s ≠1. En déduire (par analogie à l’équation de Schrödinger de 
l’oscillateur harmonique) la valeur de Hc2.  
 
 
[Subsidiaire - 7’) Au voisinage de Hc2, on pourrait également conserver la forme de Ψ choisie 
en Q3 et prendre B = µ0Hc2, en déduire une expression du flux Φ et montrez que la formule 
obtenue en Q3 devient alors : 
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⎦ 
⎥ f = 0  où les dérivée première (f’) et seconde (f’’) 

de f sont désormais calculées par rapport à ρ=r/L avec L2=d2/2s et d2=Φ0/πµ0Hc2. On peut 
par ailleurs montrer que 

€ 

f = ρ se−ρ
2 / 4 , en déduire la valeur de Hc2.] 

 
 
8) Tracez (sur le même graphe) schématique la dépendance en H de l’aimantation M pour s = 
1 et s = 0.1.  
 
 
9) Dans un supraconducteur, on peut définir un gap (Δ). A quoi ce gap fait-il référence et 
comment est-il relié à (a) Tc , (b) ξ dans le cadre de la théorie BCS.  
 

Dans les supraconducteurs à haute température critique il existe un (pseudo-)gap Δ >> 
kBTc et on dispose alors de 2 échelles d’énergie dissociées qu’il est tentant d’associer à 

€ 

ξ et 

€ 

ξ⊥. La température critique (mesurée expérimentalement) correspond alors à la 
perte de la cohérence de phase [le champ critique thermodynamique est donc 
proportionnelle à

€ 

1/λξ⊥ =1/λ0ξ  où λ0 est la longueur de pénétration pour s =1].  
 
10) On peut montrer expérimentalement que s ~ Tc

α, ξ ~ Tc
β et λ ~ Tc

δ avec α = 1, β = -1 et δ 
= -1. En déduite les lois d’échelle (dépendance en Tc) pour κ = λ/ξ ; Hc1, Hc2, µ0Hc

2/2. Quelle 
seraient ces lois pour un supraconducteur BCS (justifiez pourquoi on peut prendre dans ce cas 
δ ~ 0). 


