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Figure 1: Représentation de la structure cristallographique de MgB2.

0.3 Température critique

Comme nous l’avons mentionné dans l’introduction, MgB2 a d’abord attiré l’attention
par sa température critique relativement élevée, d’environ 39K pour un composé de
cette composition chimique. Afin de tenter de répondre à la question de la nature
du mécanisme responsable de l’appareillement, des mesures d’effets isotopiques ont
été réalisées (ref Bud’ko PRL 86 (2001) 1877). La théorie BCS qui s’applique aux
supraconducteurs conventionnels (voir chapitre I) prévoit :

Tcα
1

Mα
(1)

où M est la masse de l’élément et α, le coefficient isotope, doit être égale à 0.5 si on sup-
pose le coefficient de couplage constant. Les mesures effectuées sur MgB2 en utilisant
les isotopes du bore 11B et 10B ont mis en évidence un décalage de la température
critique de près de 1K. Cette valeur correspond à un exposant α = 0.26 ± 0.03 (en
considérant M = MB). Cet exposant, bien que différent du 0.5 attendu théoriquement
concorde avec un mécanisme de couplage électron - phonon de type BCS. On verra
plus loin les causes de la différence. MgB2 appartient donc bien à la famille des supra-
conducteurs conventionnels. Mais la question de savoir comment ce composé peut avoir
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A. Sur la bande π, représentée en vert et bleu, l’énergie du gap varie de 1.2 à 3.7 meV.
La densité d’états à l’énergie de Fermi est de 0.12 états par (eV.atome.spin). 44% de
celle-ci provient de la bande σ et les 56% restants de la bande π.

symmetry (that is, the gap is of the same sign and non-zero
everywhere on the Fermi surface), but the size of the gap changes
greatly on the different sections of the Fermi surface. Themagnitude
of the energy gap at 4 K ranges from 6.4 to 7.2meVon the j sheets,
and from 1.2 to 3.7meV on the p sheets (Fig. 2a, b). The average
values of the gap are 6.8meV for the j sheets and 1.8meV for the p
sheets. In experimental measurements, there has been a debate on
the number of gaps3–9,21–26. Our result is consistent with the recent
experiments reporting two gaps, ranging from 1.5 to 3.5meV for the
small gap and 5.5 to 8meV for the large gap3–9,26.

The variation of the superconducting energy gap on the Fermi
surface can be measured by techniques such as high-resolution
angle-resolved photoelectron spectroscopy. Moreover, as the
j-bonding states are confined to the boron planes, the strong
pairing gap of around 6.8meV is associated with these planes
(Fig. 2c). In Fig. 2c, we introduce the concept of a local gap
distribution r(r,D) at position r given by rðr;DÞ ¼P

kjwkðrÞj2dðD2DkÞ; where wk(r) is the electron wavefunction
with crystal momentum k. Our result shows that the small gaps
should be seen preferentially in tunnelling experiments along the c
axis, as indicated in some recent measurements6,7.

Figure 3a depicts the calculated superconducting energy gaps at
various temperatures below the transition temperature. The energy
gap of the j-bonding states and that of the p-bonding states show
different temperature dependences. Compared to the small energy
gap of the p-bonding states, the large energy gap of the j-bonding
states changes more slowly at low temperature, but more rapidly
near the transition temperature. Both the p and j gaps vanish at the
same transition temperature, although their values are greatly
different at low temperatures27. This temperature dependence of
the superconducting energy gaps explains recent tunnelling, optical
and specific-heat measurements3–9.

The superconducting energy gap determines the quasiparticle
density of states. The quasiparticle energy is the excitation energy of
a system when an electron is added or removed. In a superconduc-
tor, the quasiparticle energy is equal to, or greater than, the super-
conducting energy gap D. Because the energy gap differs
considerably for the j- and p-bonding states in MgB2, the density
of quasiparticle excitations as a function of energy shows two
thresholds (Fig. 3b). Only p-bonding quasiparticle states are
allowed for energies between the minimal superconducting energy
gap of the p-bonding states and that of the j-bonding states. For
energies above the minimal superconducting energy gap of the
j-bonding states, quasiparticle excitation becomes possible for both
the j- and p-bonding states. The quasiparticle density of states can
be deduced experimentally from tunnelling experiments and var-

Figure 2 The superconducting energy gap of MgB2. a, b, The superconducting energy
gap on the Fermi surface at 4 K given using a colour scale (a), and the distribution of gap
values at 4 K (b). The Fermi surface of MgB2 consists of four distinctive sheets. Two j
sheets (‘cylinders’), derived from the j-bonding px,y orbitals of boron, are shown split into

eight pieces around the four vertical G–G lines. Two p sheets (‘webbed tunnels’), derived

from the p-bonding pz orbitals of boron, are shown around K–M and H–L lines (upper and

lower K–M lines are equivalent). The superconducting energy gap is ,7.2 meV on the

narrower j cylindrical sheet, shown in red, with variations of less than 0.1 meV. On the

wider j cylindrical sheet, shown in orange, the energy gap ranges from 6.4 to 6.8meV,

having a maximum near G and a minimum near A. On the p sheets, shown in green and

blue, the energy gap ranges from 1.2 to 3.7meV. The density of states at the Fermi

energy is 0.12 states per (eV atom spin), 44% of which comes from the j sheets and the

other 56% comes from the p sheets. c, Local distribution of the superconducting energy
gap on a boron plane and on planes at 0.05, 0.10 and 0.18 nm above a boron plane,

respectively.

Figure 3 Calculated temperature dependence of the superconducting gaps and the
quasiparticle density of states. a, Temperature dependence of the superconducting gaps.
Vertical solid curves represent the distribution of the superconducting gap values at

various temperatures from 4 K to 38 K. Dashed curves are of the form DðT Þ ¼ Dð0Þ$
ð12 ðT=T cÞp Þ1=2 fitted separately to the calculated average energy gap of the j-bonding
states and that of the p-bonding states. For the j sheets, D(0) ¼ 6.8meV

ð2Dð0Þ=k BT c ¼ 4:0Þ (k B ¼ Boltzmann’s constant) and p ¼ 2.9. For the p sheets,

D(0) ¼ 1.8 meV ð2Dð0Þ=k BT c ¼ 1:06Þ and p ¼ 1.8. b, The quasiparticle density of
states at various temperatures. The quasiparticle density of states N(q) for the

quasiparticle energy q is given by NðqÞ=Nð0Þ ¼ Rekðqþ iGÞ=ððqþ iGÞ2 2
Dðk;qÞ2Þ1=2l; where N(0) is the electron density of states at the Fermi level,
i ¼ (21)1/2, and k· · ·l indicates an average over a surface of constant q. This curve is
obtained from the calculated gap function D(k, q) and an assumed finite lifetime G of

0.1meV.

Figure 4 The specific heat of MgB2. The measured and calculated electronic contribution
to the specific heat divided by temperature are plotted as a function of temperature. The

red solid curve represents the result of our calculation. The specific heat difference

(C S 2 C N) between the superconducting and normal states is obtained by C S 2 CN ¼
2T ðd2=dT 2ÞðF S 2 F NÞ from the corresponding free energy difference (F S 2 F N) which

is calculated using a generalized Bardeen–Stephen formula28. The normal-state specific

heat is calculated to be C N ¼ Y nT with Y n ¼ 2:62mJmol21 K22 (ref. 16). Symbols are

the results of experimental measurements3–5, and the dashed curve is the standard one-

gap BCS prediction corresponding to a transition temperature of 39.4 K.
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Figure 6: Gap supraconducteur dans MgB2. (a) Surface de Fermi de MgB2 à 4K.
Elle est constituée de 4 bandes distinctes (voir texte). (b) Distribution des énergies
associées aux différents gaps supraconducteur à 4K : en rouge, le gap de la bande σ la
plus étroite; en orange, celui de la bande σ la plus large; en vert et bleu, celui de la
bande π. (c) Distribution locale de l’énergie du gap dans un plan de bore et à 0.05,
0.10 et 0.18nm au dessus de ce plan.

La distribution locale des gaps sur les plans de bore et au dessus (c) de la figure 6
indique que le grand est confiné dans les plans de bore. Le petit gap est, lui, visible en
dehors de ces plans.

De plus, le petit gap (dont l’énergie est d’environ 2 meV) sera détectable suivant
l’axe c, contrairement au grand gap. Plus généralement, la structure de Fermi met en
évidence le fait que les deux bandes π et σ n’ont pas la même symétrie (3D pour π,
2D pour σ). Cette différence de symétrie va intervenir de manière défavorable dans le
couplage des bandes. Elle va également intervenir dans le paramètre d’anisotropie du
composé. En effet, la bande π qui a une forme de réseau tubulaire, est tridimensionnelle.
Ses vitesses de Fermi quadratiques moyennes (qui reflètent la courbure de la surface de
Fermi) calculées suivant les directions principales de cette bande ont des valeurs voisines
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Figure 4 The specific heat of MgB2. The measured and calculated electronic contribution
to the specific heat divided by temperature are plotted as a function of temperature. The

red solid curve represents the result of our calculation. The specific heat difference

(C S 2 C N) between the superconducting and normal states is obtained by C S 2 CN ¼
2T ðd2=dT 2ÞðF S 2 F NÞ from the corresponding free energy difference (F S 2 F N) which

is calculated using a generalized Bardeen–Stephen formula28. The normal-state specific

heat is calculated to be C N ¼ Y nT with Y n ¼ 2:62mJmol21 K22 (ref. 16). Symbols are
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gap BCS prediction corresponding to a transition temperature of 39.4 K.
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Rotation of the FFL

field for the isolated ! band, deduced from specific heat
measurements [19]. The value for n0 is equivalent to
having 0:03 supercarriers per boron atom using an esti-
mated mean carrier mass enhancement from both bands,
m! " 0:5 [20]. Extrapolating the fit to zero field allows a
determination of the penetration depth, "ab " 82#2$ nm,
irrespective of the values of #ab and m! corresponding to
the ! and $ bands fully contributing to ns at zero field. At
the same time, extrapolating the linear part of Eq. (1)
[dashed line in Fig. 2(b)] to zero yields a second value of
"ab " 104#10$ nm corresponding to the high field limit
where only the $ band contributes to the superconductiv-
ity. It is interesting to compare these values to other bulk
measurements of "ab obtained by muon spin rotation.
Panagopoulos et al. reported "ab " 85 nm at 0:45 T
[21], whereas a higher value of "ab " 95–100 nm mea-
sured at 0:7 T was found by Niedermayer et al. [22]. Both
these values are consistent with our results. It is important
to keep in mind that our analysis ignores a possible field
dependence of the coherence length. Eskildsen et al. [6]
have proposed the existence of different coherence
lengths for the ! and $ bands, which would lead to an
effective # which changes as the ! band is suppressed by
the applied field. However, from Eq. (1) it is evident that
the zero-field extrapolations used to determine the
high and low field values of " are not affected by this.

Furthermore, the high field gradient of the form factor
corresponds to the ! band being fully suppressed, and the
estimate of # should therefore be taken as the coherence
length for the $ band.

It is now appropriate to revisit the FLL reorientation. It
is well known that the shape of the Fermi surface is
imprinted on the superconducting screening currents cir-
culating around the vortices, and can affect the FLL
symmetry and orientation with respect to the underlying
crystal lattice [23,24]. In the case of MgB2 we speculate
that the anisotropy of the ! and $ bands favor different
FLL orientations. At low fields we expect the vortex-
vortex interaction to be dominated by the screening cur-
rents in the ! band. Then, as the field is increased and
superconductivity in the ! band is suppressed, the FLL
gradually rotates to the orientation favored by the $ band.
A confirmation of this proposition requires a careful
evaluation of the free energy for the different FLL con-
figurations based on the appropriate Fermi velocity aver-
ages, and have so far not been carried out.

Since MgB2 is a uniaxial superconductor, rotating the
applied field away from the c axis results in a distortion of
the FLL principally due to the penetration depth anisot-
ropy, %". Figure 1(f) shows the diffraction pattern with a
field of 0:5 T applied at 45% to the c axis. In this case the
Bragg peaks lie on an ellipse rather than a circle as is
the case for H k c [Figs. 1(a)–1(e)], since the screening
currents circulating around a vortex must cross the basal
plane. If "c is larger than "ab (%" > 1), this leads to a
stretching of the current loop in the direction of the
sample rotation. For a single band superconductor the
ratio of the major to minor axes of the ellipse connecting
the Bragg peaks, ", is directly related to the penetration
depth anisotropy %" by the relation [25]

%2
" " "2

!

sin2 
1& "2cos2 

"

; (3)

where  is the angle between the applied field and the c
axis (45%).With the isotropic ! band suppressed as shown
in Fig. 2(b), the anisotropy of the $ band is expected to
become increasingly important as the field is raised. The
extent of the validity of Eq. (3) for a two-band super-
conductor such as MgB2 is therefore not established.
Nevertheless, we use Eq. (3) and the measured values of
" to calculate the corresponding FLL anisotropy, %, in
order to allow a direct comparison to the theoretical
predictions for %" and %H. The FLL anisotropy, %, is
plotted in Fig. 3 as a function of both field and tempera-
ture. As expected we find a strong field dependence of %
as shown in Fig. 3(a). At low fields this tends towards the
calculated low temperature value of %" " 1:1 [8,10].
Since the calculations do not take the field induced sup-
pression of the ! band into account, this value should be
taken at the zero-field limit of the anisotropy. As the
applied field is raised % increases rapidly, and we expect

 0

10

20

30

40

50

60
F

LL
 S

pl
it 

A
ng

le
, α

 , 
(d

eg
re

es
) (a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2

3

4

5

6

Fo
rm

 F
ac

to
r, 

F,
 (

m
T

)

Applied Field (T)

π band
contribution

(b)

a axis

FIG. 2. (a) FLL domain splitting, &, versus field at 2 K. The
solid line is a guide to the eye. The insets show the real space
orientation of the FLL at high and low fields. (b) Form factor,
F, on a logarithmic scale. The full line is a fit to data as
described in the text. The deviation from exponential behavior
(dashed line) at low fields is due to the presence of additional
supercarriers in the ! band, indicated by the shaded area.
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field for the isolated ! band, deduced from specific heat
measurements [19]. The value for n0 is equivalent to
having 0:03 supercarriers per boron atom using an esti-
mated mean carrier mass enhancement from both bands,
m! " 0:5 [20]. Extrapolating the fit to zero field allows a
determination of the penetration depth, "ab " 82#2$ nm,
irrespective of the values of #ab and m! corresponding to
the ! and $ bands fully contributing to ns at zero field. At
the same time, extrapolating the linear part of Eq. (1)
[dashed line in Fig. 2(b)] to zero yields a second value of
"ab " 104#10$ nm corresponding to the high field limit
where only the $ band contributes to the superconductiv-
ity. It is interesting to compare these values to other bulk
measurements of "ab obtained by muon spin rotation.
Panagopoulos et al. reported "ab " 85 nm at 0:45 T
[21], whereas a higher value of "ab " 95–100 nm mea-
sured at 0:7 T was found by Niedermayer et al. [22]. Both
these values are consistent with our results. It is important
to keep in mind that our analysis ignores a possible field
dependence of the coherence length. Eskildsen et al. [6]
have proposed the existence of different coherence
lengths for the ! and $ bands, which would lead to an
effective # which changes as the ! band is suppressed by
the applied field. However, from Eq. (1) it is evident that
the zero-field extrapolations used to determine the
high and low field values of " are not affected by this.

Furthermore, the high field gradient of the form factor
corresponds to the ! band being fully suppressed, and the
estimate of # should therefore be taken as the coherence
length for the $ band.

It is now appropriate to revisit the FLL reorientation. It
is well known that the shape of the Fermi surface is
imprinted on the superconducting screening currents cir-
culating around the vortices, and can affect the FLL
symmetry and orientation with respect to the underlying
crystal lattice [23,24]. In the case of MgB2 we speculate
that the anisotropy of the ! and $ bands favor different
FLL orientations. At low fields we expect the vortex-
vortex interaction to be dominated by the screening cur-
rents in the ! band. Then, as the field is increased and
superconductivity in the ! band is suppressed, the FLL
gradually rotates to the orientation favored by the $ band.
A confirmation of this proposition requires a careful
evaluation of the free energy for the different FLL con-
figurations based on the appropriate Fermi velocity aver-
ages, and have so far not been carried out.

Since MgB2 is a uniaxial superconductor, rotating the
applied field away from the c axis results in a distortion of
the FLL principally due to the penetration depth anisot-
ropy, %". Figure 1(f) shows the diffraction pattern with a
field of 0:5 T applied at 45% to the c axis. In this case the
Bragg peaks lie on an ellipse rather than a circle as is
the case for H k c [Figs. 1(a)–1(e)], since the screening
currents circulating around a vortex must cross the basal
plane. If "c is larger than "ab (%" > 1), this leads to a
stretching of the current loop in the direction of the
sample rotation. For a single band superconductor the
ratio of the major to minor axes of the ellipse connecting
the Bragg peaks, ", is directly related to the penetration
depth anisotropy %" by the relation [25]
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where  is the angle between the applied field and the c
axis (45%).With the isotropic ! band suppressed as shown
in Fig. 2(b), the anisotropy of the $ band is expected to
become increasingly important as the field is raised. The
extent of the validity of Eq. (3) for a two-band super-
conductor such as MgB2 is therefore not established.
Nevertheless, we use Eq. (3) and the measured values of
" to calculate the corresponding FLL anisotropy, %, in
order to allow a direct comparison to the theoretical
predictions for %" and %H. The FLL anisotropy, %, is
plotted in Fig. 3 as a function of both field and tempera-
ture. As expected we find a strong field dependence of %
as shown in Fig. 3(a). At low fields this tends towards the
calculated low temperature value of %" " 1:1 [8,10].
Since the calculations do not take the field induced sup-
pression of the ! band into account, this value should be
taken at the zero-field limit of the anisotropy. As the
applied field is raised % increases rapidly, and we expect
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FIG. 2. (a) FLL domain splitting, &, versus field at 2 K. The
solid line is a guide to the eye. The insets show the real space
orientation of the FLL at high and low fields. (b) Form factor,
F, on a logarithmic scale. The full line is a fit to data as
described in the text. The deviation from exponential behavior
(dashed line) at low fields is due to the presence of additional
supercarriers in the ! band, indicated by the shaded area.
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:

F #
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3
p
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1
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&$2"%2p
3
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!0
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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FIG. 8: Typical example of a point contact spectrum obtained
for x = 0, 0.1 and 0.2 (solid lines) and corresponding BTK
fits for two-gap superconductors (open circles, see text for
details). The closed triangles correspond to a BTK fit in a
one-gap model. The curves have been arbitrarely shifted for
clarity

served at low T due to the presence of the small gap
which is compensated by a reduced Cp above t ∼ 0.4.
Following [26], those curves have been fitted to the two
band theory in order to obtain the gap values (solid lines).
The total specific heat is here considered to be the sum
of the contribution of each band with a relative weight
ωσ and ωπ = 1 − ωσ, respectively. The experimental
curves have thus been adjusted to the model with three
parameters ∆σ, ∆π and ωσ. As previously pointed out
in polycrystals by Putti et al. [13] we did not observe
any significant change of ωσ for x = 0 and x = 0.1. The
partial contribution of each band remains close to 0.5 for
both samples in good agreement with calculations by Liu
et al. [27] in pristine samples.

As the gap values are getting very close for x ! 0.2 the
uncertainty on ωσ is getting large in this case (Tc = 19.5
K sample) and a standard BCS dependence (which would
correspond to the presence of only one merged gap) can
not be completely excluded even though the ”best fit”
leads to ∆σ ∼ 3.3 meV and ∆π ∼ 2.3 meV (with ωσ ∼
0.4).

Point contact spectroscopy (PCS) measurements have
been performed in samples of a similar batch with T ′

cs of
37 K, 31 K and 21 K deduced from PCS measurements
(closing of the gaps). A standard lock-in technique has
been used to measure the differential resistance as a func-
tion of the voltage applied on the contacts. As a direct
transfer of carriers with energy eV < ∆ is forbidden, An-
dreev reflection of a hole back into the normal metal wires
(associated with the formation of a Cooper pair in the su-
perconductor) leads to a two times higher conductance.
However due to the incomplete transmission of the con-
tact, a dip is observed in the conductance spectra which
can then be fitted using the Blonder, Tinkham and Klap-
wijk theory (BTK) [28] using the gap values, partial con-
tributions of each band, transparency and quasi-particle
broadening as parameters.

Fig. 8 displays typical examples of the normalized con-
ductance versus voltage spectra for all three Al concen-
trations. At x = 0 and 0.1 the spectra clearly reveal the
two gap structure in the form of symmetrically placed
peaks (humps at the voltage position of ∆σ for x = 0.1).
For the highest Al concentration only a single pair of
peaks is seen but the spectrum cannot be fitted by the
single gap BTK conductance (closed triangles). On the
contrary, all spectra can be well fitted by the two gap
BTK model (open circles) yielding the large and small
gaps as indicated in Table 1. The close position of the
two gaps prevents better resolution of the large gap in
the point contact spectrum, even with a relatively high
contribution of the σ-band which was about 20 % in the
presented case. We also remark that the single gap fit
necessarily leads to a small gap value with the coupling
ratio 2∆/kTc much smaller than the canonical BCS value
giving yet another evidence that two gaps are still re-
tained at this Al concentration. The corresponding gaps
are in good agreement with our specific heat measure-
ments. All values have been reported on Fig.9, squares
correspond to the specific heat data whereas circles were
obtained from PCS. We have also reported the gap val-
ues previously obtained by Putti et al. [13] from specific
heat measurements in polycrystals and Gonnelli et al.

[15] from spectroscopic measurements in single crystals.

As shown in Fig.9, ∆σ decreases almost linearly with
the critical temperature whereas ∆π remains approxima-
tively constant. We did not observe the rapid drop of
∆π above x ∼ 0.1 reported by Gonnelli et al. [15]. Our
large gap values are also larger than those obtained by
Putti et al. [13] and the corresponding 2∆σ/kTc ratio
remains larger than the BCS 3.52 value for all samples.
Indeed, as shown in the inset of Fig.9, this ratio slightly
decreases with increasing doping whereas 2∆π/kTc in-
creases from ∼ 1.5 in undoped samples towards ∼ 2.5
for x > 0.2 (in Cp measurements). Such an increase can
be attributed to an increase of interband scattering with
Al content. Indeed, electronic doping alone would lead
to almost x−independent 2∆/kTc ratios (see solid line
in the inset of Fig.9) whereas interband scattering leads
to a progressive merging of the gaps. As an exemple

coll. P.Samuely et al. SAS, Kosice

small gap ~ constant
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