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,

et ⌧c = Céch/kc. Ces deux nouvelles expressions de TH ac et TH ac peuvent se réexprimer comme
les anciennes expressions du modèle chip double vide avec une fuite thermique externe et
capacité calorifique e↵ectives keff et Ceff qui dépendent de la fréquence :

keff (!) = ke + kc (1� �(!))

et
Ceff (!) = Cadd + �(!)Céch.

Ainsi, on remarque que le problème de collage thermique de l’échantillon sur le chip se rajoute
au problème de fuite thermique interne associé à ki.
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Figure 4.17 – Modèle thermique pour le chip double résistif avec échantillon.
Ce modèle ressemble beaucoup au modèle à la figure 4.15 a). Quand on colle l’échantillon
sur le chip dans le but de le mesurer, un contact thermique de collage kc non infini ap-
parâıt entre l’échantillon et le substrat du chip avec un temps caractéristique ⌧c = Céch/kc.
Expérimentalement, il faut donc choisir la taille de l’échantillon et le type de colle pour avoir
le meilleur couplage thermique possible (avoir ⌧c ⌧ ⌧).

Lorsque l’on réalise un test en fréquence sur TT ac pour un tel système thermique avec un
échantillon collé, contrairement au modèle du chip double vide, une dépendance di↵érente de
celle du ”modèle standard” thermique est observée. Un test en fréquence à 50K sur le chip
Shaun-1050 avec un échantillon de cuivre d’un milligramme est montré à la figure 4.18. Les
courbes en bleu représentent la dépendance en fréquence dans le cas du ”modèle standard”.
Autour d’1 Hz, la phase retourne à zéro. En passant par un maximum, elle redescend ensuite
vers �90�. En dessous d’1 Hz, autant le module |TT ac| que la phase �T sont en accord avec
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Unfortunately life is a little bit more 
complicated (internal couplings)

but  in the good conditions…

Tac =
Pac

Keff + jCeffω

Ceff → C

2Geneva 2024                              PRINCIPLE & METHODS

applying an alternative heating power  (at ) 

to a sample of heat capacity C 

linked to the thermal bath through K

and recording corresponding temperature oscillations  
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le meilleur couplage thermique possible (avoir ⌧c ⌧ ⌧).
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Thermometer Heater
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K/4 K/4

K/4K/4

IacIdc

HEATER : resistance RH (or optical fiber,…)

THERMOMETER : RT (or thermocouple,…)

very demanding calibrations 
for R(T,H) 

and this technique then requires

Vdc = RT(T, H) Idc → T

Vac =
dRT

dT
(T, H) TacIdc → C

AND dR/dT  



• Small samples  
          a few milligrams down to ~ 10 micrograms (or less)

• Continuous H and/or T sweeps  
         in extreme conditions : 36T-0.1K (even under pressure)

• Good absolute accuracy (> 95%)  
         as deduced from measurements in ultra pure Cu (1mg)
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• excellent resolution (down to a few 10-5 of the total signal)  
          Lock-in detection, filters  ➜ ΔC ~ 10-13 J/K 



⇒ detection of small  features in C/T

as for instance quantum oscillations 

in semimetals (Graphite)
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quantum limit (1D)
Marcenat et al. PRL 2021



are most clearly resolved. In Fig. S3(b), we show the magnetic positions of the double peaks82

B1 B2 of 1+e level as a function of angle ✓. Dashed lines are the fitting using 1/cos(✓). The83

consistency between fitting and data points suggests that double-peaks follows the quasi-2D84

rule in magnetic field. The center of double-peaks (B1 + B2)/2 also follows the quasi-2D85

rule, as shown in Fig. S3(c).86

C. Reproducibility between up and down magnetic field sweeps87

Figure S4. Field sweep electronic specific heat divided by temperature Cel/T of Sample#1 mea-

sured at T =0.5K. Red dashed and blue solid lines represent Cel/T obtained in the up sweep and

down sweep of the magnetic field, respectively.

In general, the extrinsic e↵ect originated from the experimental setup will induce discrep-88

ancy between the up sweep and down sweep field data. In Fig. S4, we show the Cel/T on89

Sample#1 measured at up sweep (blue solid line) and down sweep (red dashed line) of the90

magnetic field. The two curves are almost identical, notably there is no hysteresis, therefore,91

we conclude that the double-peak structures are not extrinsic e↵ect from the experimental92

setup.93
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Note the splitting of the peaks
characteristic of C/T 

measurements
Zhuo et al. Nature Com 2023
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๏ The FeSe nematic superconductor 
 H-T phase diagram and T & H dependence of the gap structure 

Outline

๏ Thermodynamic properties of the normal state in cuprates  
Quantum criticality at the onset of the pseudo-gap and charge order 
    

Things that we do understand and that we do NOT understand on : 
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FeSe = iron based superconductor 

attracted considerable interest due to the interplay between 
superconductivity and magnetism

and  rising up to ~ 50K in Gd(O,F)FeAs (so called 1111-phase)Tc
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L.Fanfarillo et al., PRB 2016

LAURA FANFARILLO et al. PHYSICAL REVIEW B 94, 155138 (2016)

FIG. 2. Electronic structure at 150 K measured by ARPES. (a)–(c) Energy momentum plots along three !M directions indicated as thick
dashed lines in panel (d). Lines are guides to the eyes indicating the dispersions of the different bands, with colors encoding the main orbital
character (the even xz/yz is xz along kx and yz along ky). The data were measured at 40 eV photon energy (kz ∼ 0) with linear polarization
along kx . In (c), the area at each energy has been normalized to enhance the visibility of the electron pocket. (d) Fermi surface map obtained
by integration of the ARPES spectral weight at +10 meV in a 4 meV window. (e) Image plot in gray scale of the spectral functions of the
renormalized bands at 150 K obtained including self-energy corrections. Ticks along abscissa correspond to 0.1 !M . Thin lines follow the
experimental data shown in (a)–(c). As in Fig 1(a), symbols indicate the bare bands of Eq. (1).

captured by DMFT [46], the same effect has not been reported
by DMFT calculations in FeSe [28,29].

As shown in Fig. 2(e) this orbital-selective shift of the
bands is a natural outcome of the self-energy effects encoded
in Eq. (2). As discussed previously [30,31], to capture the
basic ingredients of the FS shrinking we can discard the full
momentum dependence of the SF propagator, and use the form

BX/Y (ω) = 1
π

ωω0
[
ω

X/Y
sf (T )

]2 + $2
, (5)

where ω0 is a constant while ω
X/Y
sf (T ) is the characteristic

energy scale of spin modes. In the tetragonal phase we assumed
the typical temperature evolution of the paramagnetic SF,
ω

sf
X,Y (T ) = ω0(1 + T/Tθ ), as observed above Tc in pnictide

systems [47]. Here we used ω0 ∼ 20 meV and Tθ ∼ 150 K, in
agreement with experimental results in 122 systems and more
recently also in FeSe [21]. The self-energy functions appearing

in Eqs. (2) are then computed as

&!
yz(iωn) = −V T

∑

k,m

DX(ωn − ωm)gX
+(k,iωm), (6)

&!
xz(iωn) = −V T

∑

k,m

DY (ωn − ωm)gY
+(k,iωm), (7)

where DX/Y (ωn) =
∫

d$ 2$BX/Y ($)/($2 + ω2
n) is the prop-

agator for SF along kx/ky , BX/Y is its spectral function given
by Eq. (5) above, V is the strength of the coupling, and
gl

±(k,iωm) denotes the Green’s function of the El,± band at
the l pocket (more details are given in the SM). Analogously
for the X,Y pockets one has

&X
yz(iωn) = −V T

∑

k,m

DX(ωn−ωm)[g!
+(k,iωm)

+ g!
−(k,iωm)], (8)

&Y
xz(iωn) = −V T

∑

k,m

DY [ωn−ωm)(g!
+(k,iωm)

+ g!
−(k,iωm)]. (9)

155138-4

FeSe = c-axis stacking of SC layers without any charge reservoir. 

Moderate Tc~9K, but very low carrier concentration 

semi-metal : small e+hole pockets

 :  high Tc (two gap-) superconductor 

at the verge of a Bose Einstein Condensation  

EF ∼ Δ

FeSe = iron based superconductor 

attracted considerable interest due to the interplay between 
superconductivity and magnetism

and  rising up to ~ 50K in Gd(O,F)FeAs (so called 1111-phase)Tc
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Sharp (1st order) peak in C/T 
… but observed only in (a few)
 high quality optimally doped 

YBaCuO single crystals
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interesting vortex physics

It all started in the 90s in high Tc cuprates
⇒ Strong thermal fluctuations 

where    with 
Gi = (1/8)(kBTc /ϵcond)2 ∼ 10−2

ϵcond = ϵ0ξ ϵ0 = Φ2
0/4πλ2

⇒ melting of the vortex solid
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⇒ Very small condensation energy
  ~ 160K

⇒ (still a) Large Gi value
ϵcond = ϵ0ξc

FeSe : Small superfluid density
⇒ large  valueλ FeSe Nb YBaCuO

Tc 9 9 92
λ (A) 5000 400 1200
ε0 (K/A) 8 1200 140
ξc (A) 20 400 4
εcond (K) 160 ! 5.105 560

Gi 10-3 3.10-9 5.10-3 
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…which can be studied (and well fitted)
down to the lowest T 

( )
(interplay with paramagnetic limit for H||ab 

see F.Hardy et al. PRR 2020)

Hc2(0) ∼ 14.5T

Hm(0) = Hc2(0) ∼ 14.5T

The melting is clearly visible (which 
is rather rare) but (only) shows off 

as a smeared peak 



but C/T still increases with  
well above  ???

and only saturates above 

H
Hc2(0)

Hsat
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Signature of an electronic transition ?

(  T @ 1.8K) → 22

Nature of the Hsat field ? 
increases with T !



No magnetic order (still a structural phase transition)  

 but orbitally ordered nematic state (breaking of the C4 symmetry ) 
Mukherjee et al. PRL 2015, Aichhorn et al. PRB 2010, Yamakawa et al. PRX 2016, Watson et al. PRB 2017
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H. CERCELLIER et al. PHYSICAL REVIEW B 100, 104516 (2019)

FIG. 1. (a) Schematic Fermi surface of FeSe used in the model
calculations (not to scale). The “ghost pocket” around the MY point
carries a small spectral weight and is supposed to carry a zero
superconducting gap. (b) Anisotropy of the quasiparticle spectral
weight on the three pockets for the indicated ORSW (Zi) values (see
Fig. 5 and Sec. IV). The same twofold anisotropy is taken for the SW
and the gaps.

magnetic fields up to 18 T, using an AC heating technique. The
superconducting contribution to the electronic specific heat is
given by !C/T = [Ctot (T, H = 0) − Ctot (T, H = 18T )]/T .

PCAR measurements were carried out on freshly cleaved
surfaces by the needle-anvil technique [26–28]. Constrictions
were made between an Au tip and the ab plane of the FeSe
single crystals, with current injection mainly along the c axis.
Contact resistances were in the range 1–20 ". The differential
conductance was measured between 1.6 and 10 K by the
standard lock-in technique.

III. CALCULATIONS

The basic parameters of the model calculations are shown
in Fig. 1. Use is made of the tight-binding (TB) low-energy
band structure (Ek) introduced by Kreisel and co-workers
[9,11]. The wave functions are defined on a five-3d-orbital
basis: #(k) =

∑
i ai(k)φi, where i = dxy, dx2−y2 , dxz, dyz, dz2 .

An approximate spectral function A(k,ω) ≈ Z(k)δ(ω − Ek )
is introduced, where Z(k) is the quasiparticle spectral weight
(QPSW) and δ(ω − Ek ) the Dirac function. The weight
Z(k) < 1 defines the contribution of each Fermi wave vector
to the physical properties. Parts of the Fermi surface with
small Z(k), such as the δ electron pocket [“ghost pocket” in
Fig. 1(a)], of dominant incoherent dxy character (it is barely
visible in ARPES), are supposed to carry a zero superconduct-
ing gap (this pocket will still contribute to the normal state
properties). In contrast Z(k) is maximum for the dyz orbitals
(green parts of the electron pocket around θ = ±π/2 and the
hole pocket around θ = 0[π ]; see Fig. 1).

As the TB model depends weakly on the wave vector
along the c axis, the QPSW anisotropies are chosen to vary
only in the ab plane, and are parametrized by the angle θ
with respect to the kx axis [see Fig. 1(a)]. We assume that
the QPSW can also be decomposed on the 3d-orbital basis:
Z(k) → Z(θ ) =

∑
i Zi|ai(θ )|2, where the Zi are the orbital-

resolved spectral weights (ORSWs), being the free parameters
of the model. Within the energy range of interest, taking
the ORSW as constants is a good approximation [29]. At

FIG. 2. (a) Temperature dependence of the London penetration
depth (open symbols) and fit to the data (full line; see text for details).
The low-T behavior clearly displays an exponential dependence,
indicating the presence of a fully open (small) gap. (b) Superfluid
density, calculated (thick lines) and reconstructed from !λ measure-
ments (symbols; see text for details). (c) Comparison of several data
sets from the literature [19,20] (symbols) and their respective model
calculations (full lines). The ORSW and gap values are reported in
Figs. 5 and 6, respectively.

the Fermi energy the dx2−y2 and dz2 orbitals have a small
contribution to the total spectral weight. We will then consider
only the relevant dxy, dxz, and dyz orbitals. Figure 1(b) displays
the anisotropy of the QPSW for a significant set of ORSWs
[Zxy, Zxz, Zyz] = [0.1, 0.3, 0.8], obtained from fits to the data
of Refs. [9–11,19,20] and our PCAR measurements (see be-
low). In this case the dominant dyz and the weak dxy SWs lead
to the same twofold anisotropy for the SW and the gaps [15]

104516-2

H.Cercellier et al., PRB 2019 and references therein
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superconducting gap. (b) Anisotropy of the quasiparticle spectral
weight on the three pockets for the indicated ORSW (Zi) values (see
Fig. 5 and Sec. IV). The same twofold anisotropy is taken for the SW
and the gaps.

magnetic fields up to 18 T, using an AC heating technique. The
superconducting contribution to the electronic specific heat is
given by !C/T = [Ctot (T, H = 0) − Ctot (T, H = 18T )]/T .

PCAR measurements were carried out on freshly cleaved
surfaces by the needle-anvil technique [26–28]. Constrictions
were made between an Au tip and the ab plane of the FeSe
single crystals, with current injection mainly along the c axis.
Contact resistances were in the range 1–20 ". The differential
conductance was measured between 1.6 and 10 K by the
standard lock-in technique.

III. CALCULATIONS

The basic parameters of the model calculations are shown
in Fig. 1. Use is made of the tight-binding (TB) low-energy
band structure (Ek) introduced by Kreisel and co-workers
[9,11]. The wave functions are defined on a five-3d-orbital
basis: #(k) =

∑
i ai(k)φi, where i = dxy, dx2−y2 , dxz, dyz, dz2 .

An approximate spectral function A(k,ω) ≈ Z(k)δ(ω − Ek )
is introduced, where Z(k) is the quasiparticle spectral weight
(QPSW) and δ(ω − Ek ) the Dirac function. The weight
Z(k) < 1 defines the contribution of each Fermi wave vector
to the physical properties. Parts of the Fermi surface with
small Z(k), such as the δ electron pocket [“ghost pocket” in
Fig. 1(a)], of dominant incoherent dxy character (it is barely
visible in ARPES), are supposed to carry a zero superconduct-
ing gap (this pocket will still contribute to the normal state
properties). In contrast Z(k) is maximum for the dyz orbitals
(green parts of the electron pocket around θ = ±π/2 and the
hole pocket around θ = 0[π ]; see Fig. 1).

As the TB model depends weakly on the wave vector
along the c axis, the QPSW anisotropies are chosen to vary
only in the ab plane, and are parametrized by the angle θ
with respect to the kx axis [see Fig. 1(a)]. We assume that
the QPSW can also be decomposed on the 3d-orbital basis:
Z(k) → Z(θ ) =

∑
i Zi|ai(θ )|2, where the Zi are the orbital-

resolved spectral weights (ORSWs), being the free parameters
of the model. Within the energy range of interest, taking
the ORSW as constants is a good approximation [29]. At

FIG. 2. (a) Temperature dependence of the London penetration
depth (open symbols) and fit to the data (full line; see text for details).
The low-T behavior clearly displays an exponential dependence,
indicating the presence of a fully open (small) gap. (b) Superfluid
density, calculated (thick lines) and reconstructed from !λ measure-
ments (symbols; see text for details). (c) Comparison of several data
sets from the literature [19,20] (symbols) and their respective model
calculations (full lines). The ORSW and gap values are reported in
Figs. 5 and 6, respectively.

the Fermi energy the dx2−y2 and dz2 orbitals have a small
contribution to the total spectral weight. We will then consider
only the relevant dxy, dxz, and dyz orbitals. Figure 1(b) displays
the anisotropy of the QPSW for a significant set of ORSWs
[Zxy, Zxz, Zyz] = [0.1, 0.3, 0.8], obtained from fits to the data
of Refs. [9–11,19,20] and our PCAR measurements (see be-
low). In this case the dominant dyz and the weak dxy SWs lead
to the same twofold anisotropy for the SW and the gaps [15]

104516-2

H.Cercellier et al., PRB 2019 and references therein

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

Δ
 (

m
eV

)

T (K)

(a)H=1T

Fonction	gap

e-pocket

h-pocket

0 1 2 3 4 5

H (T)

(b)

T=0.5K

∆ 

Angle (radians) 0 π

C2 anisotropy of (the spectral weight and) superconducting gaps

Δmax
hole ∼ 2 − 3meV

Δmax
elec ∼ 1 − 2meV

Δmin
hole, Δmin

elec < 0?
accidental nodes ?

 0?

Nematic order couples the s and d wave harmonics of the gap (s+d symmetry)
  and  sensitive to nematicity and intra/interband couplings.

➡︎  Accidental gap nodes can show off if 
Δs Δd

Δd > Δs

No magnetic order (still a structural phase transition)  

 but orbitally ordered nematic state (breaking of the C4 symmetry ) 
Mukherjee et al. PRL 2015, Aichhorn et al. PRB 2010, Yamakawa et al. PRX 2016, Watson et al. PRB 2017

11Geneva 2024                          THE FeSe NEMATIC SUPERCONDUCTOR



GUAN-YU CHEN, XIYU ZHU, HUAN YANG, AND HAI-HU WEN PHYSICAL REVIEW B 96, 064524 (2017)

III. RESULTS AND DISCUSSION

A. Basic characterization of the sample

The temperature dependence of resistivity ρ(T ) at zero
magnetic field is shown in Fig. 1. We can see a clear kink
at about 88 K, which is related to the structural transition
from the tetragonal to orthorhombic phase and the nematic
transition as well. The onset of the superconducting transition
occurs at T onset

c ≈ 8.7 K (defined by the crossing point of the
extrapolated lines of the normal state and the steep transition
part), and the system realizes a zero-resistivity state at Tc0 ≈
8.1 K, which can be seen in the bottom right inset of Fig. 1. The
transition width "Tc, which is defined as "Tc = T onset

c − Tc0,
is 0.6 K. And the residual resistivity ratio (RRR), which is
determined by the ratio of ρ(300 K)/ρ(T = 0 K), is about
25.2, where ρ(T = 0 K) is obtained by linearly extrapolating
the normal-state resistivity down to zero temperature. The
temperature dependence of zero-field-cooled (ZFC) and field-
cooled (FC) magnetization at 20 Oe is shown in the upper
left inset of Fig. 1. The superconducting volume calculated
from the magnetization data is larger than 100% (due to the
demagnetization effect), indicating the bulk superconductivity
of our sample. The large RRR value and superconducting
volume both confirm the high quality of our samples.

B. Measurement on specific heat and fitting with different
gap structures

Specific heat is sensitive for measuring the quasiparticle
density of states (DOS) at the Fermi energy, so it is a
useful way to detect the superconducting gap structure at
low temperatures. In iron-based superconductors, specific-heat
measurements have been done in many material systems
[17–19] showing the multigap feature. In order to study the
superconducting gap structures of the FeSe system, we have
measured the specific heat of FeSe single crystals, and the

Ω

FIG. 1. Main panel: Temperature dependence of resistivity of one
FeSe single-crystal sample at zero magnetic field. The upper left
inset shows the magnetization measured in ZFC and FC modes with
external magnetic field of 20 Oe. The bottom right inset shows the
enlarged view of the resistive transition. A superconducting transition
at about 8.2 K is obvious.

FIG. 2. (a) Raw data of specific-heat coefficient C/T for the
FeSe single-crystal sample (circles). A prominent specific-heat jump
is observed at around 8.2 K. The red solid line is a fit to the data of
C/T vs T above Tc based on the Debye model [Eq. (1)]. (b) The
specific-heat coefficient (C − Cn)/T vs T . The insets in (a) and (b)
show the enlarged views of the same data in each panel.

temperature dependence of specific heat at zero field for one
sample is presented in Fig. 2(a). A sharp jump of the specific-
heat coefficient can be seen at about 8.2 K, which corresponds
well to the superconducting transition detected by resistivity
and magnetization measurements. Another anomaly occurs at
about 1.08 K. The second transition at low temperature may
reflect the possible antiferromagnetic transition, which has not
been observed in previous experiments. However, since AlCl3
has been used as flux during the crystal growth, one may
argue that the second jump arises from the Al impurity (Tc =
1.17 K). But we will argue that this is unlikely. The residual
specific heat γ0 = C/T |T →0 determined by extrapolating the
data of C/T down to 0 K is negligible, which may exclude the
possibility of any nodal gaps in the system, and is consistent
with the recent thermal conductivity measurements [16].

It is known that the specific heat consists of both
the electronic and phonon contributions. Since the phonon
contribution prevails over the electronic part in the moderate-
temperature region, it is very important to extract the supercon-
ducting electronic specific heat. Usually, one can determine the
normal-state specific heat below Tc by using a high magnetic
field to suppress superconductivity. However, we find that
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demagnetization effect), indicating the bulk superconductivity
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volume both confirm the high quality of our samples.

B. Measurement on specific heat and fitting with different
gap structures

Specific heat is sensitive for measuring the quasiparticle
density of states (DOS) at the Fermi energy, so it is a
useful way to detect the superconducting gap structure at
low temperatures. In iron-based superconductors, specific-heat
measurements have been done in many material systems
[17–19] showing the multigap feature. In order to study the
superconducting gap structures of the FeSe system, we have
measured the specific heat of FeSe single crystals, and the
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inset shows the magnetization measured in ZFC and FC modes with
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enlarged view of the resistive transition. A superconducting transition
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FIG. 2. (a) Raw data of specific-heat coefficient C/T for the
FeSe single-crystal sample (circles). A prominent specific-heat jump
is observed at around 8.2 K. The red solid line is a fit to the data of
C/T vs T above Tc based on the Debye model [Eq. (1)]. (b) The
specific-heat coefficient (C − Cn)/T vs T . The insets in (a) and (b)
show the enlarged views of the same data in each panel.

temperature dependence of specific heat at zero field for one
sample is presented in Fig. 2(a). A sharp jump of the specific-
heat coefficient can be seen at about 8.2 K, which corresponds
well to the superconducting transition detected by resistivity
and magnetization measurements. Another anomaly occurs at
about 1.08 K. The second transition at low temperature may
reflect the possible antiferromagnetic transition, which has not
been observed in previous experiments. However, since AlCl3
has been used as flux during the crystal growth, one may
argue that the second jump arises from the Al impurity (Tc =
1.17 K). But we will argue that this is unlikely. The residual
specific heat γ0 = C/T |T →0 determined by extrapolating the
data of C/T down to 0 K is negligible, which may exclude the
possibility of any nodal gaps in the system, and is consistent
with the recent thermal conductivity measurements [16].

It is known that the specific heat consists of both
the electronic and phonon contributions. Since the phonon
contribution prevails over the electronic part in the moderate-
temperature region, it is very important to extract the supercon-
ducting electronic specific heat. Usually, one can determine the
normal-state specific heat below Tc by using a high magnetic
field to suppress superconductivity. However, we find that
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which agrees with the numerically determined slope. The
Volovik effect is manifested in Fig. 3 in the finite offset of
C /T %Eq. "10#& in the presence of magnetic field EH=0.4Tc.

We proceed to evaluate the specific heat for fixed EH and
several temperatures as a function of the field angle %. Figure
4 shows that the inversion of the DOS anisotropy found in
Sec. III indeed is sufficient to lead to the inversion of the
specific heat oscillations at characteristic temperature, Tinv.
In Fig. 4 the fourfold oscillations are clearly visible at low T,
and minima occur for H along nodal directions as antici-
pated. However, at higher temperatures, an inversion in the
pattern of oscillations is evident. In Fig. 5 we examine the
anisotropy by plotting the difference between the specific
heat for the field along the nodal and the antinodal directions,
which identifies the temperature at which inversion occurs.

Since in our approach the inversion is due to the sensitiv-
ity of the specific heat to the changes in the DOS within
energy range 'EH of the gap edge, increasing both the mag-
netic field and the temperature initially enhances the ampli-
tude of the inverted oscillations. Increasing the field brings
the anisotropy inversion down in energy in Fig. 1; raising the
temperature increases the contribution of the high energy re-
gions in C /T. While the amplitude of the inverted "relative to
those at T=0# oscillations in CV is small, it is of the same
order of magnitude as that observed experimentally7,9–12 and
found theoretically for a quasi-two-dimensional system at
moderate fields.17,18 Of course, when H"T# approaches the
upper critical field "the transition temperature#, the gap in the
spectrum closes and the oscillations vanish; we cannot, how-
ever, reliably comment on the evolution of the anisotropy in
this regime within the semiclassical method. At the same
time it follows from our analysis that the amplitude of the
inverted oscillations has a maximum at intermediate fields
and temperatures, also in agreement with Refs. 17 and 18.
Therefore our results connect well with those obtained by a
different technique.

We emphasize that our primary goal here has been to
identify qualitative features of the oscillation inversion.
Many realistic effects stemming from band structure, lifetime
effects, field dependence of the gap, and inclusion of core
size effects would be corrections to the semiclassical method
used here. For example, Nakai et al.38 found the quadratic, in
temperature, correction to the dominant linear term in the
specific heat due to the change in the vortex core radius "the
Kramer-Pesch effect39#. These as well as other corrections
may have a quantitative effect on the precise location of the
inversion line in the T-H plane.

V. CONCLUSIONS

In this paper we have calculated the specific heat of a
two-dimensional d-wave superconductor in an external mag-
netic field using the semiclassical treatment of the effect of
the vortex lattice on the quasiparticle spectrum. In contrast to
previous work utilizing the nodal approximation with linear-
ized order parameter, we carried out a full numerical evalu-
ation of the density of states and the entropy for a wide range
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We proceed to evaluate the specific heat for fixed EH and
several temperatures as a function of the field angle %. Figure
4 shows that the inversion of the DOS anisotropy found in
Sec. III indeed is sufficient to lead to the inversion of the
specific heat oscillations at characteristic temperature, Tinv.
In Fig. 4 the fourfold oscillations are clearly visible at low T,
and minima occur for H along nodal directions as antici-
pated. However, at higher temperatures, an inversion in the
pattern of oscillations is evident. In Fig. 5 we examine the
anisotropy by plotting the difference between the specific
heat for the field along the nodal and the antinodal directions,
which identifies the temperature at which inversion occurs.

Since in our approach the inversion is due to the sensitiv-
ity of the specific heat to the changes in the DOS within
energy range 'EH of the gap edge, increasing both the mag-
netic field and the temperature initially enhances the ampli-
tude of the inverted oscillations. Increasing the field brings
the anisotropy inversion down in energy in Fig. 1; raising the
temperature increases the contribution of the high energy re-
gions in C /T. While the amplitude of the inverted "relative to
those at T=0# oscillations in CV is small, it is of the same
order of magnitude as that observed experimentally7,9–12 and
found theoretically for a quasi-two-dimensional system at
moderate fields.17,18 Of course, when H"T# approaches the
upper critical field "the transition temperature#, the gap in the
spectrum closes and the oscillations vanish; we cannot, how-
ever, reliably comment on the evolution of the anisotropy in
this regime within the semiclassical method. At the same
time it follows from our analysis that the amplitude of the
inverted oscillations has a maximum at intermediate fields
and temperatures, also in agreement with Refs. 17 and 18.
Therefore our results connect well with those obtained by a
different technique.

We emphasize that our primary goal here has been to
identify qualitative features of the oscillation inversion.
Many realistic effects stemming from band structure, lifetime
effects, field dependence of the gap, and inclusion of core
size effects would be corrections to the semiclassical method
used here. For example, Nakai et al.38 found the quadratic, in
temperature, correction to the dominant linear term in the
specific heat due to the change in the vortex core radius "the
Kramer-Pesch effect39#. These as well as other corrections
may have a quantitative effect on the precise location of the
inversion line in the T-H plane.

V. CONCLUSIONS

In this paper we have calculated the specific heat of a
two-dimensional d-wave superconductor in an external mag-
netic field using the semiclassical treatment of the effect of
the vortex lattice on the quasiparticle spectrum. In contrast to
previous work utilizing the nodal approximation with linear-
ized order parameter, we carried out a full numerical evalu-
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RAPID COMMUNICATIONS

GAP STRUCTURE OF FeSe DETERMINED BY ANGLE- . . . PHYSICAL REVIEW B 96, 220505(R) (2017)

FIG. 2. (a) Azimuthal angle dependence of the specific heat !C(φ)/T measured under various fields at 0.33 K. !C(φ)/T is defined as
C(φ)/T -C(−45◦)/T , and each subsequent curve is shifted vertically by 0.2 mJ/mol K2. Symbols with black outlines are measured data, and
those without are mirrored points to show the symmetry. (b) Polar plot of the !C(φ)/T at 0.33 K under 0.8 T. (c) !C(φ)/T measured under
0.8 T at 0.33, 0.60, and 2.1 K. Each subsequent curve is shifted by 0.2 mJ/mol K2. (d) In-plane schematic view of the atomic arrangement
and gap structure of !ε [19] in domains A and B sandwiching a TB. Schematic gap functions of !ε in domains (e) A and (f) B, and (g) their
superpositions.

unlikely because it is inconsistent with most previous reports
[19,34]. Recent BQPI measurements found that the gaps
from the ε(!ε) and α(!α) bands are twofold symmetric
but with different gap functions [19]. The schematic form
of !ε is shown in Fig. 2(d). Considering the TBs, !ε in
the neighboring domains A and B is rotated by 90◦ and the
corresponding gap functions are also shifted by 90◦, as shown
in Figs. 2(e) and 2(f), respectively. Superposition of the two
gap functions is shown in Fig. 2(g) by simply assuming an
equal ratio, which shows fourfold symmetry similar to the
experimental observation of !C(φ)/T . On the other hand,
!α manifests a wave form of cos 2φ [19], whose oscillation
differs from the fourfold symmetry, when the effects of TBs
are considered (Supplemental Material S4 [24]). Hence, the
!1 with nodes (gap minima) is assigned to the electron-type ε
band. The fourfold symmetric ARSH has also been observed
in FeTe0.55Se0.45 [35]. However, it originates from a large
anisotropic gap with four minima, which is different from
the present case in FeSe.

To determine the 3D gap structure of FeSe, we performed
out-of-plane ARSH measurements. !C(θ )/T (φ = 45◦) at
0.33 K is shown in Figs. 3(a) and 3(b) under various fields. In
the µ0H < 1 T (!1-dominant) region, !C(θ )/T first shows
minima in the ⟨001⟩ direction (H ∥ c) with two shoulders
under small fields, as indicated by the arrows. With increasing

field, the minima gradually increase, and the two shoulders
move toward the ⟨001⟩ direction. Finally, the minima at ⟨001⟩
turn to maxima and the two shoulders converge into one
maximum at ∼0.8 T.

To understand the anisotropy-inversion behavior of
!C(θ )/T , we performed microscopic calculations of the DOS
using quasiclassical Eilenberger theory within the Kramer-
Pesch approximation [36]. To simulate the cylindrical open
Fermi surface of the ε band observed in Ref. [17] [consisting
of parallel and warped segments, as shown in Fig. 3(c)], we
model the Fermi velocity vz(kz) along kz as vz(kz) ∝ sin5 ckz

(−π/c ! kz ! π/c, with c being the lattice constant along
kz), which has a substantial parallel segment. Assuming two
vertical-line nodes (gap minima) along kz, the calculation
result is presented in Fig. 3(e). It is qualitatively similar to
the experimental results. The anisotropy-inverted !C(θ )/T
can also be explained by competition between the zero-energy
and finite-energy DOS based on the Doppler shift effect. In
the case of vertical-line nodes (gap minima), v

H∥c
F · v

H∥c
s <

v
H∥ab
F · v

H∥ab
s in the small-field region because of kz-direction

Fermi-surface warping. Under higher fields, the scattering
of QPs is largely enhanced for H ∥ nodal (gap minima)
lines, making v

H∥c
F · v

H∥c
s > v

H∥ab
F · v

H∥ab
s . By contrast, the

anisotropy-inversion behavior should be opposite in the case
of in-plane point nodes (gap minima). In this case, the Doppler
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but only low T/H 
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which agrees with the numerically determined slope. The
Volovik effect is manifested in Fig. 3 in the finite offset of
C /T %Eq. "10#& in the presence of magnetic field EH=0.4Tc.

We proceed to evaluate the specific heat for fixed EH and
several temperatures as a function of the field angle %. Figure
4 shows that the inversion of the DOS anisotropy found in
Sec. III indeed is sufficient to lead to the inversion of the
specific heat oscillations at characteristic temperature, Tinv.
In Fig. 4 the fourfold oscillations are clearly visible at low T,
and minima occur for H along nodal directions as antici-
pated. However, at higher temperatures, an inversion in the
pattern of oscillations is evident. In Fig. 5 we examine the
anisotropy by plotting the difference between the specific
heat for the field along the nodal and the antinodal directions,
which identifies the temperature at which inversion occurs.

Since in our approach the inversion is due to the sensitiv-
ity of the specific heat to the changes in the DOS within
energy range 'EH of the gap edge, increasing both the mag-
netic field and the temperature initially enhances the ampli-
tude of the inverted oscillations. Increasing the field brings
the anisotropy inversion down in energy in Fig. 1; raising the
temperature increases the contribution of the high energy re-
gions in C /T. While the amplitude of the inverted "relative to
those at T=0# oscillations in CV is small, it is of the same
order of magnitude as that observed experimentally7,9–12 and
found theoretically for a quasi-two-dimensional system at
moderate fields.17,18 Of course, when H"T# approaches the
upper critical field "the transition temperature#, the gap in the
spectrum closes and the oscillations vanish; we cannot, how-
ever, reliably comment on the evolution of the anisotropy in
this regime within the semiclassical method. At the same
time it follows from our analysis that the amplitude of the
inverted oscillations has a maximum at intermediate fields
and temperatures, also in agreement with Refs. 17 and 18.
Therefore our results connect well with those obtained by a
different technique.

We emphasize that our primary goal here has been to
identify qualitative features of the oscillation inversion.
Many realistic effects stemming from band structure, lifetime
effects, field dependence of the gap, and inclusion of core
size effects would be corrections to the semiclassical method
used here. For example, Nakai et al.38 found the quadratic, in
temperature, correction to the dominant linear term in the
specific heat due to the change in the vortex core radius "the
Kramer-Pesch effect39#. These as well as other corrections
may have a quantitative effect on the precise location of the
inversion line in the T-H plane.

V. CONCLUSIONS

In this paper we have calculated the specific heat of a
two-dimensional d-wave superconductor in an external mag-
netic field using the semiclassical treatment of the effect of
the vortex lattice on the quasiparticle spectrum. In contrast to
previous work utilizing the nodal approximation with linear-
ized order parameter, we carried out a full numerical evalu-
ation of the density of states and the entropy for a wide range
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d-wave gap

G.R.Boyd et al. PRB 2009
(see also Vorontsov et al. PRB 2007)

ΔC/γT < 1 %
above Tc /10

and shift
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for 
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However 0.06 %
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ΔC/C
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GAP STRUCTURE OF FeSe DETERMINED BY ANGLE- . . . PHYSICAL REVIEW B 96, 220505(R) (2017)

FIG. 2. (a) Azimuthal angle dependence of the specific heat !C(φ)/T measured under various fields at 0.33 K. !C(φ)/T is defined as
C(φ)/T -C(−45◦)/T , and each subsequent curve is shifted vertically by 0.2 mJ/mol K2. Symbols with black outlines are measured data, and
those without are mirrored points to show the symmetry. (b) Polar plot of the !C(φ)/T at 0.33 K under 0.8 T. (c) !C(φ)/T measured under
0.8 T at 0.33, 0.60, and 2.1 K. Each subsequent curve is shifted by 0.2 mJ/mol K2. (d) In-plane schematic view of the atomic arrangement
and gap structure of !ε [19] in domains A and B sandwiching a TB. Schematic gap functions of !ε in domains (e) A and (f) B, and (g) their
superpositions.

unlikely because it is inconsistent with most previous reports
[19,34]. Recent BQPI measurements found that the gaps
from the ε(!ε) and α(!α) bands are twofold symmetric
but with different gap functions [19]. The schematic form
of !ε is shown in Fig. 2(d). Considering the TBs, !ε in
the neighboring domains A and B is rotated by 90◦ and the
corresponding gap functions are also shifted by 90◦, as shown
in Figs. 2(e) and 2(f), respectively. Superposition of the two
gap functions is shown in Fig. 2(g) by simply assuming an
equal ratio, which shows fourfold symmetry similar to the
experimental observation of !C(φ)/T . On the other hand,
!α manifests a wave form of cos 2φ [19], whose oscillation
differs from the fourfold symmetry, when the effects of TBs
are considered (Supplemental Material S4 [24]). Hence, the
!1 with nodes (gap minima) is assigned to the electron-type ε
band. The fourfold symmetric ARSH has also been observed
in FeTe0.55Se0.45 [35]. However, it originates from a large
anisotropic gap with four minima, which is different from
the present case in FeSe.

To determine the 3D gap structure of FeSe, we performed
out-of-plane ARSH measurements. !C(θ )/T (φ = 45◦) at
0.33 K is shown in Figs. 3(a) and 3(b) under various fields. In
the µ0H < 1 T (!1-dominant) region, !C(θ )/T first shows
minima in the ⟨001⟩ direction (H ∥ c) with two shoulders
under small fields, as indicated by the arrows. With increasing

field, the minima gradually increase, and the two shoulders
move toward the ⟨001⟩ direction. Finally, the minima at ⟨001⟩
turn to maxima and the two shoulders converge into one
maximum at ∼0.8 T.

To understand the anisotropy-inversion behavior of
!C(θ )/T , we performed microscopic calculations of the DOS
using quasiclassical Eilenberger theory within the Kramer-
Pesch approximation [36]. To simulate the cylindrical open
Fermi surface of the ε band observed in Ref. [17] [consisting
of parallel and warped segments, as shown in Fig. 3(c)], we
model the Fermi velocity vz(kz) along kz as vz(kz) ∝ sin5 ckz

(−π/c ! kz ! π/c, with c being the lattice constant along
kz), which has a substantial parallel segment. Assuming two
vertical-line nodes (gap minima) along kz, the calculation
result is presented in Fig. 3(e). It is qualitatively similar to
the experimental results. The anisotropy-inverted !C(θ )/T
can also be explained by competition between the zero-energy
and finite-energy DOS based on the Doppler shift effect. In
the case of vertical-line nodes (gap minima), v

H∥c
F · v

H∥c
s <

v
H∥ab
F · v

H∥ab
s in the small-field region because of kz-direction

Fermi-surface warping. Under higher fields, the scattering
of QPs is largely enhanced for H ∥ nodal (gap minima)
lines, making v

H∥c
F · v

H∥c
s > v

H∥ab
F · v

H∥ab
s . By contrast, the

anisotropy-inversion behavior should be opposite in the case
of in-plane point nodes (gap minima). In this case, the Doppler

220505-3
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Sun et al. PRB 2017



14

twofold (C2) symmetry 
at low T/low H

= nematic character of FeSe 
from thermodynamic data

Geneva 2024                          THE FeSe NEMATIC SUPERCONDUCTOR



14

twofold (C2) symmetry 
at low T/low H

= nematic character of FeSe 
from thermodynamic data

Δmax
hole ∼ 2meV

Δmax
elec ∼ 1meV

Good quantitative agreement 
with numerical calculations

(H.Cercellier)

in very reasonable agreement with other measurements 
H.Cercellier et al., PRB 2019

Geneva 2024                          THE FeSe NEMATIC SUPERCONDUCTOR



14

twofold (C2) symmetry 
at low T/low H

= nematic character of FeSe 
from thermodynamic data

but exotic temperature and field dependence of 
the gap structure !…

Δmax
hole ∼ 2meV

Δmax
elec ∼ 1meV

Good quantitative agreement 
with numerical calculations

(H.Cercellier)

in very reasonable agreement with other measurements 
H.Cercellier et al., PRB 2019
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Sudden change in the gap structure

Δmin
elec ∼ − 0.2meV

Δmax
hole ∼ 2meV

Δmin
hole ∼ 0.5meV

Δmax
elec ∼ 0.5meV} {

increasing temperature

Δmax
hole ∼ 2meV

Δmax
elec ∼ 1meV

Δmin
hole ∼ − 0.2meV

Δmin
elec ∼ − 0.2meV

but 
drastic drop 

 of the 
amplitude 
above 1K  ?

… leading to the observed specific anomaly around 1K
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This T and H dependence of the gap structure still has to be understood
(not observed in all samples…)

H.Cercellier et al. submitted to PRL (2024)
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FIG. 1. (a) The color density plot represents the electron spectral
function in the presence of long-range bidirectional bond density
wave at zero magnetic field (we use the unfolded Brillouin zone as
measured in photoemission, and the density plot has full 4 fold sym-
metry about the center of the square; in experiments such a long-
range BDW is likely only present at high-fields, and the photoemis-
sion spectrum with short-range BDW correlations appears in Fig. 2).
All other annotations are superimposed to highlight aspects of the
spectral density. The wavevectors of the charge density wave are
marked by the dashed arrows. In black, the Fermi surface used for
our computation. The zero field charge density wave induces recon-
struction and the formation of an electron-like pocket, shown in red
and two hole-like pockets, shown in blue. The pocket contours are
obtained by semiclassical analysis as described in sec. III A. The pa-
rameters are t1 = 1.0, t2 = �0.33, t3 = 0.03, µ = �0.9604, p = 10%,
Px

0 = Py
0 = 0.15, � = 0.317. (b) Quantum oscillations in the den-

sity of states induced by an applied magnetic field: red lines mark
peaks associated with the electron pocket (frequency 432 T or 1.55%
of Brillouin zone), and blue lines those from the hole pockets (fre-
quency 90.9 T or 0.326% of Brillouin zone).

description of the zero field, T > Tc regime obtained in terms
of a multicomponent O(6) order parameter, n, collecting the
order parameters of both superconductivity and bond density
wave [6, 19, 21, 38]. At low temperature, terms that break the
O(6) symmetry explicitly cause n to fluctuate preferentially
along the particular direction that corresponds to supercon-
ductivity.

FIG. 2. Electron spectral function in the presence of fluctuating
superconducting and bond density wave correlations. p = 11%,
�0 = Px

0 = Py
0 = 1, T/t1 = 0.06, g/⇤2 = 0.2, ⇢S = 0.05, ⇤ = 2.

The details are discussed in sec. IV.

This produces long-range superconductivity. On the other
hand, at higher temperature, O(6) symmetry is approximately
restored and n fluctuates along all directions, yielding short-
ranged superconducting and bond order correlations (see
Fig. 13 in secVII B). This model has been shown [6] to be
in agreement with measurements obtained via X-ray scatter-
ing experiments. In this paper, we explore the implications of
the phase fluctuations of n arising from the O(6) model on the
spectral density of electronic excitations. We do so by cou-
pling at the RPA level the Fermi surface to the superconduct-
ing and bond order fluctuations described by the model. Our
main results are displayed in Fig. 2, showing a constant fre-
quency cut (at ! = 0) of the electron spectral function. Bond
order fluctuations lead to enhanced scattering in the nested
regions of the Fermi surface, whereas superconducting fluc-
tuations damp the nodal quasiparticles. A small region of the
Fermi surface near the nodal points remains una↵ected by ei-
ther order, and we identify it with the “Fermi arcs” seen in
photoemission spectroscopy. A more detailed description of
the features of the electron spectral function is given in sec-
tion IV.

II. MODEL

We base our analysis on the following model hamiltonian

H =
X

r,a


� tac†r+acr + �a r+a/2c†r+a,"c

†

r,# + h.c.

+
X

i

Pi
aeiQi·(r+a/2)�i

r+a/2c†r+acr + h.c.
�
.

(1)

Here r labels the sites of a square lattice and the vector a
runs over first, second and third neighbors, and also on-site
(a = 0). The first term is the usual kinetic term, with hopping
parameters ta.

associated with major changes in the 
topology of the Fermi surface
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This produces long-range superconductivity. On the other
hand, at higher temperature, O(6) symmetry is approximately
restored and n fluctuates along all directions, yielding short-
ranged superconducting and bond order correlations (see
Fig. 13 in secVII B). This model has been shown [6] to be
in agreement with measurements obtained via X-ray scatter-
ing experiments. In this paper, we explore the implications of
the phase fluctuations of n arising from the O(6) model on the
spectral density of electronic excitations. We do so by cou-
pling at the RPA level the Fermi surface to the superconduct-
ing and bond order fluctuations described by the model. Our
main results are displayed in Fig. 2, showing a constant fre-
quency cut (at ! = 0) of the electron spectral function. Bond
order fluctuations lead to enhanced scattering in the nested
regions of the Fermi surface, whereas superconducting fluc-
tuations damp the nodal quasiparticles. A small region of the
Fermi surface near the nodal points remains una↵ected by ei-
ther order, and we identify it with the “Fermi arcs” seen in
photoemission spectroscopy. A more detailed description of
the features of the electron spectral function is given in sec-
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Fig. 2 | Resistivity and Hall coefficient of our Bi2212 film. 

a) Resistivity of our Bi2212 film with p = 0.23 as a function of magnetic field,        

at temperatures as indicated. The value of ρ at H = 55 T is plotted vs T in        

Fig. 1a. b) Resistivity as a function of temperature, at H = 0 (blue). The black 

line is a linear fit between 80 K and 120 K. The red diamonds are high field data 

extrapolated to zero field by fitting ρ(H) to a + bH2 (see Methods and 

Supplementary Section 3). c) Hall coefficient of our Bi2212 film as a function of 

magnetic field, at temperatures as indicated. The value of RH at H = 55 T is 

plotted vs T in (d). d) Hall coefficient as a function of temperature for three 

cuprates, plotted as e RH / V, where e is the electron charge and V the volume 

per Cu atom: Bi2212 at p = 0.23 (red curve, H = 9 T; red dots, H = 55 T, panel 

c); Nd-LSCO at p = 0.24 (blue, H = 16 T; from ref. 10); PCCO at x = 0.17 

(green, H = 15 T, right axis; from ref. 36), The red dashed line is a guide to the 

eye.  

FERMI-SURFACE TRANSFORMATION ACROSS THE . . . PHYSICAL REVIEW B 95, 224517 (2017)

FIG. 6. Isotherms of the Hall coefficient in Nd-LSCO, as a function of magnetic field H , for four dopings as indicated, at various
temperatures as indicated.

FIG. 7. Hall number nH at T → 0 as a function of doping,
for Nd-LSCO (red squares) and YBCO (blue circles) [23]. Below
p = 0.1, the grey squares are for LSCO [35], and the grey circles
for YBCO [33]. The vertical dashed lines mark the location of the
pseudogap critical point, at p⋆ = 0.23 ± 0.01 in Nd-LSCO (red) and
p⋆ = 0.195 ± 0.01 in YBCO (blue) [23]. The solid blue and red lines
are a guide to the eye. The two dotted lines mark nH = 1 + p and
nH = p, as indicated.

residual resistivity the metal would have at that doping, ρ0, if
the pseudogap did not cause an upturn. Indeed, at p = 0.20,
ρ(0)/ρ0 = 5.8 [27], while (1 + p)/p = 6.

Following Ref. [4], we define the carrier density nρ derived
from ρ(T ), as nρ ≡ (1 + p)[ρ0/ρ(0)]. By construction, this
gives nρ = 1 + p at p = 0.24 since at that doping there is no
upturn, and ρ(0) = ρ0. In Fig. 8, we plot nρ vs p [using MR-
corrected values of ρ(0)] and see that nρ ≃ p, at p = 0.20,
0.21, and 0.22. Note that the drop in nρ starts earlier than the
drop in nH. In Sec. IV C, we mention a possible explanation
for this difference.

D. Mobility

It is instructive to investigate the impact of the pseudogap
phase on the mobility µ of the charge carriers. We estimate µ in
two separate ways. First, by looking at the magnetoresistance,
which varies as MR ∝ (ωcτ )2 ∝ (µH )2 in the weak-field limit,
where ωc is the cyclotron frequency and τ is the scattering
time. The MR in our data does vary as H 2 (Fig. 9). In
Fig. 9(b), we plot the relative MR as a function of temperature,
evaluated at 37.5 T, for two dopings, above and below p⋆. At
p = 0.24 > p⋆, we see that the MR decreases monotonically
with increasing temperature, by a factor of ∼8 between T = 0
and T = 80 K [Fig. 9(b)]. Since MR ∝ (ωcτ )2, this is roughly
consistent with the threefold increase in ρ over that interval
[Fig. 9(a)], reflecting an increase in scattering rate (decrease
in τ ) by a factor ∼3.
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FIG. 1. (a) The color density plot represents the electron spectral
function in the presence of long-range bidirectional bond density
wave at zero magnetic field (we use the unfolded Brillouin zone as
measured in photoemission, and the density plot has full 4 fold sym-
metry about the center of the square; in experiments such a long-
range BDW is likely only present at high-fields, and the photoemis-
sion spectrum with short-range BDW correlations appears in Fig. 2).
All other annotations are superimposed to highlight aspects of the
spectral density. The wavevectors of the charge density wave are
marked by the dashed arrows. In black, the Fermi surface used for
our computation. The zero field charge density wave induces recon-
struction and the formation of an electron-like pocket, shown in red
and two hole-like pockets, shown in blue. The pocket contours are
obtained by semiclassical analysis as described in sec. III A. The pa-
rameters are t1 = 1.0, t2 = �0.33, t3 = 0.03, µ = �0.9604, p = 10%,
Px

0 = Py
0 = 0.15, � = 0.317. (b) Quantum oscillations in the den-

sity of states induced by an applied magnetic field: red lines mark
peaks associated with the electron pocket (frequency 432 T or 1.55%
of Brillouin zone), and blue lines those from the hole pockets (fre-
quency 90.9 T or 0.326% of Brillouin zone).

description of the zero field, T > Tc regime obtained in terms
of a multicomponent O(6) order parameter, n, collecting the
order parameters of both superconductivity and bond density
wave [6, 19, 21, 38]. At low temperature, terms that break the
O(6) symmetry explicitly cause n to fluctuate preferentially
along the particular direction that corresponds to supercon-
ductivity.

FIG. 2. Electron spectral function in the presence of fluctuating
superconducting and bond density wave correlations. p = 11%,
�0 = Px

0 = Py
0 = 1, T/t1 = 0.06, g/⇤2 = 0.2, ⇢S = 0.05, ⇤ = 2.

The details are discussed in sec. IV.

This produces long-range superconductivity. On the other
hand, at higher temperature, O(6) symmetry is approximately
restored and n fluctuates along all directions, yielding short-
ranged superconducting and bond order correlations (see
Fig. 13 in secVII B). This model has been shown [6] to be
in agreement with measurements obtained via X-ray scatter-
ing experiments. In this paper, we explore the implications of
the phase fluctuations of n arising from the O(6) model on the
spectral density of electronic excitations. We do so by cou-
pling at the RPA level the Fermi surface to the superconduct-
ing and bond order fluctuations described by the model. Our
main results are displayed in Fig. 2, showing a constant fre-
quency cut (at ! = 0) of the electron spectral function. Bond
order fluctuations lead to enhanced scattering in the nested
regions of the Fermi surface, whereas superconducting fluc-
tuations damp the nodal quasiparticles. A small region of the
Fermi surface near the nodal points remains una↵ected by ei-
ther order, and we identify it with the “Fermi arcs” seen in
photoemission spectroscopy. A more detailed description of
the features of the electron spectral function is given in sec-
tion IV.

II. MODEL

We base our analysis on the following model hamiltonian

H =
X

r,a


� tac†r+acr + �a r+a/2c†r+a,"c

†

r,# + h.c.

+
X

i

Pi
aeiQi·(r+a/2)�i

r+a/2c†r+acr + h.c.
�
.

(1)

Here r labels the sites of a square lattice and the vector a
runs over first, second and third neighbors, and also on-site
(a = 0). The first term is the usual kinetic term, with hopping
parameters ta.

p = 0 p = pco p = ppg p = pvHs

x8
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do in Fig. 1. Starting on the overdoped side, we have γ = 6.6 ±  
1 mJ K−2 mol−1 in Tl2Ba2CuO6+δ (Tl-2201) at p ≈ 0.33 (ref. 18), not far 
from the value of γ = 7.6 ± 0.6 mJ K−2 mol−1 obtained from the effec-
tive mass measured by quantum oscillations, m* = (5.2 ± 0.4)me, in 
Tl-2201 at p = 0.29 ± 0.02 (ref. 19). Since those are similar to the values 
found in Nd-LSCO and in LSCO at p ≈ 0.3 (Fig. 3b), it is reasonable to 
suppose that other cuprates, such as YBCO, Bi2Sr2CaCu2O8 (Bi2212) 
and HgBa2CuO4+δ (Hg-1201), would also have γ ≈ 7 mJ K−2 mol−1 
at p ≈ 0.3. (In none of these three materials has m*, γ or ∆C/Tc been 
measured beyond p ≈ 0.2312,20. Note that p* = 0.22 in Bi221221.) On 
the underdoped side, γ ≈ 3 mJ K−2 mol−1 in YBCO at p ≈ 0.1 (ref. 10) 
and quantum oscillations in YBCO9 and Hg-120122 at p ≈ 0.1 yield 
γ = 2.5 and 4.0 mJ K−2 mol−1, respectively (per mole of planar Cu), 
compared to γ = 2.8 and 3.6 mJ K−2 mol−1 in Eu-LSCO at p = 0.11  
and Nd-LSCO at p = 0.12, respectively (Fig. 3b)—all in good agreement 
(Fig. 1).

We emphasize that γ in Tl-2201 at p ≈ 0.33 is only a factor 1.7 larger 
than γ in Hg-1201 at p ≈ 0.1. In other words, the opening of the pseu-
dogap between the two has only reduced the density of states by a factor 
of about 1.7. This is a much smaller reduction than that observed in 
going from p* to p = 0.1 in any hole-doped cuprate11,12,17,20,23. If we 
assume that the reduction below p* in Tl-2201 is comparable to that 

in other cuprates, then γ in Tl-2201 must first rise from p ≈ 0.33 to 
p* before it falls below p*. This would imply that a peak in Cel/T at 
p* is a generic property of cuprates. (We note, however, that the only 
attempt to extract the doping dependence of γ in Tl-2201, based on 
zero-field data, found a constant γ (ref. 18). A direct measurement of 
the normal-state Cel is needed to resolve this apparent contradiction.)

In Fig. 1, we also plot the specific heat jump at Tc, ∆C/Tc, as a func-
tion of p, previously measured in Ca-doped YBCO12. We see that ∆C/Tc 
drops by a factor of about 10 in going from p* to p ≈ 0.1, consistent with 
the drop in condensation energy23. Since ∆C/Tc ∝ γ, this implies that 
γ ≈ 25 mJ K−2 mol−1 at p* in YBCO (Fig. 1), comparable to our value 
of Cel /T = 22 mJ K−2 mol−1 at T = 0.5 K in Nd-LSCO at p* (Fig. 3b). 
This high value of γ in YBCO must then drop by a factor of about 3–4 
above p*, if it is to reach the common value γ ≈ 7 mJ K−2 mol−1 at 
p ≈ 0.3 (Fig. 1). In summary, while further work is needed to establish 
that there is indeed a peak in Cel/T versus p for cuprates other than 
Nd-LSCO, Eu-LSCO and LSCO, most existing data are not incompat-
ible with a universal peak in hole-doped cuprates.

Our finding that Cel/T peaks at p* is a change of paradigm in our 
understanding of cuprates—it reveals a mechanism of strong mass 
enhancement above p*, associated with a QCP at p*. Our observation 
of a continuous logarithmic increase of the electronic specific heat 
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Fig. 2 | Specific heat of Eu-LSCO and Nd-LSCO. a, Specific heat of 
Eu-LSCO measured in a field H = 18 T, plotted as C/T versus T2, for 
four different dopings, as indicated. The dashed line is a linear fit to the 
data at p = 0.11 (blue) for T < 5 K; it yields γ = 2.8 mJ K−2 mol−1 and 
β = 0.22 mJ K−4 mol−1, where C/T = γ + βT2. (Data for our five crystals 
of Eu-LSCO are displayed in Supplementary Fig. 1.) b, Electronic specific 
heat of Eu-LSCO, Cel(T), obtained as described in Methods, plotted 
as Cel/T versus logT, from data at H = 8 T (p = 0.11 and 0.24) and at 
H = 18 T (p = 0.21). (The dashed line is a linear extrapolation of the 
p = 0.21 data.) At p = 0.11, Cel/T = γ, a constant, while at p = 0.24 ≈ p*, 

Cel/T ≈ log(1/T), the thermodynamic signature of a quantum critical 
point. c, Specific heat of Nd-LSCO measured in a field H = 18 T, plotted as 
C/T versus T2, for four dopings, as indicated. (Data for our seven crystals 
of Nd-LSCO are displayed in Supplementary Fig. 1.) The dashed line 
is a linear fit to the data at p = 0.12, C/T = γ + βT2 (below 5 K), giving 
γ = 3.6 mJ K−2 mol−1 and β = 0.215 mJ K−4 mol−1. d, Electronic specific 
heat of Nd-LSCO, obtained as described in Methods, plotted as Cel/T 
versus logT. This is done separately for the data below (H = 8 T) and 
above (H = 18 T) the dashed line. At p = 0.24 ≈ p*, Cel/T ≈ log(1/T), just 
as in Eu-LSCO.
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do in Fig. 1. Starting on the overdoped side, we have γ = 6.6 ±  
1 mJ K−2 mol−1 in Tl2Ba2CuO6+δ (Tl-2201) at p ≈ 0.33 (ref. 18), not far 
from the value of γ = 7.6 ± 0.6 mJ K−2 mol−1 obtained from the effec-
tive mass measured by quantum oscillations, m* = (5.2 ± 0.4)me, in 
Tl-2201 at p = 0.29 ± 0.02 (ref. 19). Since those are similar to the values 
found in Nd-LSCO and in LSCO at p ≈ 0.3 (Fig. 3b), it is reasonable to 
suppose that other cuprates, such as YBCO, Bi2Sr2CaCu2O8 (Bi2212) 
and HgBa2CuO4+δ (Hg-1201), would also have γ ≈ 7 mJ K−2 mol−1 
at p ≈ 0.3. (In none of these three materials has m*, γ or ∆C/Tc been 
measured beyond p ≈ 0.2312,20. Note that p* = 0.22 in Bi221221.) On 
the underdoped side, γ ≈ 3 mJ K−2 mol−1 in YBCO at p ≈ 0.1 (ref. 10) 
and quantum oscillations in YBCO9 and Hg-120122 at p ≈ 0.1 yield 
γ = 2.5 and 4.0 mJ K−2 mol−1, respectively (per mole of planar Cu), 
compared to γ = 2.8 and 3.6 mJ K−2 mol−1 in Eu-LSCO at p = 0.11  
and Nd-LSCO at p = 0.12, respectively (Fig. 3b)—all in good agreement 
(Fig. 1).

We emphasize that γ in Tl-2201 at p ≈ 0.33 is only a factor 1.7 larger 
than γ in Hg-1201 at p ≈ 0.1. In other words, the opening of the pseu-
dogap between the two has only reduced the density of states by a factor 
of about 1.7. This is a much smaller reduction than that observed in 
going from p* to p = 0.1 in any hole-doped cuprate11,12,17,20,23. If we 
assume that the reduction below p* in Tl-2201 is comparable to that 

in other cuprates, then γ in Tl-2201 must first rise from p ≈ 0.33 to 
p* before it falls below p*. This would imply that a peak in Cel/T at 
p* is a generic property of cuprates. (We note, however, that the only 
attempt to extract the doping dependence of γ in Tl-2201, based on 
zero-field data, found a constant γ (ref. 18). A direct measurement of 
the normal-state Cel is needed to resolve this apparent contradiction.)

In Fig. 1, we also plot the specific heat jump at Tc, ∆C/Tc, as a func-
tion of p, previously measured in Ca-doped YBCO12. We see that ∆C/Tc 
drops by a factor of about 10 in going from p* to p ≈ 0.1, consistent with 
the drop in condensation energy23. Since ∆C/Tc ∝ γ, this implies that 
γ ≈ 25 mJ K−2 mol−1 at p* in YBCO (Fig. 1), comparable to our value 
of Cel /T = 22 mJ K−2 mol−1 at T = 0.5 K in Nd-LSCO at p* (Fig. 3b). 
This high value of γ in YBCO must then drop by a factor of about 3–4 
above p*, if it is to reach the common value γ ≈ 7 mJ K−2 mol−1 at 
p ≈ 0.3 (Fig. 1). In summary, while further work is needed to establish 
that there is indeed a peak in Cel/T versus p for cuprates other than 
Nd-LSCO, Eu-LSCO and LSCO, most existing data are not incompat-
ible with a universal peak in hole-doped cuprates.

Our finding that Cel/T peaks at p* is a change of paradigm in our 
understanding of cuprates—it reveals a mechanism of strong mass 
enhancement above p*, associated with a QCP at p*. Our observation 
of a continuous logarithmic increase of the electronic specific heat 

0

10

20

30

40

0 20 40 60 80 100

T2 (K2)

C
/T

 (m
J 

K
–2

 m
ol

–1
)

a

H = 18 T
Eu-LSCO

p = 0.24
p = 0.21
p = 0.16
p = 0.11

0

20

40

60

0 20 40 60 80 100

T2 (K2)

p = 0.24
p = 0.22

p = 0.12
p = 0.20

H = 18 T
Nd-LSCO

c

0

5

10

15

20

25

1 10

p = 0.24

p = 0.21

p = 0.11

Eu-LSCO

b

T (K)

0

5

10

15

20

25

1 10

C
el

/T
 (m

J 
K

–2
 m

ol
–1

)

C
/T

 (m
J 

K
–2

 m
ol

–1
)

C
el

/T
 (m

J 
K

–2
 m

ol
–1

)

Nd-LSCO

p = 0.20

p = 0.24

H = 8 T H = 18 T

p = 0.22

T (K)

d

Fig. 2 | Specific heat of Eu-LSCO and Nd-LSCO. a, Specific heat of 
Eu-LSCO measured in a field H = 18 T, plotted as C/T versus T2, for 
four different dopings, as indicated. The dashed line is a linear fit to the 
data at p = 0.11 (blue) for T < 5 K; it yields γ = 2.8 mJ K−2 mol−1 and 
β = 0.22 mJ K−4 mol−1, where C/T = γ + βT2. (Data for our five crystals 
of Eu-LSCO are displayed in Supplementary Fig. 1.) b, Electronic specific 
heat of Eu-LSCO, Cel(T), obtained as described in Methods, plotted 
as Cel/T versus logT, from data at H = 8 T (p = 0.11 and 0.24) and at 
H = 18 T (p = 0.21). (The dashed line is a linear extrapolation of the 
p = 0.21 data.) At p = 0.11, Cel/T = γ, a constant, while at p = 0.24 ≈ p*, 

Cel/T ≈ log(1/T), the thermodynamic signature of a quantum critical 
point. c, Specific heat of Nd-LSCO measured in a field H = 18 T, plotted as 
C/T versus T2, for four dopings, as indicated. (Data for our seven crystals 
of Nd-LSCO are displayed in Supplementary Fig. 1.) The dashed line 
is a linear fit to the data at p = 0.12, C/T = γ + βT2 (below 5 K), giving 
γ = 3.6 mJ K−2 mol−1 and β = 0.215 mJ K−4 mol−1. d, Electronic specific 
heat of Nd-LSCO, obtained as described in Methods, plotted as Cel/T 
versus logT. This is done separately for the data below (H = 8 T) and 
above (H = 18 T) the dashed line. At p = 0.24 ≈ p*, Cel/T ≈ log(1/T), just 
as in Eu-LSCO.

N A T U R E | www.nature.com/nature

22Geneva 2024                       Thermodynamic properties of the normal state in cuprates 

   
C.Girod et al. PRB 2021

Bi2+ySr2−x−yLaxCuO6+δ

clear deviation from the 
standard temperature 

dependence also observed in

Tc = 12K
H=32T



LETTER RESEARCH

do in Fig. 1. Starting on the overdoped side, we have γ = 6.6 ±  
1 mJ K−2 mol−1 in Tl2Ba2CuO6+δ (Tl-2201) at p ≈ 0.33 (ref. 18), not far 
from the value of γ = 7.6 ± 0.6 mJ K−2 mol−1 obtained from the effec-
tive mass measured by quantum oscillations, m* = (5.2 ± 0.4)me, in 
Tl-2201 at p = 0.29 ± 0.02 (ref. 19). Since those are similar to the values 
found in Nd-LSCO and in LSCO at p ≈ 0.3 (Fig. 3b), it is reasonable to 
suppose that other cuprates, such as YBCO, Bi2Sr2CaCu2O8 (Bi2212) 
and HgBa2CuO4+δ (Hg-1201), would also have γ ≈ 7 mJ K−2 mol−1 
at p ≈ 0.3. (In none of these three materials has m*, γ or ∆C/Tc been 
measured beyond p ≈ 0.2312,20. Note that p* = 0.22 in Bi221221.) On 
the underdoped side, γ ≈ 3 mJ K−2 mol−1 in YBCO at p ≈ 0.1 (ref. 10) 
and quantum oscillations in YBCO9 and Hg-120122 at p ≈ 0.1 yield 
γ = 2.5 and 4.0 mJ K−2 mol−1, respectively (per mole of planar Cu), 
compared to γ = 2.8 and 3.6 mJ K−2 mol−1 in Eu-LSCO at p = 0.11  
and Nd-LSCO at p = 0.12, respectively (Fig. 3b)—all in good agreement 
(Fig. 1).

We emphasize that γ in Tl-2201 at p ≈ 0.33 is only a factor 1.7 larger 
than γ in Hg-1201 at p ≈ 0.1. In other words, the opening of the pseu-
dogap between the two has only reduced the density of states by a factor 
of about 1.7. This is a much smaller reduction than that observed in 
going from p* to p = 0.1 in any hole-doped cuprate11,12,17,20,23. If we 
assume that the reduction below p* in Tl-2201 is comparable to that 

in other cuprates, then γ in Tl-2201 must first rise from p ≈ 0.33 to 
p* before it falls below p*. This would imply that a peak in Cel/T at 
p* is a generic property of cuprates. (We note, however, that the only 
attempt to extract the doping dependence of γ in Tl-2201, based on 
zero-field data, found a constant γ (ref. 18). A direct measurement of 
the normal-state Cel is needed to resolve this apparent contradiction.)

In Fig. 1, we also plot the specific heat jump at Tc, ∆C/Tc, as a func-
tion of p, previously measured in Ca-doped YBCO12. We see that ∆C/Tc 
drops by a factor of about 10 in going from p* to p ≈ 0.1, consistent with 
the drop in condensation energy23. Since ∆C/Tc ∝ γ, this implies that 
γ ≈ 25 mJ K−2 mol−1 at p* in YBCO (Fig. 1), comparable to our value 
of Cel /T = 22 mJ K−2 mol−1 at T = 0.5 K in Nd-LSCO at p* (Fig. 3b). 
This high value of γ in YBCO must then drop by a factor of about 3–4 
above p*, if it is to reach the common value γ ≈ 7 mJ K−2 mol−1 at 
p ≈ 0.3 (Fig. 1). In summary, while further work is needed to establish 
that there is indeed a peak in Cel/T versus p for cuprates other than 
Nd-LSCO, Eu-LSCO and LSCO, most existing data are not incompat-
ible with a universal peak in hole-doped cuprates.

Our finding that Cel/T peaks at p* is a change of paradigm in our 
understanding of cuprates—it reveals a mechanism of strong mass 
enhancement above p*, associated with a QCP at p*. Our observation 
of a continuous logarithmic increase of the electronic specific heat 
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Fig. 2 | Specific heat of Eu-LSCO and Nd-LSCO. a, Specific heat of 
Eu-LSCO measured in a field H = 18 T, plotted as C/T versus T2, for 
four different dopings, as indicated. The dashed line is a linear fit to the 
data at p = 0.11 (blue) for T < 5 K; it yields γ = 2.8 mJ K−2 mol−1 and 
β = 0.22 mJ K−4 mol−1, where C/T = γ + βT2. (Data for our five crystals 
of Eu-LSCO are displayed in Supplementary Fig. 1.) b, Electronic specific 
heat of Eu-LSCO, Cel(T), obtained as described in Methods, plotted 
as Cel/T versus logT, from data at H = 8 T (p = 0.11 and 0.24) and at 
H = 18 T (p = 0.21). (The dashed line is a linear extrapolation of the 
p = 0.21 data.) At p = 0.11, Cel/T = γ, a constant, while at p = 0.24 ≈ p*, 

Cel/T ≈ log(1/T), the thermodynamic signature of a quantum critical 
point. c, Specific heat of Nd-LSCO measured in a field H = 18 T, plotted as 
C/T versus T2, for four dopings, as indicated. (Data for our seven crystals 
of Nd-LSCO are displayed in Supplementary Fig. 1.) The dashed line 
is a linear fit to the data at p = 0.12, C/T = γ + βT2 (below 5 K), giving 
γ = 3.6 mJ K−2 mol−1 and β = 0.215 mJ K−4 mol−1. d, Electronic specific 
heat of Nd-LSCO, obtained as described in Methods, plotted as Cel/T 
versus logT. This is done separately for the data below (H = 8 T) and 
above (H = 18 T) the dashed line. At p = 0.24 ≈ p*, Cel/T ≈ log(1/T), just 
as in Eu-LSCO.
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standard temperature 

dependence also observed in

Tc = 12K
H=32T

(again) very good fit
 to the data with  

C/T = βT2 + BLog(T/T0)



BUT…what is the diverging correlation length ?

LnT contribution to
the specific heat pour p ∼ pc

strong C/T peak
for  at low T p → pc

= classic thermodynamic signature of a  Quantum Critical Pointz = d
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cluster-DMFT calculations in the t-U  model (correlated systems) 
G.Sordi et al. Sc. Reports 2012, 2010

T dependent peak in 
the electronic 

compressibility

(diverging at the 
critical point)

KT = 1/n2(dn /dμ)T

AND in the 
specific heat ! 
(as observed) 

BUT…what is the diverging correlation length ?

LnT contribution to
the specific heat pour p ∼ pc

strong C/T peak
for  at low T p → pc

= classic thermodynamic signature of a  Quantum Critical Pointz = d
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FIG. 1. (a) The color density plot represents the electron spectral
function in the presence of long-range bidirectional bond density
wave at zero magnetic field (we use the unfolded Brillouin zone as
measured in photoemission, and the density plot has full 4 fold sym-
metry about the center of the square; in experiments such a long-
range BDW is likely only present at high-fields, and the photoemis-
sion spectrum with short-range BDW correlations appears in Fig. 2).
All other annotations are superimposed to highlight aspects of the
spectral density. The wavevectors of the charge density wave are
marked by the dashed arrows. In black, the Fermi surface used for
our computation. The zero field charge density wave induces recon-
struction and the formation of an electron-like pocket, shown in red
and two hole-like pockets, shown in blue. The pocket contours are
obtained by semiclassical analysis as described in sec. III A. The pa-
rameters are t1 = 1.0, t2 = �0.33, t3 = 0.03, µ = �0.9604, p = 10%,
Px

0 = Py
0 = 0.15, � = 0.317. (b) Quantum oscillations in the den-

sity of states induced by an applied magnetic field: red lines mark
peaks associated with the electron pocket (frequency 432 T or 1.55%
of Brillouin zone), and blue lines those from the hole pockets (fre-
quency 90.9 T or 0.326% of Brillouin zone).

description of the zero field, T > Tc regime obtained in terms
of a multicomponent O(6) order parameter, n, collecting the
order parameters of both superconductivity and bond density
wave [6, 19, 21, 38]. At low temperature, terms that break the
O(6) symmetry explicitly cause n to fluctuate preferentially
along the particular direction that corresponds to supercon-
ductivity.

FIG. 2. Electron spectral function in the presence of fluctuating
superconducting and bond density wave correlations. p = 11%,
�0 = Px

0 = Py
0 = 1, T/t1 = 0.06, g/⇤2 = 0.2, ⇢S = 0.05, ⇤ = 2.

The details are discussed in sec. IV.

This produces long-range superconductivity. On the other
hand, at higher temperature, O(6) symmetry is approximately
restored and n fluctuates along all directions, yielding short-
ranged superconducting and bond order correlations (see
Fig. 13 in secVII B). This model has been shown [6] to be
in agreement with measurements obtained via X-ray scatter-
ing experiments. In this paper, we explore the implications of
the phase fluctuations of n arising from the O(6) model on the
spectral density of electronic excitations. We do so by cou-
pling at the RPA level the Fermi surface to the superconduct-
ing and bond order fluctuations described by the model. Our
main results are displayed in Fig. 2, showing a constant fre-
quency cut (at ! = 0) of the electron spectral function. Bond
order fluctuations lead to enhanced scattering in the nested
regions of the Fermi surface, whereas superconducting fluc-
tuations damp the nodal quasiparticles. A small region of the
Fermi surface near the nodal points remains una↵ected by ei-
ther order, and we identify it with the “Fermi arcs” seen in
photoemission spectroscopy. A more detailed description of
the features of the electron spectral function is given in sec-
tion IV.

II. MODEL

We base our analysis on the following model hamiltonian

H =
X

r,a


� tac†r+acr + �a r+a/2c†r+a,"c

†

r,# + h.c.

+
X

i

Pi
aeiQi·(r+a/2)�i

r+a/2c†r+acr + h.c.
�
.

(1)

Here r labels the sites of a square lattice and the vector a
runs over first, second and third neighbors, and also on-site
(a = 0). The first term is the usual kinetic term, with hopping
parameters ta.

p = 0 p = pco p = ppg p = pvHs

and a few words on the Charge Order…

coming from vortices (flux flow). By going to much higher fields, we
can now rule out this interpretation, as discussed in detail in the
Supplementary Information, in which the negative RH is shown to
be unambiguously a property of the normal state, the consequence of
a drop in RH(T) that starts below a field-independent temperature
Tmax. The value of Tmax at the three doping levels studied here is 50,
105 and 60K, for Y123-II, Y123-VIII and Y124, respectively, with
65K uncertainty (see arrows in Fig. 3).

Three groups have previously detected this drop in low-field mea-
surements of underdoped Y123, with B, 15 T, on crystals with
Tc(0)5 60–70K (refs 13–15). Because these earlier studies were lim-
ited to high temperatures (T.Tc(0)), they failed to reveal that the
drop is just the start of a large swing to negative values. By measuring
Rxx and Rxy along both a and b axes, it was shown15 that the drop in
RH(T) is a property of the planes, not the chains. From the perfect
linearity of Rxy versus B it was also concluded that the drop is not due
to flux flow15.

Themost natural explanation for the negativeRH is the presence of
an electron pocket in the Fermi surface. (In principle, it could also
come from a hole pocket with portions of negative curvature16.) In
a scenario in which the Fermi surface contains both electron and hole
pockets, the sign of RH depends on the relative magnitude of
the respective densities ne and nh, and mobilities17 me and mh.
(m; et/m*, where e is the electron charge, t21 is the scattering rate
and m* is the effective mass.) Given that these materials are hole-
doped, we expect nh. ne. The fact that RH, 0 at low T therefore
implies that me.mh at low T. Given strong inelastic scattering, this
inequality can then easily invert at high T, offering a straightforward
mechanism for the sign change in RH. This happens in simple metals
like Al and In (ref. 17) and is typical of compensated metals (with
ne5 nh). In high-purity samples of NbSe2, a quasi-two-dimensional
metal that undergoes a charge density-wave transition at
TCDW< 30K,RH(T) drops from its positive and flat behaviour above
TCDW eventually to become negative below T0< 25K (ref. 18), as
reproduced in Supplementary Fig. 5. In impure samples, however,
RH(T) remains positive at all T values (ref. 18; Supplementary Fig. 5),
showing that the electron/hole balance can depend sensitively on
impurity/disorder scattering.

A scenario of electron and hole pockets for YBCO resolves a puzzle
in relation to the Shubnikov–de Haas oscillations observed in Y123-
II (ref. 2). The puzzle is the apparent violation of the Luttinger sum
rule, which states that the total carrier density nmust be equal to the
total area of the two-dimensional Fermi surface. From the oscillation
frequency F5 530 T, one gets a carrier density nS–dH5 0.038 carriers
per planar Cu atom per pocket via F5 nS–dHW0, where W05 2.073
10215 Tm2 is the flux quantum. Assuming that the pocket is a hole
pocket (of arbitrary curvature) and there is nothing else in the Fermi
surface, and assuming also that n must be equal to the density of
doped holes (n5 p5 0.10), the Luttinger sum rule is clearly violated,
whether the relevant Brillouin zone includes one or two (or any
number) of these pockets19 (whether n5 nS–dH5 0.038 or n5
2nS–dH5 0.076). If, on the other hand, the Fermi surface contains
other sheets (not seen in the Shubnikov–de Haas oscillations) besides
the observed pockets, then the sum rule can easily be satisfied.

The fact thatRH is negative at lowT implies that the Shubnikov–de
Haas frequency that was seen in Y123-II (ref. 2) must come from the
high-mobility electron pocket, because the amplitude of Shubnikov–
deHaasoscillationsdepends exponentially onmobility, as exp(–p/mB).
The hole-like portions of the Fermi surface are either open or have
a lower mobility at TR0. The largest value of RH that a single
electron pocket of density nS–dH5 0.038 electrons per unit cell
can produce is RH

S–dH5 –Vcell/enS–dH5229mm3C21. Within the
uncertainty in the geometric factor, this is the magnitude of RH

–30

–20

–10

0

b

Bn

Bs

 90 K 
 80 K 
 70 K 
 60 K 
 50 K 
 40 K 
 30 K 
 20 K 
 10 K 
 4.2 K
 1.5 K

B (T)

Y123–VIII

0 10 20 30 40 50

–40

–30

–20

–10

0

10

20

 1.5 K     30 K 
 3 K        35 K 
 4.2 K     40 K 
 7 K        50 K 
 10 K      60 K 
 15 K      80 K 
 20 K      100 K 
 25 K      150 K 

Y123–II

 R
H
 (m

m
3  

C
–1

)

B (T)

a

0 10 20 30 40 50 60 0 10 20 30 40 50 60
–1.5

–1.0

–0.5

0.0

0.5

1.0

c

 60 K 
 50 K 
 40 K 
 34 K 
 27 K 
 20 K 
 12 K 
 4.2 K

Y124

B (T)

Figure 2 | Hall coefficient versus magnetic field. Hall coefficient
RH5 tRxy/B as a function of magnetic field B at the indicated temperatures.
a, Y123-II (p5 0.10); b, Y123-VIII (p5 0.12); c, Y124 (p5 0.14). The arrows
in b indicate the fields Bs and Bn described in the text and defined in the

Supplementary Information. The 4.2-K isotherm of Y124 illustrates nicely
the basic components of RH: the flat negative part at high field (above Bn) is
the normal-state value, whereas the positive overshoot just aboveBs is due to
a vortex flux-flow contribution.
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Figure 3 | Normal-stateHall coefficient versus temperature. Hall coefficient
RH versus T for Y123-II, Y123-VIII and Y124 (data multiplied by ten), at
B5 55, 45 and 55T, respectively. T0 is the temperature at which RH changes
sign, equal to 30, 70 and 306 2K, respectively. Tmax is the temperature at
which RH is maximum, equal to 50, 105 and 606 5K, respectively. The black
arrow indicates the value of the Hall coefficient expected for a single electron
Fermi pocket of the size imposed by Shubnikov–de Haas oscillations of
frequency F, namely RH

S–dH5 –Vcell/enS–dH, where nS–dH5F/W05 0.038
electrons per unit cell. (The data for Y124 ismultiplied by a factor of ten toput
it on a scale comparable to Y123-II and Y123-VIII. The order-of-magnitude
reduction of the measured Hall voltage comes in large part from the short-
circuiting effect of the CuO chains along the b axis, which in this
stoichiometric material, unlike in Y123-II and Y123-VIII, remain highly
conductive down to low temperature; see text.)
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Figure 1 | 17O NMR evidence of charge order in YBa2Cu3O6.56 (p=0.109). 

Magnetic field induced modifications of the highest-frequency quadrupole satellite of 

O(2) sites (lying in bonds oriented along the a axis) at T = 2.9 K. f0 (~40-160 MHz) is 

the frequency of the centre of the shown spectrum. Continuous lines are fits with one 

Gaussian at 6.2 and 9.6 T and with two Gaussian functions (each shown as a dotted 

line) at higher fields. See Methods section for more information about the 17O 

spectra. 

  
 

27.4 T

  
17.8 T

  

14.4 T

 

 

9.6 T

0 100

6.2 T
 

 -100
f-f0 (kHz)

16 

 

Figure 1 | 17O NMR evidence of charge order in YBa2Cu3O6.56 (p=0.109). 

Magnetic field induced modifications of the highest-frequency quadrupole satellite of 

O(2) sites (lying in bonds oriented along the a axis) at T = 2.9 K. f0 (~40-160 MHz) is 

the frequency of the centre of the shown spectrum. Continuous lines are fits with one 

Gaussian at 6.2 and 9.6 T and with two Gaussian functions (each shown as a dotted 

line) at higher fields. See Methods section for more information about the 17O 

spectra. 

  

 

27.4 T

  

17.8 T

  

14.4 T

 

 

9.6 T

0 100

6.2 T

 

 -100
f-f0 (kHz)

X-ray diffraction peaks 
⇒ Long range CDW at high field/low T
 J.Chang et al. Nature Physics 2012, D.Leboeuf et al. Nature Physics 2013 (and more)
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Figure 2 | Competition between charge–density-wave order and superconductivity. a, Temperature dependence of the peak intensity at (1.695, 0, 0.5)
(circles) and (0, 3.691, 0.5) (squares) for different applied magnetic fields. The square data points have been multiplied by a factor of four. In the normal
state, there is a smooth onset of the CDW order. In the absence of an applied magnetic field there is a decrease in the peak intensity below Tc. This trend
can be reversed by the application of a magnetic field. b, Magnetic field dependence of the lattice modulation peak intensity at (1.695,0,0.5) for different
temperatures. At T = 2 K, the peak intensity grows approximately linearly with magnetic field up to the highest applied field. c,d, Gaussian linewidth of the
(1.695, 0, 0.5) CDW modulation plotted versus temperature and field respectively. The raw linewidth, including a contribution from the instrumental
resolution, is field-independent in the normal state (T > Tc). In contrast, the CDW order becomes more coherent below Tc, once a magnetic field is applied.
This effect ceases once the amplitude starts to be suppressed owing to competition with superconductivity. The vertical dashed lines in a,c illustrate the
connection between these two features of the data that define the Tcusp temperatures. All other lines are guides to the eye. Error bars indicate standard
deviations of the fit parameters described in Methods.

The intensities of the incommensurate Bragg peaks are sensitive
to atomic displacements parallel to the total scattering vector
Q. The comparatively small contribution to Q along the c

⇤

direction from l = 0.5 r.l.u. means that our signal for a (h,
0, 0.5) peak is dominated by displacements parallel to the a

direction. (There will also be displacements parallel to the c

direction but we are essentially insensitive to them in our present
scattering geometry). Our data indicate that the incommensurate
peaks are much stronger if they are satellites of strong Bragg
peaks of the form (⌧ = (2n,0,0)) at positions such as ⌧ ± q1.
This indicates that the satellites are caused by a modulation
of the parent crystal structure. The fact that the scattering is
peaked at l = ±0.5 r.l.u. means that neighbouring bilayers are
modulated in antiphase. The two simplest structures (Fig. 3a,b)
compatible with our data (see Supplementary Information) involve
the neighbouring CuO2 planes in the bilayer being displaced in
the same (bilayer-centred) or opposite (chain-centred) directions,
resulting in the maximum amplitude of the modulation being on
the CuO2 planes or CuO chains respectively. In their 2�q form,
these structures would lead to the in-plane ‘checkerboard’ pattern
shown in Fig. 3c. Scanning tunnelling microscopy studies of other
underdoped cuprates16 and of field-induced CDW correlations in
vortex cores17 also support the tendency towards checkerboard
formation18, although disorder can cause small stripe domains
to mimic checkerboard order19. Our observation of a CDW

may be related to phonon anomalies20, which suggest that in
YBCO near p⇡ 1/8 there are anomalies in the underlying charge
susceptibility for q⇡ (0,0.3).

Cuprate superconductors show strong spin correlations, and
the interplay between spin and charge correlations may be at the
heart of the high-Tc phenomenon. The spin correlations are largely
dynamic, with energies up to several hundred meV. YBa2Cu3O6+x

and La2�x(Ba,Sr)xCuO4+� show incommensurate magnetic order,
which can be enhanced by suppressing superconductivity with an
applied magnetic field21–24; this has some analogies with the CDW
order observed here. The magnetic order is static on the ⇠1meV
frequency scale of neutron diffraction and has been detected in
lightly doped YBa2Cu3O6+x for p 0.082 (ref. 21), and moderately
doped La2�xSrxCuO4 for p  0.14 (ref. 24). The YBa2Cu3O6.67
(p⇡ 1/8) sample studied here is expected to have a relatively large
spin gap, h̄! ⇡ 20meV (ref. 25), in its magnetic excitations at
low temperature, making it unlikely that it orders magnetically.
As discussed earlier, this is confirmed by other measurements13,14,
so the CDW does not seem to be accompanied by spin order.
Moreover, there is no obvious relationship between qCDW and the
wave vector of the incipient spin fluctuations qSF ⇡ (0.1,0) of
similarly doped samples25.

It is interesting to note that TCDW corresponds approximately
withTH (Fig. 4), the temperature at whichHall effectmeasurements
suggest that Fermi surface reconstruction begins26. A CDW that

NATURE PHYSICS | VOL 8 | DECEMBER 2012 | www.nature.com/naturephysics 873

Splitting of the NMR lines 
modulation of the charge density
T.Wu et al. Nature 2011

Change of sign of Hall effect 
+ low frequency quantum oscillations (FS reconstruction) & reduced  
D.Leboeuf et al. Nature 2007, Nicolas Doiron-Leyraud et al. Nature 2007,… 
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which increases 

for decreasing temperature !
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Can not be the standard overshoot 

observed at the SC transition

Its origin still has to be clarified…

(another field induced) 
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p ¼ 0.109 as an example), the saturation of the DOS
cannot be related to the melting of the vortex solid. Thus,
our measurements indicate that there is an intrinsic satu-
ration of the DOS for H ≥ HDOSðTÞ. Note that super-
conducting fluctuations persist well above HDOS (for
T ≠ 0, see the sketch in Fig. 4). The plateau apparently
reflects a separation between the field scale deduced from
probes sensitive to the DOS and the one deduced from
probes sensitive to vortex scattering. The two field scales
merge as T → 0, but a detailed discussion of the onset of
those fluctuations is beyond the focus of the present Letter.
The phase diagrams of Figs. 3(b) and 3(c) leave little doubt
that the unusual S shape of HDOSðTÞ directly results from
the influence of three-dimensional (3D) long-range CDW
order on superconductivity (and not from, e.g., a disorder-
driven Griffiths superconducting phase [45,46]).
The presence of this plateau suggests that the high-field

CDW and superconductivity initially repel each other, as if
they were mutually exclusive orders that cannot coexist
[47]. However, the upswing of the HDOSðTÞ line below
∼10 K suggests that superconductivity eventually finds a
way to accommodate the presence of the 3D long-range
CDWorder. Our measurements do not offer a direct clue on
what microscopically characterizes the “collaborative”
state between CDW and superconducting orders for T ≤
10 K and μ0H ≳ 15 T. However, because unusual effects
are seen in the DOS, it is likely that some characteristics of
the superconducting state have changed. Some sort of
collaboration between CDW and superconducting orders
was also proposed in Ref. [48]. However, details of the
phase diagram differ from ours, as we do not see any

signature of a second vortex solid phase in our Cp and
NMR data (see also Ref. [19]).
In this context, it is interesting to note that

recent theoretical works [21,23,25,27], motivated by

(a) (b) (c)

FIG. 3. HDOS versus temperature for the indicated doping contents. The solid circles and squares have been derived from T (see
Refs. [20,34]) andH sweeps [see Figs. 1(a) and 1(b)] of the specific heat, respectively, and the crossed squares have been deduced from
KspinðHÞ [see Fig. 1(c)]. As shown, a clear “plateau” is observed in HDOSðTÞ for p ¼ 0.109 [panel (b)] and p ¼ 0.119 [panel (c)] in the
vicinity of the onset of the long-range 3D-CDW [41,42] (open crosses and shaded areas), highlighting the interplay between those two
competing orders. For p ¼ 0.098 [panel (a)], a change of slope is observed whenHDOS crossesHCDW. The fieldHscat marking the onset
of scattering by vortices, as deduced from thermal conductivity measurements (diamonds [18,42]), has also been reported for p ¼ 0.11.
Open diamonds in panel (c) correspond to the fields below which the intensities of the CDW diffraction peaks decrease [4]. Lines are
guides to the eyes.

Hscat

0
0

vortex
liquid

Hc2

3D
CDW

vortex
solid

Tc

YBCO

HDOS

FIG. 4. Sketch of the H − T diagram of underdoped
YBa2Cu3Oy, emphasizing the interplay between the supercon-
ducting and CDW orders. Specific heat and Knight shift mea-
surements show that the density of states at the Fermi level
reaches its normal-state value above HDOS (see Fig. 1). Different
shades of yellow tentatively depict the intensity of local super-
conducting fluctuations, with emphasis on the field scale Hscat
deduced from thermal conductivity measurements [18,42]. The
greenish region corresponds to the HCDW ≤ H ≤ HDOS field
range, in which superconductivity might be impacted by the
presence of 3D CDW order.
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p ¼ 0.109 as an example), the saturation of the DOS
cannot be related to the melting of the vortex solid. Thus,
our measurements indicate that there is an intrinsic satu-
ration of the DOS for H ≥ HDOSðTÞ. Note that super-
conducting fluctuations persist well above HDOS (for
T ≠ 0, see the sketch in Fig. 4). The plateau apparently
reflects a separation between the field scale deduced from
probes sensitive to the DOS and the one deduced from
probes sensitive to vortex scattering. The two field scales
merge as T → 0, but a detailed discussion of the onset of
those fluctuations is beyond the focus of the present Letter.
The phase diagrams of Figs. 3(b) and 3(c) leave little doubt
that the unusual S shape of HDOSðTÞ directly results from
the influence of three-dimensional (3D) long-range CDW
order on superconductivity (and not from, e.g., a disorder-
driven Griffiths superconducting phase [45,46]).
The presence of this plateau suggests that the high-field

CDW and superconductivity initially repel each other, as if
they were mutually exclusive orders that cannot coexist
[47]. However, the upswing of the HDOSðTÞ line below
∼10 K suggests that superconductivity eventually finds a
way to accommodate the presence of the 3D long-range
CDWorder. Our measurements do not offer a direct clue on
what microscopically characterizes the “collaborative”
state between CDW and superconducting orders for T ≤
10 K and μ0H ≳ 15 T. However, because unusual effects
are seen in the DOS, it is likely that some characteristics of
the superconducting state have changed. Some sort of
collaboration between CDW and superconducting orders
was also proposed in Ref. [48]. However, details of the
phase diagram differ from ours, as we do not see any

signature of a second vortex solid phase in our Cp and
NMR data (see also Ref. [19]).
In this context, it is interesting to note that

recent theoretical works [21,23,25,27], motivated by

(a) (b) (c)

FIG. 3. HDOS versus temperature for the indicated doping contents. The solid circles and squares have been derived from T (see
Refs. [20,34]) andH sweeps [see Figs. 1(a) and 1(b)] of the specific heat, respectively, and the crossed squares have been deduced from
KspinðHÞ [see Fig. 1(c)]. As shown, a clear “plateau” is observed in HDOSðTÞ for p ¼ 0.109 [panel (b)] and p ¼ 0.119 [panel (c)] in the
vicinity of the onset of the long-range 3D-CDW [41,42] (open crosses and shaded areas), highlighting the interplay between those two
competing orders. For p ¼ 0.098 [panel (a)], a change of slope is observed whenHDOS crossesHCDW. The fieldHscat marking the onset
of scattering by vortices, as deduced from thermal conductivity measurements (diamonds [18,42]), has also been reported for p ¼ 0.11.
Open diamonds in panel (c) correspond to the fields below which the intensities of the CDW diffraction peaks decrease [4]. Lines are
guides to the eyes.
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surements show that the density of states at the Fermi level
reaches its normal-state value above HDOS (see Fig. 1). Different
shades of yellow tentatively depict the intensity of local super-
conducting fluctuations, with emphasis on the field scale Hscat
deduced from thermal conductivity measurements [18,42]. The
greenish region corresponds to the HCDW ≤ H ≤ HDOS field
range, in which superconductivity might be impacted by the
presence of 3D CDW order.
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or «FFLO-like» upturn, related to the pair-density wave order ?
Agterberg et al.  PRB 2015, Berg et al.  PRL 2007, Dai et al. PRB 2018

giving rise to some kind of filamentary SC at the interface of CDW domains ?
(or fragile SC at CDW dislocations). Yu & Kivelson PRB 2019, Leridon et al. New J.Phys. 2020 
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surements show that the density of states at the Fermi level
reaches its normal-state value above HDOS (see Fig. 1). Different
shades of yellow tentatively depict the intensity of local super-
conducting fluctuations, with emphasis on the field scale Hscat
deduced from thermal conductivity measurements [18,42]. The
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A last exemple to flash….

presented in Sec. IV and analyzed in Sec. V. In Sec. VI, we
discuss their impact and the open questions. Additional
data or details on the methods used for the analysis are
reported in Appendixes.

II. OVERVIEW OF THE MAIN RESULTS

This work reveals a thermodynamic phase transition
between the low- and high-field reinforced superconduct-
ing phases, for magnetic fields applied along the hard
magnetization b axis. This has been made possible thanks
to specific heat experiments up to 36 T and thermal
dilatation or magnetostriction measurements up to 30 T.
We also uncover a drastic alteration of the specific heat
anomaly along Hc2 between the two phases, a unique

feature, still never observed in any unconventional super-
conductor, strongly suggesting a change of pairing mecha-
nism between the two superconducting phases.
Figure 1 is a summary of this main result, showing the

phase diagram for field along the b axis, with the two
superconducting phases (labeled LF and HF for “low field”
and “high field,” respectively) and the specific heat
anomalies at the different phase transitions. Phase transi-
tions between superconducting phases of different sym-
metries are rare; however, such a change in the specific heat
anomaly between the different phases is, to the best of our
knowledge, unique. Analysis is required to reveal that it
suggests different spin states characterizing these two
phases, with a HF phase in strong interplay with the
metamagnetic transition occurring atHm. The result, which
is rather counterintuitive, suggests that the LF phase would
be spin-triplet, and the HF phase spin-singlet, most likely
triggered by the development of antiferromagnetic corre-
lations on approaching Hm. Hence, this would be a direct
consequence of the competing pairing interactions (or of
the change of dominant finite Q vector in the magnetic
excitation spectrum) predicted to occur in UTe2 [7,26,35].
Another surprise uncovered by these specific heat

measurements is that Hc2ðTÞ appears to be anomalous
not only along the b axis, with the field-reinforced HF
phase, but also along the c and most importantly along the
easy a axis. This had been completely overlooked up to
now, but determination ofHc2ðTÞ by specific heat reveals a
very strong negative curvature of Hc2 along the a axis very
close to Tc, and an initial slope 4 times larger than initially
thought. Hence, a new mechanism is required to explain the
very strong deviation of Hc2ðTÞ from the linear behavior
expected below Tc=2 (see Fig. 2): we show that a strong
paramagnetic limitation, already excluded by recent NMR
Knight-shift measurements [14], would not be sufficient to
explain this singular temperature dependence of Hc2.
Instead, it points to a severe suppression of the pairing
strength along the easy axis. In the case of UTe2, it could
arise from at least two different sources. Suppression of
(hypothetical) ferromagnetic fluctuations by fields along
the easy axis would lead to such a decrease of the pairing
strength, a mechanism similar to that in ferromagnetic
superconductors [36,37], but also working for paramag-
netic systems [38]. Or the strong sensitivity of finite-Q
(spin-triplet) pairing [34,35] to Fermi-surface instabilities,
already revealed in UTe2 at rather low magnetic fields
along the a axis [39], might also lead to pairing strength
suppression.
Hence, both results along the hard b axis and the easy

a axis bring new elements on the possible symmetry states
in UTe2 and on the competing pairing mechanisms. It
enlightens the stunning superconducting properties of
UTe2, and uncovers key features which should guide future
theory developments. Indeed, understanding the mecha-
nisms leading to the strong field dependence of the pairing

FIG. 1. Top: bulk superconducting phase diagram of UTe2 for a
magnetic field H along the b axis. The specific heat measure-
ments reveal a phase transition line between a low-field (LF)
(yellow) and high-field (HF) (green) superconducting state. As a
function of magnetic field, superconductivity is suppressed at
34.75 T by a first-order metamagnetic transition marking the
entrance in a partly polarized magnetic phase (magenta). Bottom:
specific heat divided by temperature as a function of temperature
at different magnetic fields. Left: at 12 T a sharp anomaly marks
the superconducting transition to the LF phase. Middle: on
cooling a broad humplike transition occurs at the transition to
the HF phase above a sharp low-temperature transition to the
LF superconducting phase. Right: at 26 T only the humplike
transition to the HF superconducting phase is observed.
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