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Figure 1: Représentation de la structure cristallographique de MgB2.

0.3 Température critique

Comme nous l’avons mentionné dans l’introduction, MgB2 a d’abord attiré l’attention
par sa température critique relativement élevée, d’environ 39K pour un composé de
cette composition chimique. Afin de tenter de répondre à la question de la nature
du mécanisme responsable de l’appareillement, des mesures d’effets isotopiques ont
été réalisées (ref Bud’ko PRL 86 (2001) 1877). La théorie BCS qui s’applique aux
supraconducteurs conventionnels (voir chapitre I) prévoit :

Tcα
1

Mα
(1)

où M est la masse de l’élément et α, le coefficient isotope, doit être égale à 0.5 si on sup-
pose le coefficient de couplage constant. Les mesures effectuées sur MgB2 en utilisant
les isotopes du bore 11B et 10B ont mis en évidence un décalage de la température
critique de près de 1K. Cette valeur correspond à un exposant α = 0.26 ± 0.03 (en
considérant M = MB). Cet exposant, bien que différent du 0.5 attendu théoriquement
concorde avec un mécanisme de couplage électron - phonon de type BCS. On verra
plus loin les causes de la différence. MgB2 appartient donc bien à la famille des supra-
conducteurs conventionnels. Mais la question de savoir comment ce composé peut avoir

hexagonal structure
B planes similar to C planes 
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2 kinds of electronic orbitals derived from 

  - in plane sp2-boron orbitals : !"bands
  - pz boron orbitals : ! bands

“same” electronic structure than in Graphite
in which the ! bands are full

 (involved in covalent bounds)

            ! band : small e/hole pockets close to the K point
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
the hole doping of the s bands. Belashchenko et al. [17]
have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
magnitude and effects of interplanar coupling. The light
hole and heavy hole s bands in MgB2 can be modeled
realistically in the region of interest (near and above ´F)
with dispersion of the form

´k ! ´0 2
k2

x 1 k2
y

2m"
2 2t# cos!kzc# , (1)

where the planar effective mass m" is taken to be positive
and t# ! 92 meV is the small dispersion perpendicular to
the layers. The light and heavy hole masses are m"

lh"m !
0.20, m"

hh"m ! 0.53, and the mean band edge is ´0 !
0.6 eV. In general, the in-plane (yxy) and perpendicular
(yz) Fermi velocities are expected to be anisotropic: yxy $
kF"m", yz $ 2ct# where t# is small. Near the band edge
(kF # 2m"ct#) this anisotropy becomes small, and this is
roughly the case in MgB2. The p bands are also effectively
isotropic [10,11].

Now we discuss why the quasi-2D character of the s
bands is an important feature of MgB2 and its supercon-
ductivity. Neglecting the kz dispersion, the 2D hole den-
sity of states is constant: N0

h!´# ! m"
lh1m"

hh

p h̄2 ! 0.25 states"
eV-cell, independently of the fact that the hole doping
level is small. The kz dispersion has only the small effect
displayed in Fig. 2, where the discontinuity in the quasi-2D
DOS is seen to be broadened by $2t#. For MgB2 the s
band contribution to N!´F# is reduced by about 10% by
kz dispersion.

If superconductivity is primarily due to the existence of
holes in the s band, and we provide evidence for such a
picture below, then the DOS in Fig. 2 suggests that electron
doping will decrease N!´F#. The decrease will be smooth
to a doping level corresponding to an increase by 0.4 eV
of the Fermi level. Then N!´F# should drop precipitously
with further doping. A rigid band estimate gives a value of

4367

Figure 3: Structure de bandes le long des lignes principales de symétrie hexagonale
des zones de Brillouin (a) pour MgB2, (b) pour un système fictif !2+B2 et (c) pour
le graphite. Les états σ sont représentés par les grands symboles, ceux de la bande π,
par les petits. Leur énergie décrôıt graduellement entre (a) et (c); et il n’y a que dans
MgB2 qu’il sont partiellement inoccupés. Le point A = (0, 0, π/c) est perpendiculaire
au plan (kx, ky).

situe dans la position des bandes σ. Si ces bandes sont complètement remplies et
fournissent de fortes liaisons covalentes dans le graphite, elles ne sont pas pleines et
ont un caractère métallique dans MgB2 (avec une concentration en trous de 0.067 par

in MgB2 the “second” ! band is lowered 
by attractive Mg2+ potential
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FIG. 1. Band structure along main hexagonal symmetry
lines, for (top) MgB2, (middle) !21B2, and (bottom) primitive
graphite C2. The planar s states, highlighted with larger
symbols, fall in energy in this progression, and only in MgB2
are they partially unoccupied. The point A ! !0, 0, p"c# is
perpendicular to the (kx , ky) plane.

The band structure of MgB2 is shown in Fig. 1 (top
panel) in comparison with that of primitive graphite
(bottom panel) with a single layer per cell like the B2
sublattice in MgB2. For each two distinct sets of bands are
identifiable: the highlighted sp2 (s) states and the pz (p)
states. The striking difference is in the position of the s
bands, which is evident in Fig. 1. Whereas the s bonding
states are completely filled in graphite and provide the
strong covalent bonding, in MgB2 they are unfilled and
hence metallic, with a concentration of 0.067 holes"B
atom in two fluted cylinders surrounding the G-A line
of the Brillouin zone [10]. There are correspondingly
more electron carriers in the p bands. This decrease in
occupation on the strongly bonding s bands partially
accounts for the greatly increased planar lattice constant
of MgB2 (3.08 Å) compared to graphite (2.46 Å). Our

results agree with previous conclusions that MgB2 can be
well characterized by the ionic form Mg21!B2#22.

To identify the origin of the relative shift of the s and p
bands by $3.5 eV between graphite and MgB2, we have
considered a fictitious system !21B2 in which the Mg ion
is removed but the two electrons it contributes are left be-
hind (and compensated by a uniform background charge).
The band structure, shown in the middle panel of Fig. 1, is
very similar, except the energy shift of $1.5 eV downward
with respect to MgB2 completely fills the s bands, as in
graphite. This shift is the result of the lack of the attrac-
tive Mg21 potential in MgB2, which is felt more strongly
by the p electrons than by the in-plane s electrons: the
attractive potential of Mg21 between B2 layers lowers the
p bands, resulting in s ! p charge transfer that drives
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have also considered a sequence of materials to come to
related conclusions about the band structure, but they did
not use isoelectronic systems as has been done here.

The s bands are strongly 2D (there is very little disper-
sion along G-A), but it will be important to establish the
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kz dispersion.
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Figure 3: Structure de bandes le long des lignes principales de symétrie hexagonale
des zones de Brillouin (a) pour MgB2, (b) pour un système fictif !2+B2 et (c) pour
le graphite. Les états σ sont représentés par les grands symboles, ceux de la bande π,
par les petits. Leur énergie décrôıt graduellement entre (a) et (c); et il n’y a que dans
MgB2 qu’il sont partiellement inoccupés. Le point A = (0, 0, π/c) est perpendiculaire
au plan (kx, ky).

situe dans la position des bandes σ. Si ces bandes sont complètement remplies et
fournissent de fortes liaisons covalentes dans le graphite, elles ne sont pas pleines et
ont un caractère métallique dans MgB2 (avec une concentration en trous de 0.067 par
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FIG. 1 (color). Band structure of MgB2 with the B p character.
The radii of the red (black) circles are proportional to the B pz
(B px,y) character.

rather small MT spheres for Mg. For the LMTO calcula-
tions we used an atomic sphere of nearly the size of the
free Mg atom (up to 3.13aB!, and obtained, as expected,
a larger charge of 2.8 electrons. However less than 25%
of the charge has s character. The remaining charge of p,
d, and f character arises not from Mg electrons but rather
from the tails of the B p orbitals and contributions from
the interstitials. In fact, one can say that Mg is fully ion-
ized in this compound, however the electrons donated to
the system are not localized on the anion, but rather are
distributed over the whole crystal.

The resulting band structure can be easily understood in
terms of the boron sublattice. The character of the bands
is plotted in Fig. 1. We show only the B p character, since
other contributions near the Fermi level are very small.
Observe two B band systems: two bands are derived from
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FIG. 2 (color). Total density of states (DOS) and partial DOS
for the MgB2 compound. The small Mg DOS is partially due
to the small rMT of 1.8aB used.

B pz states and four from B px,y . All these bands are
highly dispersive (light), the former being quite isotropic
and the latter more two dimensional. Both pz bands cross
the Fermi level (in different parts of the Brillouin zone),
but only two bonding px,y bands do so, and only near the
G point. They form two small cylindrical Fermi surfaces
around the G-A line (Fig. 3). However, due to their 2D
character, they contribute more than 30% to the total N"0!.

In contrast, the pz bands have 3D character, since the
smaller intraplane distance compensates for a smaller
(ppp vs pps) hopping. In the nearest neighbor tight
binding (TB) model their dispersion is ´k ! ´0 1 2tpps 3
cosckz 6 tppp

p
3 1 2 cosa1k 1 2 cosa2k 1 2 cosa3k

where a1,2,3 are the smallest in-plane lattice vectors. The
on-site parameter ´0 can be found from the eigenvalue at
the K point and is #1.5 eV above the Fermi energy. We
estimated tpps and tppp from the LMTO calculations as
#2.5 and #1.5 eV, respectively. This model gives a very
good description of the pz band structure near and below
the Fermi level, although the antibonding band acquires
some additional dispersion by hybridizing with the Mg p
band. The role of Mg in forming this band structure can
be elucidated by removing the Mg atoms from the lattice
entirely and repeating the calculations in this hypothetical
structure. The in-plane dispersion of both sets of bands at
and below the Fermi level changes very little (ppp bands
are hardly changed, while the pps in-plane dispersion
changes by #10%). The kz dispersion of the pz bands is
increased in MgB2 as compared with the hypothetical empty
B2 lattice by about 30%, and these bands shift down with
respect to the px,y bands by approximately 1 eV. This
shift, as well as the additional dispersion, comes mainly
from the hybridization with the empty Mg s band, which
is correspondingly pushed further up, increasing the ef-
fective ionicity. Substantial kz dispersion of the pz bands

FIG. 3 (color). The Fermi surface of MgB2. Green and blue
cylinders (holelike) come from the bonding px,y bands, the blue
tubular network (holelike) from the bonding pz bands, and the
red (electronlike) tubular network from the antibonding pz band.
The last two surfaces touch at the K point.
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actually 2x !(3D) and 2x!(quasi-2D)bands 

“2” Fermi surface sheets

the quasi 2D characters leads to a “large” DOS ~ 0.30 st/eV.cell 
(close to the 2D value                          0.33 st/eV.Cell)

 despite the small hole doping level ~ 0.07 hole/B
m∗a2/πh̄2

∼

! sheets

! sheet common with graphite
     (although smaller in graphite)

        second ! sheet 
due to attractive Mg2+ potential
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Magnesium diboride1 differs from ordinary metallic supercon-
ductors in several important ways, including the failure of
conventional models2 to predict accurately its unusually high
transition temperature, the effects of isotope substitution on the
critical transition temperature, and its anomalous specific heat3–5.
A detailed examination of the energy associated with the
formation of charge-carrying pairs, referred to as the ‘super-
conducting energy gap’, should clarify why MgB2 is different.
Some early experimental studies have indicated that MgB2 has
multiple gaps3–9, but past theoretical studies10–16 have not
explained from first principles the origin of these gaps and
their effects. Here we report an ab initio calculation of the
superconducting gaps in MgB2 and their effects on measurable
quantities. An important feature is that the electronic states
dominated by orbitals in the boron plane couple strongly to
specific phonon modes, making pair formation favourable. This
explains the high transition temperature, the anomalous struc-
ture in the specific heat, and the existence of multiple gaps in this
material. Our analysis suggests comparable or higher transition
temperatures may result in layeredmaterials based on B, C andN
with partially filled planar orbitals.
MgB2 is a metal with a layer structure (Fig. 1a). The boron atoms

form honeycombed layers, and the magnesium atoms are located
above the centre of the hexagons in-between the boron planes. The
electronic states at the Fermi level, which are the highest occupied
electronic states, are mainly either j- or p-bonding boron orbitals
(Fig. 1b–d). The j-bonding states are confined in the boron planes.

Thus, MgB2 may be unique with partially occupied j-bonding
states in a layer structure. Because the charge distribution of the
j-bonding states is not symmetrical with respect to the in-plane
positions of boron atoms, the j-bonding states couple very strongly
to the in-plane vibration of boron atoms (Fig. 1e). We show that
this strong coupling results in strong electron-pair formation of the
j-bonding states with an average energy gap D of 6.8meV. This
strong pairing, which is confined to the boron planes and to only
parts of the Fermi surface, is the principal contribution responsible
for the superconductivity. However, the p-bonding states on the
remaining parts of the Fermi surface form much weaker pairs with
an averageD of 1.8meV. This pairing is enhanced by the coupling to
the j-bonding states.

Our present theoretical work is based on the strong coupling
formalism of superconductivity established by Eliashberg17–19. The
Eliashberg formalism17 is a more general extension of the original
formulation of the Bardeen–Cooper–Schrieffer (BCS) theory,
which is based on the mechanism for pairing that involves an
attractive interaction between electrons mediated by lattice
vibrations. This approach is able to reproduce successfully the
superconducting transition temperature of MgB2 after detailed
material properties are used16. This particular study16 provides
only the transition temperature Tc , and does not give information
on the superconducting energy gap (which is zero at Tc ) or the
temperature dependence of any measured quantities. However, the
same general approach formally provides us with the nonlinear
equations18,19 for the superconducting energy gap at temperatures
below the transition temperature. We solved this set of equations
using an iterative technique20 to obtain the full crystal momentum k
and temperature dependence of the energy gap of MgB2 from first
principles. A two-gap structure is assumed in model calculations14,
and the ratio of the gap sizes obtained is consistent with the results
presented here.

We have evaluated the properties of the superconducting energy
gap of MgB2 on the Fermi surface at low temperature (Fig. 2a, b). In
MgB2, the Fermi surface consists of two sheets from the j-bonding
states of boron px,y orbitals, and two sheets from the p-bonding
states of boron pz orbitals. The calculation of the energy gap is made
without any assumption of its functional shape on the Fermi
surface. The resulting superconducting energy gap has s-wave

Figure 1 Crystal structure of MgB2, electronic states at the Fermi level, and a vibrational
mode of boron atoms. a, Crystal structure of MgB2. Boron atoms form honeycomb planes,

and magnesium atoms occupy the centres of the hexagons in-between boron planes.

b, c, j-bonding states at the Fermi level derived from boron px,y orbitals. d, A p-bonding
state at the Fermi level derived from boron pz orbitals. e, A vibrational mode of boron

atoms that couples strongly to j-bonding electronic states at the Fermi level. As boron

atoms move in the arrow directions, shortened bonds, marked with ‘A’, become attractive

to electrons, whereas elongated bonds, marked with ‘R’, become repulsive. The

j-bonding states (b, c) couple strongly to the vibrational mode because they are mainly
located in either the attractive or the repulsive bondings of the mode. The p-bonding

states (d) do not couple strongly to this mode.

letters to nature
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Figure 2: Structure cristalline de MgB2, états électroniques au niveau de Fermi et
modes vibratoires des atomes de bore. (a) Structure cristalline de MgB2 (détaillée
précédemment). (b) (c) liaisons de la bande σ dérivées des orbitales px,y du bore. (d)
liaisons de la bande π issues des orbitales pz. (e) Mode vibratoire des atomes de bore.
Les atomes de bore se déplacent dans la direction des flèches. Ils créent ainsi entre eux
des liaisons raccourcies, notées A, qui deviennent attractives pour les électrons et des
liaisons allongées, notées R, qui deviennent répulsives. Les états de la bande σ (b,c)
se couplent fortement au mode vibratoire car ils sont principalement localisés soit sur
les liaisons attractives, soit sur les liaisons répulsives du mode. Les états π (d) ne se
couplent pas à ce mode.

0.4.2 Structure de bandes

La structure de bande de MgB2 est représentée sur le schéma (a) de la figure 3 tirées
de l’article de J.M. An et W.E. Pickett (ref PRL 86 (2001) 4366). Elle est comparée à
celle d’un système fictif !2+B2 (b) ainsi qu’à celle du graphite (c).

Pour chacun des trois ”composés”, on peut identifier deux positionnements distincts
de bandes : Les grands symboles représentent les relations de dispersion de σ et les
petits symboles celles de π. Concentrons tout d’abord notre attention sur MgB2 (a)
et sur le graphite (c). La différence la plus frappante entre ces deux composés se

strong coupling of !electrons with E2g vibration mode 
+ large DOS

 -> electron-phonon coupling constant  $"~ 1.0

despite a larger DOS (~0.4st/eV.cell)
the coupling is much worse in the !"band"# $"~ 0.45 

increasing phonon 
frequency(light atoms)

Mac-Millan expansion
screening coefficient : 0.15

! = 540K
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A. Sur la bande π, représentée en vert et bleu, l’énergie du gap varie de 1.2 à 3.7 meV.
La densité d’états à l’énergie de Fermi est de 0.12 états par (eV.atome.spin). 44% de
celle-ci provient de la bande σ et les 56% restants de la bande π.

symmetry (that is, the gap is of the same sign and non-zero
everywhere on the Fermi surface), but the size of the gap changes
greatly on the different sections of the Fermi surface. Themagnitude
of the energy gap at 4 K ranges from 6.4 to 7.2meVon the j sheets,
and from 1.2 to 3.7meV on the p sheets (Fig. 2a, b). The average
values of the gap are 6.8meV for the j sheets and 1.8meV for the p
sheets. In experimental measurements, there has been a debate on
the number of gaps3–9,21–26. Our result is consistent with the recent
experiments reporting two gaps, ranging from 1.5 to 3.5meV for the
small gap and 5.5 to 8meV for the large gap3–9,26.

The variation of the superconducting energy gap on the Fermi
surface can be measured by techniques such as high-resolution
angle-resolved photoelectron spectroscopy. Moreover, as the
j-bonding states are confined to the boron planes, the strong
pairing gap of around 6.8meV is associated with these planes
(Fig. 2c). In Fig. 2c, we introduce the concept of a local gap
distribution r(r,D) at position r given by rðr;DÞ ¼P

kjwkðrÞj2dðD2DkÞ; where wk(r) is the electron wavefunction
with crystal momentum k. Our result shows that the small gaps
should be seen preferentially in tunnelling experiments along the c
axis, as indicated in some recent measurements6,7.

Figure 3a depicts the calculated superconducting energy gaps at
various temperatures below the transition temperature. The energy
gap of the j-bonding states and that of the p-bonding states show
different temperature dependences. Compared to the small energy
gap of the p-bonding states, the large energy gap of the j-bonding
states changes more slowly at low temperature, but more rapidly
near the transition temperature. Both the p and j gaps vanish at the
same transition temperature, although their values are greatly
different at low temperatures27. This temperature dependence of
the superconducting energy gaps explains recent tunnelling, optical
and specific-heat measurements3–9.

The superconducting energy gap determines the quasiparticle
density of states. The quasiparticle energy is the excitation energy of
a system when an electron is added or removed. In a superconduc-
tor, the quasiparticle energy is equal to, or greater than, the super-
conducting energy gap D. Because the energy gap differs
considerably for the j- and p-bonding states in MgB2, the density
of quasiparticle excitations as a function of energy shows two
thresholds (Fig. 3b). Only p-bonding quasiparticle states are
allowed for energies between the minimal superconducting energy
gap of the p-bonding states and that of the j-bonding states. For
energies above the minimal superconducting energy gap of the
j-bonding states, quasiparticle excitation becomes possible for both
the j- and p-bonding states. The quasiparticle density of states can
be deduced experimentally from tunnelling experiments and var-

Figure 2 The superconducting energy gap of MgB2. a, b, The superconducting energy
gap on the Fermi surface at 4 K given using a colour scale (a), and the distribution of gap
values at 4 K (b). The Fermi surface of MgB2 consists of four distinctive sheets. Two j
sheets (‘cylinders’), derived from the j-bonding px,y orbitals of boron, are shown split into

eight pieces around the four vertical G–G lines. Two p sheets (‘webbed tunnels’), derived

from the p-bonding pz orbitals of boron, are shown around K–M and H–L lines (upper and

lower K–M lines are equivalent). The superconducting energy gap is ,7.2 meV on the

narrower j cylindrical sheet, shown in red, with variations of less than 0.1 meV. On the

wider j cylindrical sheet, shown in orange, the energy gap ranges from 6.4 to 6.8meV,

having a maximum near G and a minimum near A. On the p sheets, shown in green and

blue, the energy gap ranges from 1.2 to 3.7meV. The density of states at the Fermi

energy is 0.12 states per (eV atom spin), 44% of which comes from the j sheets and the

other 56% comes from the p sheets. c, Local distribution of the superconducting energy
gap on a boron plane and on planes at 0.05, 0.10 and 0.18 nm above a boron plane,

respectively.

Figure 3 Calculated temperature dependence of the superconducting gaps and the
quasiparticle density of states. a, Temperature dependence of the superconducting gaps.
Vertical solid curves represent the distribution of the superconducting gap values at

various temperatures from 4 K to 38 K. Dashed curves are of the form DðT Þ ¼ Dð0Þ$
ð12 ðT=T cÞp Þ1=2 fitted separately to the calculated average energy gap of the j-bonding
states and that of the p-bonding states. For the j sheets, D(0) ¼ 6.8meV

ð2Dð0Þ=k BT c ¼ 4:0Þ (k B ¼ Boltzmann’s constant) and p ¼ 2.9. For the p sheets,

D(0) ¼ 1.8 meV ð2Dð0Þ=k BT c ¼ 1:06Þ and p ¼ 1.8. b, The quasiparticle density of
states at various temperatures. The quasiparticle density of states N(q) for the

quasiparticle energy q is given by NðqÞ=Nð0Þ ¼ Rekðqþ iGÞ=ððqþ iGÞ2 2
Dðk;qÞ2Þ1=2l; where N(0) is the electron density of states at the Fermi level,
i ¼ (21)1/2, and k· · ·l indicates an average over a surface of constant q. This curve is
obtained from the calculated gap function D(k, q) and an assumed finite lifetime G of

0.1meV.

Figure 4 The specific heat of MgB2. The measured and calculated electronic contribution
to the specific heat divided by temperature are plotted as a function of temperature. The

red solid curve represents the result of our calculation. The specific heat difference

(C S 2 C N) between the superconducting and normal states is obtained by C S 2 CN ¼
2T ðd2=dT 2ÞðF S 2 F NÞ from the corresponding free energy difference (F S 2 F N) which

is calculated using a generalized Bardeen–Stephen formula28. The normal-state specific

heat is calculated to be C N ¼ Y nT with Y n ¼ 2:62mJmol21 K22 (ref. 16). Symbols are

the results of experimental measurements3–5, and the dashed curve is the standard one-

gap BCS prediction corresponding to a transition temperature of 39.4 K.
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Figure 6: Gap supraconducteur dans MgB2. (a) Surface de Fermi de MgB2 à 4K.
Elle est constituée de 4 bandes distinctes (voir texte). (b) Distribution des énergies
associées aux différents gaps supraconducteur à 4K : en rouge, le gap de la bande σ la
plus étroite; en orange, celui de la bande σ la plus large; en vert et bleu, celui de la
bande π. (c) Distribution locale de l’énergie du gap dans un plan de bore et à 0.05,
0.10 et 0.18nm au dessus de ce plan.

La distribution locale des gaps sur les plans de bore et au dessus (c) de la figure 6
indique que le grand est confiné dans les plans de bore. Le petit gap est, lui, visible en
dehors de ces plans.

De plus, le petit gap (dont l’énergie est d’environ 2 meV) sera détectable suivant
l’axe c, contrairement au grand gap. Plus généralement, la structure de Fermi met en
évidence le fait que les deux bandes π et σ n’ont pas la même symétrie (3D pour π,
2D pour σ). Cette différence de symétrie va intervenir de manière défavorable dans le
couplage des bandes. Elle va également intervenir dans le paramètre d’anisotropie du
composé. En effet, la bande π qui a une forme de réseau tubulaire, est tridimensionnelle.
Ses vitesses de Fermi quadratiques moyennes (qui reflètent la courbure de la surface de
Fermi) calculées suivant les directions principales de cette bande ont des valeurs voisines
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A. Sur la bande π, représentée en vert et bleu, l’énergie du gap varie de 1.2 à 3.7 meV.
La densité d’états à l’énergie de Fermi est de 0.12 états par (eV.atome.spin). 44% de
celle-ci provient de la bande σ et les 56% restants de la bande π.

symmetry (that is, the gap is of the same sign and non-zero
everywhere on the Fermi surface), but the size of the gap changes
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various temperatures below the transition temperature. The energy
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states changes more slowly at low temperature, but more rapidly
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different at low temperatures27. This temperature dependence of
the superconducting energy gaps explains recent tunnelling, optical
and specific-heat measurements3–9.

The superconducting energy gap determines the quasiparticle
density of states. The quasiparticle energy is the excitation energy of
a system when an electron is added or removed. In a superconduc-
tor, the quasiparticle energy is equal to, or greater than, the super-
conducting energy gap D. Because the energy gap differs
considerably for the j- and p-bonding states in MgB2, the density
of quasiparticle excitations as a function of energy shows two
thresholds (Fig. 3b). Only p-bonding quasiparticle states are
allowed for energies between the minimal superconducting energy
gap of the p-bonding states and that of the j-bonding states. For
energies above the minimal superconducting energy gap of the
j-bonding states, quasiparticle excitation becomes possible for both
the j- and p-bonding states. The quasiparticle density of states can
be deduced experimentally from tunnelling experiments and var-

Figure 2 The superconducting energy gap of MgB2. a, b, The superconducting energy
gap on the Fermi surface at 4 K given using a colour scale (a), and the distribution of gap
values at 4 K (b). The Fermi surface of MgB2 consists of four distinctive sheets. Two j
sheets (‘cylinders’), derived from the j-bonding px,y orbitals of boron, are shown split into

eight pieces around the four vertical G–G lines. Two p sheets (‘webbed tunnels’), derived

from the p-bonding pz orbitals of boron, are shown around K–M and H–L lines (upper and

lower K–M lines are equivalent). The superconducting energy gap is ,7.2 meV on the

narrower j cylindrical sheet, shown in red, with variations of less than 0.1 meV. On the

wider j cylindrical sheet, shown in orange, the energy gap ranges from 6.4 to 6.8meV,

having a maximum near G and a minimum near A. On the p sheets, shown in green and

blue, the energy gap ranges from 1.2 to 3.7meV. The density of states at the Fermi

energy is 0.12 states per (eV atom spin), 44% of which comes from the j sheets and the

other 56% comes from the p sheets. c, Local distribution of the superconducting energy
gap on a boron plane and on planes at 0.05, 0.10 and 0.18 nm above a boron plane,

respectively.

Figure 3 Calculated temperature dependence of the superconducting gaps and the
quasiparticle density of states. a, Temperature dependence of the superconducting gaps.
Vertical solid curves represent the distribution of the superconducting gap values at

various temperatures from 4 K to 38 K. Dashed curves are of the form DðT Þ ¼ Dð0Þ$
ð12 ðT=T cÞp Þ1=2 fitted separately to the calculated average energy gap of the j-bonding
states and that of the p-bonding states. For the j sheets, D(0) ¼ 6.8meV

ð2Dð0Þ=k BT c ¼ 4:0Þ (k B ¼ Boltzmann’s constant) and p ¼ 2.9. For the p sheets,

D(0) ¼ 1.8 meV ð2Dð0Þ=k BT c ¼ 1:06Þ and p ¼ 1.8. b, The quasiparticle density of
states at various temperatures. The quasiparticle density of states N(q) for the

quasiparticle energy q is given by NðqÞ=Nð0Þ ¼ Rekðqþ iGÞ=ððqþ iGÞ2 2
Dðk;qÞ2Þ1=2l; where N(0) is the electron density of states at the Fermi level,
i ¼ (21)1/2, and k· · ·l indicates an average over a surface of constant q. This curve is
obtained from the calculated gap function D(k, q) and an assumed finite lifetime G of

0.1meV.

Figure 4 The specific heat of MgB2. The measured and calculated electronic contribution
to the specific heat divided by temperature are plotted as a function of temperature. The

red solid curve represents the result of our calculation. The specific heat difference

(C S 2 C N) between the superconducting and normal states is obtained by C S 2 CN ¼
2T ðd2=dT 2ÞðF S 2 F NÞ from the corresponding free energy difference (F S 2 F N) which

is calculated using a generalized Bardeen–Stephen formula28. The normal-state specific

heat is calculated to be C N ¼ Y nT with Y n ¼ 2:62mJmol21 K22 (ref. 16). Symbols are

the results of experimental measurements3–5, and the dashed curve is the standard one-

gap BCS prediction corresponding to a transition temperature of 39.4 K.
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Figure 6: Gap supraconducteur dans MgB2. (a) Surface de Fermi de MgB2 à 4K.
Elle est constituée de 4 bandes distinctes (voir texte). (b) Distribution des énergies
associées aux différents gaps supraconducteur à 4K : en rouge, le gap de la bande σ la
plus étroite; en orange, celui de la bande σ la plus large; en vert et bleu, celui de la
bande π. (c) Distribution locale de l’énergie du gap dans un plan de bore et à 0.05,
0.10 et 0.18nm au dessus de ce plan.

La distribution locale des gaps sur les plans de bore et au dessus (c) de la figure 6
indique que le grand est confiné dans les plans de bore. Le petit gap est, lui, visible en
dehors de ces plans.

De plus, le petit gap (dont l’énergie est d’environ 2 meV) sera détectable suivant
l’axe c, contrairement au grand gap. Plus généralement, la structure de Fermi met en
évidence le fait que les deux bandes π et σ n’ont pas la même symétrie (3D pour π,
2D pour σ). Cette différence de symétrie va intervenir de manière défavorable dans le
couplage des bandes. Elle va également intervenir dans le paramètre d’anisotropie du
composé. En effet, la bande π qui a une forme de réseau tubulaire, est tridimensionnelle.
Ses vitesses de Fermi quadratiques moyennes (qui reflètent la courbure de la surface de
Fermi) calculées suivant les directions principales de cette bande ont des valeurs voisines
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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two degenerate directions, mutually rotated by a few
degrees relative to the low field orientation. The splitting
increases with field as shown in Fig. 1(c) and 1(d). As the
applied field is increased further to 0:9 T [Fig. 1(e)] the
two domains have each rotated 30!, which is sufficient to
reform a single domain. At high fields a FLL nearest
neighbor direction is thus aligned parallel to the a axis.
The split angle, ! [Fig. 1(c)] was extracted from the data
by fitting a two-dimensional Gaussian to each Bragg
peak. The field dependence of ! is shown in Fig. 2(a).
An abrupt onset of the reorientation occurs at "0:5 T,
followed by a continuous and almost linear increase of !
as a function of applied field up to 0:9 T where it rises
steeply to 60!. The continuous change of !, and the
absence of scattered intensity at the positions correspond-
ing to the initial and final orientation of the FLL during
the transition, is indicative of a second-order transition.

’The integrated intensity of a Bragg peak, I, is the sum
of the scattering as the sample is rotated through the
diffraction condition and is proportional to the form
factor squared jFj2 [15]. The form factor F, quantifies
the amplitude of the magnetic field modulation:
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where B is the mean internal magnetic field and !0 is the
flux quantum [16]. The first term describes the field
modulation at intermediate fields due to #, and the second

represents the effect of the finite size of the vortex core.
Thus for a conventional single band superconductor with
# and $ both independent of field, F plotted on a loga-
rithmic scale versus B should yield a straight line. The
zero-field value is determined by #&2 and the gradient
proportional to $2. Figure 2(b) shows the data departs
significantly from purely exponential behavior at low
fields. In the London model, this is consistent with a
loss of supercarrier density, ns / m'=#2, with increasing
field. We associate the loss of supercarrier density with a
suppression of superconductivity in the " band, in agree-
ment with results from scanning tunneling spectroscopy
[6] and point contact spectroscopy [4]. The fit to the form
factor plot shown in Fig. 2(b) involves a simple model for
ns as a function of field:

ns # n0f$1& w"% ( )w" exp$&B=B'%*g; (2)

combined with Eq. (1) and a characteristic field B'. The
second term is the field dependent fraction of supercar-
riers originating from the " band, the zero-field value
being w". An exponential suppression of the " band
contribution was also found by scanning tunneling spec-
troscopy [6]. The fit yields B' # 0:3$1% T, $ab # 8$1% nm,
w" # 0:38$14%, and n0 # 2:11$8% + 1021 cm&3. The value
of w" is in reasonable agreement with band structure
calculations, which found that the " band contributes
approximately 55% of the total supercarrier density
[1,2,17–19]. The value of B' agrees with the upper critical

FIG. 1 (color). SANS diffraction patterns of the FLL in MgB2 at 2 K. The data have been smoothed and noise in the central region
removed. Panels (a)–(e) correspond to fields of 0:5; 0:6; 0:7; 0:8, and 0:9 T applied parallel to the c axis. The FLL domain splitting,
!, is indicated in panel (c). Panel (f) was obtained with a field of 0:5 T applied at 45! to the c axis with the FLL anisotropy
indicated by the ellipse. The orientation of the crystalline a axis is shown in panels (a) and (f).
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Figure 11: Images de diffraction SANS effectuées sur un échantillon monocristallin de
MgB2 à 2K. Les encadrés (a)-(e) correspondent à un champ appliqué selon l’axe c de
0.5, 0.6, 0.7, 0.8 et 0.9T

est donc directement reliées à l’évolution de deux bandes sous champ intervenant dans
le mécanisme de la supraconductivité.

Lors des mesures de neutrons, on mesure également l’intensité du pic de Bragg et
le facteur de forme. Ce dernier possède une dépendance en champ :

F =

√
3

2

1

(2π)2

φ0

λ2
exp (−(2π)2

√
3

B.ξ2

φ0
) (13)

Pour les supraconducteur à un gap, λ et ξ sont indépendants du champ. En traçant F
versus log B, on obtient une droite dont la valeur en champ nul est déterminée par 1

λ2

et la pente par ξ2. La figure 11 représente le facteur de forme mesuré pour MgB2.

On remarque un net écart à la linéarité attendue (ligne pointillée). Comme on le
verra plus tard, cet écart provient de la dépendance en champ de λ et ξ. L’auteur a
cependant proposé un fit des donnés à partir d’une expression tenant compte unique-
ment de la dépendance en champ de λ négligeant celle de ξ pourtant observée par
Eskildsen etal .

and the vortex lattice 
rotates by 30°

SANS measurements R.Cubitt et al. PRL 03
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leur anisotropie. Celle-ci dépend également de la température et on a alors la relation
suivante, qu’on utilise comme postulat de départ :

Γλ = Γξ = Γ(H, T ) (26)

Ceci explique pourquoi les anisotropies des champs critiques inférieurs et supérieurs
sont différentes. Elles déterminent les limites en champ de Γ(H,T).

ΓHc1 ≤ Γ(H, T ) = Γλ = Γξ ≤ ΓHc2 (27)

Afin de déterminer complètement cette anisotropie, il faut donc tenir compte de l’influence
de la température. Champ et température n’interviennent pas de la même manière dans
la modification de la structure bandes et du couplage. Ainsi, la figure 19 propose une
évolution de l’anisotropie en fonction du champ et de la température que nous allons
détaillé.
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Figure 20: Schéma représentatif des contributions des bandes et du paramètre Γ
d’anisotropie en fonction du champ et de la température.

A basse température et bas champ (près de Hc1), les calculs qui tiennent pourtant
compte des deux bandes conduisent à une anisotropie proche de celle de π : Γ(Hc1, T =
0) = 1 (en limite propre). Toujours à basse température mais haut champ (près de
Hc2), la bande π n’existe que par le couplage avec la bande σ et cette dernière domine
l’anisotropie (ref) :

Γ(Hc2, T → 0) =

√√√√〈v2
ab,σ〉

〈v2
c,σ〉

= 5− 6 (28)

mainly 
dominated by!

the "!band

Complete FS

 i.e. ! + "
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A haute température (près de Tc), le couplage entre les bandes, même s’il est faible
permet à la bande π de jouer un rôle du fait de la grande valeur de sa vitesse de Fermi
selon c par rapport à celle de la bande σ. En effet, les calculs de Dahm (ref) fournissent
:

Γ(Hc2, T → Tc) ≈
1√
2

√√√√η〈v2
ab,π〉+ (1− η)〈v2

ab,σ〉
η〈v2

c,π〉+ (1− η)〈v2
c,σ〉

(29)

Avec η, le coefficient de couplage. Comme ce dernier est faible, η est petit. Et avec
vc,σ, vab,σ, vab,π et vc,π les vitesses de Fermi des bandes σ et π De plus, vc,σ, vab,σ et vab,π

sont du même ordre alors que vc,π est largement supérieur. Donc si on peut simplifier
le dénominateur de l’expression précédente par (1− η)vab,σ, le numérateur ne peut lui
être simplifié et la bande π joue donc un rôle.

Pour conclure, nous proposons en figure 20 une représentation tridimensionnelle de
la dépendance de l’anisotropie avec le champ magnétique et la température. Le champ
est exprimé en unités réduites. Seules les limites Γ(Hc1,T ), Γ(Hc2,T ) et Γ(H,T=0)
sont connues avec exactitude. Les dépendances intermédiaires sont extrapolées pour
mettre en évidence la présence d’un champ particulier pour lequel on a un changement
de comportement des propriétés (champ qu’on a appelé h∗

c2 en unité réduite).

coupling constant 
depends on inter and/

or intra band 
scattering

clean samples

Γ ∼ ΓHc1
=
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what about Graphite..... doping by intercalation (Na,...) leads to 

superconductivity : Tc ~ 5K 

DIAMOND 
very “strong” !"bounds

but superconductivity 
remains in the “soft” ! band

(similar to alkali doped fullerides)

but 3D (sp3)....

Superconductivity (Tc ~ 7K) has been 
observed in Ba doped Si-clathrates 

(cage like structure with sp3 bounds)



all 4e are involved in covalent bounds -> large gap semiconductor

can be either n or p doped by substituting C atoms by P or B atoms, respectively

In B-doped samples, the system becomes metallic when the 
boron impurity band overlaps the diamond valence band 

i.e. for boron concentrations > a few 1020 cm-3

   what about the e-phonon coupling $"???   

λ = N(EF ).
I2

Mω2

“appropriately defined” 
mean square frequency

FS averaged e-ion
 matrix element

±uI : splitting of the top of the valence band
for the “appropriate” displacement u

DOS
st/eV.spin.”2 atoms-cell”

1/2 of MgB2 value to 
smaller DOS (3D)

N I (ev/A) "(cm-1) "

MgB2 0.15 12 540 6.7 1.0

C-B3% 0.06±0.01 24±3 1080 7.5±0.8 0.45±0.1

I2/Mω2

2x the already large 
MgB2 value



method model
B/C
at.%

nB
1020 cm-3

e-/ph
coupling

#

Tc

(K)
Remark

Boeri et al
PRL 93,
237002 

First
Principles 
LMTO

VCA
Virtual
crystal

3 50 0.37 0.2 Tc = 25 K
for 10 at%

Lee et al
PRL 93,
237003 

First 
principles
APW-CPA

VCA
Virtual
crystal

2.5 44 0.53 9 EF at 

VBMu–0.6eV

Xiang et al
Cond-mat
0406446 

First 
principles 
supercell 
DFT-LDA

C35B 2.8 49 0.39 4.4
B modes
contribute
to e-/ph coupling

Blase et al
PRL 93,
237004 

Ab initio
Supercell
DFT-LDA

C53B 1.85 33 0.43 4
«"Local"» C-B 
modes  couple 
with free carriers
EF at -0.52eV

phonon modes involved in e/ph 
coupling not clearly identified



Polycrystalline diamond (HPHT bulk)

Doping level : 1021 B/cm3  : Tc ~ 3K

Ekimov et al.  Nature 04

confirmed on homoepitaxial films

E.Bustarret 04
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is there any relation between this metal-insulator 
transition and superconductivity ???

normal state conductivity extrapolated to zero

Tc ~ !(0) ???

enhanced superconductivity 
due to reduced screening close 

to the MIT ???
Soulen - Osofsky et al.



Hole doping of the ! bands leads to very efficient 
electron-phonon interaction potentiel

superconducting is also 
“induced” in the ! band

-> two gap superconductivity

anomalous field and 
temperature dependence of the 

superconducting properties

superconductivity appears in 
the vicinity of a MIT

can explain the onset of superconductivity 
in B-dopecd diamond in, which “reduced” 

DOS => Tc ~ a few K

+ large DOS due to 2D 
character (sp2) in MgB2

=> Tc ~ 40K
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We present a joint experimental and theoretical study of the superconductivity in doped silicon
clathrates. The critical temperature in Ba8@Si-46 is shown to strongly decrease with applied pressure.
These results are corroborated by ab initio calculations using MacMillan’s formulation of the BCS
theory with the electron-phonon coupling constant ! calculated from perturbative density functional
theory. Further, the study of I8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped
within a rigid-band approach show that the superconductivity is an intrinsic property of the sp3 silicon
network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an
effective electron-phonon interaction much larger than in C60.

DOI: 10.1103/PhysRevLett.91.247001 PACS numbers: 74.70.Wz, 71.15.Mb, 74.62.Bf, 74.62.Fj

The superconductivity in column-IV elemental com-
pounds has been extensively studied in the case of carbon.
In particular, the large observed critical temperature (Tc)
in doped C60 fullerene networks has stimulated a lot of
work [1] while recent theoretical predictions emphasized
that by reducing the fullerene size down to C36 [2] or even
C28 [3], Tc could be significantly increased.

Contrary to carbon, silicon does not form sp2-like
networks and, at ambient pressure, there is no supercon-
ductivity associated with the sp3 diamond phase. It is
only at higher pressure, upon phase transformation into
metallic phases such as the "-tin and simple hexagonal
(sh-V) phases at 11 and 13–14 GPa, respectively, that
superconductivity with a Tc of 6–8 K could be measured
and explained using electron-phonon calculations within
the BCS theory [4].

The absence of superconductivity in silicon or carbon
sp3 networks raises the problem of the doping of such
dense insulating phases. High doping changes the average
lattice constant and introduces mechanical stresses with
misfit dislocations [5]. In addition, doping is always
limited by the solubility limit for the impurity in the
solid which is small at low temperature. Practically, in
heavily n-doped silicon, the well known ‘‘doping rule
limit’’ predicts [6] a Fermi level located a few tenths of
eVabove the conduction band minimum (CBM) where the
electronic density of states (EDOS) is not large enough to
induce superconductivity.

In this perspective, silicon clathrates [7] are promising
candidates as they are cagelike materials allowing inter-

calation. In the case of the type-I clathrates studied here,
they are built from a regular arrangement of a combina-
tion of Si20 (Ih) and Si24 (D6d) cages (Fig. 1). Contrary to
C60 fullerene-assembled films, the silicon cages are
strongly linked together since the polyhedra share pen-
tagonal and hexagonal faces. All silicon atoms are thus
covalently bonded within a four-neighbor sp3 environ-
ment as in the diamond phase, and silicon clathrates are
!1:8 eV band gap semiconductors [8]. Doping of type-I
clathrates leads to a X8@Si-46 stoichiometry, where X is
the in-cage guest atom, displaying thus a huge 8=46 ratio
of intercalated to host network atoms. As a result, the
Fermi level (Ef) can be strongly displaced in the valence
or conduction bands.

FIG. 1. Symbolic representation of face sharing Si20 and Si24
cages as a building unit of type-I clathrates.
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large Tc values predicted 
in C clathrates (X8@C46)
#"~ 1.4 & !#~ 1500K

=> Tc between 50 
and ...150K !!! 

(depending on screening coefficient)
Connetable et al. 2003


